पास्कल की प्रमेय

From Vigyanwiki
पास्कल रेखा GHK स्व-क्रॉसिंग षट्भुज का ABCDEF दीर्घवृत्त में अंकित। षट्भुज की विपरीत भुजाओं का रंग समान होता है।
स्व-क्रॉसिंग षट्भुज ABCDEF, वृत्त में खुदा हुआ। इसकी भुजाएँ बढ़ाई जाती हैं जिससे कि विपरीत भुजाओं के युग्म पास्कल रेखा पर प्रतिच्छेद करें। विस्तारित विपरीत पक्षों की प्रत्येक जोड़ी का अपना रंग होता है: लाल, पीला, नीला। पास्कल की रेखा को सफेद रंग में दिखाया गया है।

प्रक्षेपी ज्यामिति में, पास्कल की प्रमेय 'हेक्साग्राम म मिस्टिकम प्रमेय' के रूप में भी जाना जाता है, इस हेक्साग्राम के लिए लैटिन भाषा में कहा गया है कि यदि शंकु खंड पर छह बिंदुओं से चुने जाते हैं (जो उपयुक्त संबंध में दीर्घवृत्त, परवलय या अतिपरवलय हो सकता है) इस प्रकार षट्भुज बनाने के लिए किसी भी क्रम में रेखा खंडों से जुड़ जाता है, तो षट्भुज के विपरीत किनारे (ज्यामिति) के तीन जोड़े (यदि आवश्यक हो तो विस्तारित पक्ष) तीन बिंदुओं पर मिलते हैं जो सीधी रेखा पर स्थित होते हैं, जिसे पास्कल रेखा कहा जाता है। षट्भुज प्रारूप के लिए इसका नाम ब्लेस पास्कल के नाम पर रखा गया है।

प्रमेय यूक्लिडियन विमान में भी मान्य है, किन्तु विपरीत पक्ष समानांतर होने पर विशेष मामलों से निपटने के लिए कथन को समायोजित करने की आवश्यकता है।

यह प्रमेय पप्पस के षट्भुज प्रमेय का सामान्यीकरण है | पप्पस (हेक्सागोन) प्रमेय, जो प्रत्येक रेखा पर तीन बिंदुओं के साथ दो पंक्तियों के पतित शंकु की विशेष स्थिति है।

यूक्लिडियन संस्करण

पास्कल के प्रमेय के लिए सबसे स्वाभाविक सेटिंग प्रक्षेपी तल में है क्योंकि कोई भी दो रेखाएँ मिलती हैं और समानांतर रेखाओं के लिए कोई अपवाद बनाने की आवश्यकता नहीं है। चूंकि, यूक्लिडियन विमान में प्रमेय वैध रहता है, जब षट्भुज के कुछ विपरीत पक्ष समानांतर होते हैं तो क्या होता है इसकी सही व्याख्या के साथ किया जाता हैं।

यदि षट्भुज की विपरीत भुजाओं का ठीक युग्म समानांतर है, तो प्रमेय का निष्कर्ष यह है कि चौराहे के दो बिंदुओं द्वारा निर्धारित पास्कल रेखा षट्भुज की समानांतर भुजाओं के समानांतर है। यदि विपरीत भुजाओं के दो युग्म समांतर हों, तो विपरीत भुजाओं के तीनों युग्म समांतर रेखाओं के युग्म बनाते हैं और यूक्लिडियन तल में कोई पास्कल रेखा नहीं होती है, इस स्थिति में विस्तारित यूक्लिडियन तल की अनंतता पर रेखा पास्कल रेखा है।

संबंधित परिणाम

पास्कल का प्रमेय ब्रायनचोन के प्रमेय का ध्रुवीय पारस्परिक और प्रक्षेप्य दोहरा है। यह ब्लेज़ पास्कल द्वारा 1639 में लिखे गए नोट में तैयार किया गया था, जब वह 16 साल का था और अगले वर्ष ब्रॉडसाइड (प्रिंटिंग) के रूप में प्रकाशित किया गया था, जिसका शीर्षक निबंध डालो लेस कॉनिक्स था। इस प्रकार पार बी.पी.[1] पास्कल का प्रमेय केली बछराच प्रमेय की विशेष स्थिति को प्रदर्शित करता है।

पास्कल के प्रमेय (चार बिंदु) का पतित स्थिति रोचक है, जो दिए गए अंक ABCD शांकव पर Γ, एकांतर भुजाओं का प्रतिच्छेदन, ABCD, BCDA, विपरीत शीर्षों पर स्पर्शरेखाओं के प्रतिच्छेदन के साथ (A, C) और (B, D) चार बिन्दुओं में संरेख हैं; टेंगेंट 'भुजा' पर पतित 'पक्ष' होते हैं, जिन्हें 'हेक्सागोन' पर दो संभावित स्थानों पर ले जाया जाता है और संबंधित पास्कल रेखा या तो पतित चौराहे को साझा करती है। यह स्वतंत्र रूप से ध्रुव और ध्रुवीय|ध्रुव-ध्रुवीय के गुण का उपयोग करके सिद्ध किया जा सकता है। यदि शांकव वृत्त है, तो अन्य पतित स्थिति कहता है कि त्रिभुज के लिए, तीन बिंदु जो पार्श्व रेखा के प्रतिच्छेदन के रूप में दिखाई देते हैं, जो कि गर्गोन त्रिभुज की संगत पार्श्व रेखा के साथ मिलते हैं, संरेख होते हैं।

किसी शंकु पर छह अंक की न्यूनतम संख्या है जिसके बारे में विशेष कथन किया जा सकता है, क्योंकि पांच अंक शंकु का निर्धारण करते हैं।

इसका विलोम ब्रेकेनरिज-मैकलॉरिन प्रमेय है, जिसका नाम 18वीं सदी के ब्रिटिश गणितज्ञ विलियम ब्रेकेनरिज और कॉलिन मैकलॉरिन के नाम पर रखा गया है। (Mills 1984), जो बताता है कि यदि षट्भुज के विपरीत पक्षों से होकर जाने वाली रेखाओं के तीन युग्मों के तीन प्रतिच्छेदन बिंदु रेखा पर स्थित होते हैं, तो षट्भुज के छह शीर्ष शंकु पर स्थित होते हैं, इस प्रकार पप्पस के प्रमेय के रूप में शंकु पतित हो सकता है।[2] ब्रैकेनरिज-मैकलॉरिन प्रमेय को ब्रिकेंरिज-मैकलॉरिन निर्माण में लागू किया जा सकता है, जो छठे बिंदु को बदलकर, पांच बिंदुओं द्वारा परिभाषित शंकु का सिंथेटिक ज्यामिति निर्माण है।

प्रमेय को 1847 में अगस्त फर्डिनेंड मोबियस द्वारा सामान्यीकृत किया गया था, इस प्रकार है: मान लीजिए बहुभुज जिसके साथ 4n + 2 भुजाओं को शंकु खंड में अंकित किया गया है, और भुजाओं के विपरीत युग्मों को तब तक बढ़ाया जाता है जब तक वे अंदर नहीं मिल जाते 2n + 1 अंक। तो यदि {{math|2n}उन बिंदुओं में से } सामान्य रेखा पर स्थित है, अंतिम बिंदु भी उस रेखा पर होता हैं।

हेक्साग्रामम मिस्टिकम

यदि शंकु खंड पर छह अनियंत्रित अंक दिए गए हैं, तो उन्हें षट्भुज में 60 अलग-अलग विधियों से जोड़ा जाता हैं, जिसके परिणामस्वरूप पास्कल के प्रमेय के 60 अलग-अलग उदाहरण और 60 अलग-अलग पास्कल रेखाएं होती हैं। 60 रेखाओं के इस प्रक्षेपी विन्यास को हेक्साग्रामम मिस्टिकम कहा जाता है।[3][4] जैसा कि थॉमस किर्कमैन ने 1849 में सिद्ध किया था, इन 60 रेखाओं को 60 बिन्दुओं से इस प्रकार जोड़ा जा सकता है कि प्रत्येक बिन्दु तीन रेखाओं पर हो और प्रत्येक रेखा में तीन बिन्दु होंते हैं। इस प्रकार से बने 60 अंक अब किर्कमैन अंक के रूप में जाने जाते हैं।[5] पास्कल रेखाएँ भी बार में तीन, 20 स्टेनर बिन्दुओं से होकर गुजरती हैं। 20 केली रेखाएँ हैं जिनमें स्टेनर बिंदु और तीन किर्कमैन बिंदु सम्मिलित हैं। इस प्रकार स्टाइनर पॉइंट भी 15 प्लकर लाइनों पर समय में चार होते हैं। इसके अलावा, 20 केली लाइनें समय में 15 बिंदुओं के माध्यम से चार गुजरती हैं जिन्हें सैल्मन पॉइंट के रूप में जाना जाता है।[6]

प्रमाण

पास्कल का मूल नोट[1]कोई प्रमाण नहीं है, किन्तु प्रमेय के विभिन्न आधुनिक प्रमाण हैं।

शंकु वृत्त होने पर प्रमेय को सिद्ध करने के लिए पर्याप्त है, क्योंकि किसी भी (गैर-पतित) शंकु को प्रक्षेप्य परिवर्तन द्वारा वृत्त में कम किया जा सकता है। यह पास्कल द्वारा महसूस किया गया था, जिसकी पहली लेम्मा वृत्त के लिए प्रमेय बताती है। उनकी दूसरी लेम्मा बताती है कि तल में जो सत्य है वह दूसरे तल पर प्रक्षेपण पर सत्य रहता है।[1] पतित शांकव निरंतरता का पालन करते हैं (प्रमेय गैर-पतित शांकवों के लिए सही है, और इस प्रकार पतित शांकव की सीमा में रहता है)।

किसी वृत्त की स्थिति में पास्कल के प्रमेय का संक्षिप्त प्रारंभिक प्रमाण किसके द्वारा पाया गया था? वैन यज़ेरेन (1993), में प्रमाण के आधार पर (गुगेनहाइमर 1967) मुख्य रूप से यह उपपत्ति वृत्त के प्रमेय को सिद्ध करती है और फिर इसे शंकु के लिए सामान्यीकृत करती है।

वास्तविक प्रक्षेपी विमान की स्थिति में लघु प्राथमिक कम्प्यूटेशनल प्रमाण स्टेफनोविक (2010) द्वारा पाया गया था।

हम आइसोगोनल संयुग्म के अस्तित्व से भी प्रमाण प्राप्त कर सकते हैं। यदि हमें यह दिखाना है X = ABDE, Y = BCEF, Z = CDFA चक्रीय के लिए संरेख हैं ABCDEF, तो उस पर ध्यान दें EYB और CYF समान हैं, और वह X और Z समद्विबाहु संयुग्म के अनुरूप होगा यदि हम समान त्रिभुजों को ओवरलैप करते हैं। इस का मतलब है कि CYX = ∠CYZ, इसलिए बना रहा हूं जो XYZ संरेख से प्रदर्शित होता हैं।

क्रॉस-अनुपात संरक्षण का उपयोग करके लघु प्रमाण का निर्माण किया जा सकता है। प्रोजेक्टिंग टेट्राड ABCE से D लाइन पर AB, हम चतुष्कोण प्राप्त करते हैं ABPX, और टेट्राड पेश करना ABCE से F लाइन पर BC, हम चतुष्कोण QBCY प्राप्त करते हैं, इसका अर्थ यह है कि R(AB; PX) = R(QB; CY), जहां दो चतुष्कोणों में से बिंदु ओवरलैप होता है, इसलिए इसका अर्थ है कि अन्य तीन जोड़ियों को जोड़ने वाली अन्य रेखाओं को क्रॉस अनुपात को बनाए रखने के लिए मेल खाना चाहिए। इसलिए, XYZ संरेख हैं।

एक वृत्त के लिए पास्कल के प्रमेय के लिए अन्य उपपत्ति मेनेलॉस प्रमेय का बार-बार उपयोग करती है।

जर्मिनल पियरे डंडेलिन, जियोमीटर जिसने प्रसिद्ध डंडेलिन क्षेत्रों की खोज की, 3डी उठाने की विधि का उपयोग करके सुंदर प्रमाण के साथ आया जो डेसार्गेस प्रमेय के 3डी प्रमाण के अनुरूप है। प्रमाण इस गुण का उपयोग करता है कि प्रत्येक शंकु परिच्छेद के लिए हम एक-पत्रक अतिपरवलयज प्राप्त कर सकते हैं जो शंकु से होकर गुजरता है।

ज्या और समानता (ज्यामिति) के नियम का उपयोग करते हुए वृत्त के लिए पास्कल के प्रमेय के लिए सरल प्रमाण भी सम्मिलित है।

क्यूबिक कर्व्स का उपयोग का प्रमाण

सरल चक्रीय बहुभुज षट्भुज के विस्तारित विपरीत पक्षों के प्रतिच्छेदन ABCDEF (दाएं) पास्कल रेखा MNP (बाएं) पर स्थित हैं।

पास्कल के प्रमेय में केली-बछराच प्रमेय का उपयोग करते हुए संक्षिप्त प्रमाण है जो कि सामान्य स्थिति में किसी भी 8 अंक दिए जाने पर अनूठा नौवां बिंदु है जैसे कि पहले 8 के माध्यम से सभी घन भी नौवें बिंदु से गुजरते हैं। इसे विशेष रूप से, यदि 2 सामान्य घन 8 बिंदुओं में प्रतिच्छेद करते हैं तो समान 8 बिंदुओं के माध्यम से कोई अन्य घन पहले दो घनों के प्रतिच्छेदन के नौवें बिंदु पर मिलता है। पास्कल का प्रमेय 8 बिंदुओं को षट्भुज पर 6 बिंदुओं के रूप में और दो बिंदुओं (कहते हैं, M और N चित्र में) भावी पास्कल रेखा पर, और नौवें बिंदु को तीसरे बिंदु के रूप में (P चित्र में) किया जाता हैं। पहले दो घन षट्कोण पर 6 बिंदुओं के माध्यम से 3 पंक्तियों के दो समूह हैं, (उदाहरण के लिए, सेट AB, CD, EF, और सेट BC, DE, FA), और तीसरा घन शांकव और रेखा का मिलन है MN. यहां नौवां प्रतिच्छेदन P शंक्वाकार पर उदारता से असत्य नहीं बोल सकता है, और इसलिए यह MN के लिए असत्य है।

केली-बछराच प्रमेय का उपयोग यह साबित करने के लिए भी किया जाता है कि क्यूबिक अण्डाकार वक्रों पर समूह संचालन साहचर्य है। यदि हम बिंदु चुनते हैं तो वही समूह संक्रिया शांकव पर लागू की जा सकती है, इस प्रकार E शांकव और रेखा पर MP समतल में इसका उपयोग किया जाता हैं। कुल मिलाकर A और B पहले रेखा का प्रतिच्छेदन बिंदु ज्ञात करके प्राप्त किया जाता है AB साथ MP, जो है M. अगला A और B रेखा के साथ शंकु के दूसरे प्रतिच्छेदन बिंदु तक जोड़ें EM, जो है D. इस प्रकार यदि Q रेखा के साथ शंकु का दूसरा प्रतिच्छेदन बिंदु EN है, तब इस स्थिति में-

इस प्रकार समूह संचालन साहचर्य है। दूसरी ओर, पास्कल का प्रमेय उपरोक्त साहचर्य सूत्र से अनुसरण करता है, और इस प्रकार निरंतरता के माध्यम से अण्डाकार वक्रों के समूह संचालन की साहचर्यता से करता हैं।

बेज़ाउट के प्रमेय का उपयोग करके प्रमाण

इस प्रमेय में कल्पना करने पर यदि f के माध्यम से तीन पंक्तियों पर लुप्त होने वाला घन बहुपद AB, CD, EF है, और g अन्य तीन पंक्तियों पर विलुप्त होने वाला घन BC, DE, FA है, इस प्रकार सामान्य बिंदु चुनें P शांकव पर और चुनें λ जिससे कि घन h = f + λg मुख्य रूप से P पर विलुप्त हो जाता है, इस स्थिति में h = 0 घन है जिसमें 7 बिंदु A, B, C, D, E, F, P हैं, इस कारण शांकव के साथ सामान्यतः इसे प्रभावित करता हैं। किन्तु बेज़ाउट के प्रमेय के अनुसार घन और शंकु में अधिकतम 3 × 2 = 6 अंक उभयनिष्ठ होते हैं, जब तक कि उनमें सामान्य घटक नहीं होता हैं। इस प्रकार इस घन के लिए h = 0 की स्थिति में शांकव के साथ समान घटक है जो स्वयं शंकु ही होना चाहिए, इसलिए h = 0 शांकव और रेखा का मिलन है। अब यह जाँचना आसान है कि यह रेखा पास्कल रेखा है।

पास्कल के षट्भुज का गुण

फिर से पास्कल के प्रमेय के शांकव पर बिंदुओं के लिए उपरोक्त अंकन के साथ षट्भुज दिया गया है (पहली आकृति में), हमारे पास है[7]

पास्कल के प्रमेय का अध: पतन

पास्कल की प्रमेय: अध: पतन

पास्कल की प्रमेय के 5-बिंदु, 4-बिंदु और 3-बिंदु पतित स्थिति सम्मिलित हैं। इस प्रकार इस पतित स्थ्ति में, आंकड़े के दो पहले से जुड़े बिंदु औपचारिक रूप से मेल खाएंगे और जोड़ने वाली रेखा सम्मिलित बिंदु पर स्पर्शरेखा बन जाएगी। जोड़ी गई योजना में दिए गए पतित मामले और सर्कल ज्यामिति पर बाहरी लिंक देखें। यदि कोई पास्कल-आंकड़ों की उपयुक्त रेखाओं को अनंत पर रेखाओं के रूप में चुनता है तो उसे पैराबोला पर कई दिलचस्प आंकड़े मिलते हैं, पास्कल के प्रमेय से संबंधित पैराबोला के गुण और हाइपरबोला, हाइपरबोला वाई = 1/एक्स की समृद्ध छवि के रूप में दिखाई देता हैं।

यह भी देखें

टिप्पणियाँ

  1. Jump up to: 1.0 1.1 1.2 Pascal 1640, translation Smith 1959, p. 326
  2. H. S. M. Coxeter and Samuel L. Greitzer (1967)
  3. Young 1930, p. 67 with a reference to Veblen and Young, Projective Geometry, vol. I, p. 138, Ex. 19.
  4. Conway & Ryba 2012
  5. Biggs 1981
  6. Wells 1991, p. 172
  7. "पास्कल के षट्कोण पास्कल की एक संपत्ति की अनदेखी की जा सकती है". 2014-02-03.


संदर्भ


बाहरी संबंध