न्यूसिस निर्माण

From Vigyanwiki
न्यूसिस निर्माण

ज्यामिति में, न्यूसिस (νεῦσις; from Ancient Greek νεύειν (neuein) 'की ओर झुकना'; बहुवचन: νεύσεις, neuseis) ज्यामितीय निर्माण पद्धति है जिसका उपयोग प्राचीन काल में यूनानी गणित द्वारा किया जाता था।

ज्यामितीय निर्माण

न्यूसिस निर्माण में दी गई रेखाओं (l और m) के बीच दी गई लंबाई (a) के रेखा अल्पांश को फ़िट करना सम्मिलित है कि रेखा अल्पांश, या उसका विस्तार, दिए गए बिंदु P से होकर गुजरता है। अर्थात रेखा अल्पांश का अंत l पर होना चाहिए, दूसरा m पर, जबकि रेखा अल्पांश P की ओर "झुका हुआ" है।

बिंदु P को न्युसिस का ध्रुव रेखा l नियता, या मार्गदर्शक रेखा, और रेखा m कैच लाइन कहा जाता है। लंबाई a को डायस्टेमा कहा जाता है (Greek: διάστημα, lit.'distance').

चिन्हित रूलर के माध्यम से न्यूसिस निर्माण किया जा सकता है जो बिंदु P के चारों ओर घूमने योग्य है (यह पिन को बिंदु P में डालकर और फिर रूलर को पिन के खिलाफ दबाकर किया जा सकता है)। आकृति में रूलर के एक छोर को क्रॉसहेयर के साथ पीले आंख से चिह्नित किया गया है: यह रूलर पर स्केल विभाजन का मूल है। रूलर (नीली आँख) पर दूसरा निशान उत्पत्ति से दूरी a को इंगित करता है। पीली आंख को रेखा l के साथ ले जाया जाता है, जब तक नीली आंख रेखा m के साथ मेल नहीं खाती है। इस प्रकार पाए गए रेखा अल्पांश की स्थिति को चित्र में गहरे नीले रंग की पट्टी के रूप में दिखाया गया है।

एक कोण का न्यूसिस त्रिभाजन θ > 135° ढूँढ़ने के लिए φ = θ/3, केवल रूलर की लंबाई का उपयोग करके। चाप की त्रिज्या रूलर की लंबाई के बराबर होती है। कोणों के लिए θ < 135° वही निर्माण लागू होता है, लेकिन साथ P आगे बढ़ाया गया AB.

न्युसिस का उपयोग

न्युसिस महत्वपूर्ण रहे हैं क्योंकि वे कभी-कभी ज्यामितीय समस्याओं को हल करने के लिए एक साधन प्रदान करते हैं जो अकेले कंपास और सीधे किनारे के माध्यम से हल करने योग्य नहीं होते हैं। किसी भी कोण को तीन बराबर भागों में विभाजित करना और घन का दोहरीकरण इसके उदाहरण हैं।[1][2] सिरैक्यूज़ के आर्किमिडीज (287–212 ईसा पूर्व) और अलेक्जेंड्रिया के पप्पस (290–350 ईस्वी) जैसे गणितज्ञ स्वतंत्र रूप से नेउसी का उपयोग करते थे; सर आइजैक न्यूटन (1642-1726) ने उनके विचारों का पालन किया, और नेउसी निर्माणों का भी उपयोग किया था।[3] फिर भी, धीरे-धीरे तकनीक उपयोग से बाहर हो गई थी।

सम बहुभुज

2002 में, ए. बारागर ने दिखाया कि चिन्हित रूलर और कम्पास के साथ निर्मित प्रत्येक बिंदु क्षेत्र (गणित) के टॉवर में स्थित है , , जैसे कि प्रत्येक चरण पर विस्तार की डिग्री 6 से अधिक नहीं है। 100-गॉन के नीचे सभी प्राइम-पावर बहुभुज, यह दिखाने के लिए पर्याप्त है कि नियमित 23-, 29-, 43-, 47- , 49-, 53-, 59-, 67-, 71-, 79-, 83-, और 89-गॉन का निर्माण न्यूसिस के साथ नहीं किया जा सकता है। (यदि नियमित p-गॉन रचनात्मक है, तो रचनात्मक है, और इन स्थितियों में p − 1 का प्रमुख कारक 5 से अधिक है।) 3-, 4-, 5-, 8-, 16-, 17-, 32-, और 64-गोंन्स का निर्माण केवल सीधा किनारा और कम्पास के साथ किया जा सकता है, और 7-, 9-, 13-, 19-, 27-, 37-, 73-, 81-, और 97-गोंन्स कोण त्रिभाजन के साथ किया जा सकता है। चूंकि, यह सामान्य रूप से ज्ञात नहीं है कि सभी पंचक (पांचवें क्रम के बहुपद) में न्यूसिस-संरचनात्मक जड़ें हैं, जो 11-, 25-, 31-, 41-, और 61-गॉन्स के लिए उपयुक्त है।[4] बेंजामिन और स्नाइडर ने 2014 में दिखाया कि नियमित 11-गॉन न्यूसिस-कंस्ट्रक्टिव है;[1] 25-, 31-, 41-, और 61-गोन खुली समस्याएँ हैं। अधिक सामान्यतः चिन्हित रूलर और कम्पास द्वारा स्वयं 5 से अधिक 5 की सभी घात की निर्माण क्षमता खुली समस्या है, साथ ही फॉर्म के 11 से अधिक सभी अभाज्य p = 2r3s5t + 1 जहां t> 0 (सभी अभाज्य संख्याएँ जो बड़ी हैं) 11 से अधिक हैं और नियमित संख्या से एक अधिक के बराबर जो 10 से विभाज्य है)।[4]

घटती लोकप्रियता

गणित के इतिहासकार टी. एल. हीथ ने सुझाव दिया है कि यूनानी गणितज्ञ ओएनोपाइड्स (सीए. 440 ई.पू.) नेउसेस के ऊपर कम्पास-एंड-सीधा निर्माण करने वाले पहले व्यक्ति थे। जब भी संभव हो नेउसेस से बचने का सिद्धांत हिप्पोक्रेट्स ऑफ चिओस (सीए 430 ईसा पूर्व) द्वारा फैलाया जा सकता है, जो उसी द्वीप से ओनोपाइड्स के रूप में उत्पन्न हुआ था, और जहां तक ​​​​हम जानते हैं- व्यवस्थित रूप से आदेशित ज्यामिति पाठ्यपुस्तक लिखने वाले पहले व्यक्ति थे . उसके एक सौ साल बाद यूक्लिड ने भी अपनी बहुत ही प्रभावशाली पाठ्यपुस्तक द एलिमेंट्स में नेउसी से परहेज किया था।

नेउसी पर अगला हमला तब हुआ, जब ईसा पूर्व चौथी सदी से प्लेटो के आदर्शवाद को बल मिला था। इसके प्रभाव में ज्यामितीय निर्माणों के तीन वर्गों का पदानुक्रम विकसित किया गया था। "अमूर्त और महान" से "यांत्रिक और सांसारिक" तक उतरते हुए, तीन वर्ग थे:

  1. केवल सीधी रेखाओं और वृत्तों के साथ निर्माण (कम्पास और स्ट्रेटेज);
  2. निर्माण जो इसके अतिरिक्त शंकु वर्गों (दीर्घवृत्त, परवलय, अतिपरवलय) का उपयोग करते हैं;
  3. निर्माण जिन्हें निर्माण के अन्य साधनों की आवश्यकता थी, उदाहरण के लिए नेउसी।

अंत में नेउसी के उपयोग को तभी स्वीकार्य माना गया जब दो अन्य उच्च श्रेणी के निर्माणों ने कोई समाधान प्रस्तुत नहीं किया था। नेउसिस एक प्रकार का अंतिम उपाय बन गया, जिसे केवल तभी लागू किया गया जब अन्य सभी, अधिक सम्मानजनक तरीके विफल हो गए थे। न्यूसिस का उपयोग करना जहां अन्य निर्माण विधियों का उपयोग किया जा सकता था, अलेक्जेंड्रिया के दिवंगत यूनानी गणितज्ञ पप्पस (सीए। 325 ईस्वी) द्वारा "असंगत त्रुटि नहीं" के रूप में विफल किया गया था।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Benjamin, Elliot; Snyder, C (May 2014). "चिह्नित शासक और कम्पास द्वारा नियमित हेंडेकागन के निर्माण पर". Mathematical Proceedings of the Cambridge Philosophical Society. 156 (3): 409–424. Bibcode:2014MPCPS.156..409B. doi:10.1017/S0305004113000753. S2CID 129791392. Archived from the original on September 26, 2020. Retrieved 26 September 2020.
  2. Weisstein, Eric W. "Neusis Construction." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NeusisConstruction.html
  3. Guicciardini, Niccolò (2009). Isaac Newton on Mathematical Certainty and Method, Issue 4. M.I.T Press. p. 68. ISBN 9780262013178.
  4. 4.0 4.1 Arthur Baragar (2002) Constructions Using a Compass and Twice-Notched Straightedge, The American Mathematical Monthly, 109:2, 151-164, doi:10.1080/00029890.2002.11919848
  • R. Boeker, 'Neusis', in: Paulys Realencyclopädie der Classischen Altertumswissenschaft, G. Wissowa red. (1894–), Supplement 9 (1962) 415–461.–In German. The most comprehensive survey; however, the author sometimes has rather curious opinions.
  • T. L. Heath, A history of Greek Mathematics (2 volumes; Oxford 1921).
  • H. G. Zeuthen, Die Lehre von den Kegelschnitten im Altertum [= The Theory of Conic Sections in Antiquity] (Copenhagen 1886; reprinted Hildesheim 1966).

बाहरी संबंध