क्षीणता

From Vigyanwiki

भौतिकी में क्षीणता (विलुप्त होने) संचरण माध्यम के प्रवाह की तीव्रता की क्रमिक हानि है। उदाहरण के लिए कालाचश्मा सूर्य के प्रकाश को क्षीण(कम) कर देता है। सीसाएक्स-रे को क्षीण कर देता है औरपानी और हवा अलग-अलग क्षीणन दरों पर प्रकाश और ध्वनि दोनों को क्षीण कर देते हैं।

श्रवण रक्षक ध्वनि की शक्ति को कानों में बहने से कम करने में सहायता करते हैं। इस घटना को ध्वनिक क्षीणता कहा जाता है और इसे डेसिबल(डीबी) में मापा जाता है।

विद्युत अभियन्त्रण औरदूरसंचार में क्षीणता तरंग प्रसार औरसिग्नल (इलेक्ट्रिकल इंजीनियरिंग) कोविद्युत सर्किट में,प्रकाशित तंतु में और हवा में प्रभावित करता है। विद्युत क्षीणक औरऑप्टिकल क्षीणक सामान्यतः इस क्षेत्र में निर्मित घटक हैं।

पृष्ठभूमि

मानक वातावरण में विद्युत चुम्बकीय विकिरण की आवृत्ति-निर्भर क्षीणन।

कई स्थितियों में क्षीणन माध्यम से पथ की लंबाई का घातीय कार्य है। प्रकाशिकी और रासायनिक विशिष्ट माइक्रोस्कोपी में इसे बीयर-लैंबर्ट कानून के रूप में जाना जाता है। इंजीनियरिंग में क्षीणन को सामान्यतः माध्यम की प्रति इकाई लंबाई (डीबी/सेमी, डीबी/किमी आदि) की डेसिबल इकाइयों में मापा जाता है और प्रश्न में माध्यम के क्षीणन गुणांक द्वारा दर्शाया जाता है।[1] भूकंप में क्षीणन भी होता है। जब भूकंपीय तरंगे हाइड्रॉक्सीसेंटर से दूर जाती हैं। तो वे छोटी हो जाती हैं क्योंकि वे पृथ्वी द्वारा क्षीण हो जाती हैं।

अल्ट्रासाउंड

अनुसंधान का क्षेत्र अल्ट्रासाउंड भौतिकी है। जिसमें क्षीणन प्रमुख भूमिका प्रदर्शित करता है। अल्ट्रासाउंड में क्षीणन इमेजिंग माध्यम के माध्यम से दूरी के कार्य के रूप में अल्ट्रासाउंड बीम के आयाम में कमी है। अल्ट्रासाउंड में क्षीणन प्रभाव के लिए लेखांकन महत्वपूर्ण है क्योंकि कम सिग्नल आयाम उत्पादित छवि की गुणवत्ता को प्रभावित कर सकता है। क्षीणन को जानकर कि अल्ट्रासाउंड बीम माध्यम से यात्रा करने का अनुभव करता है। प्रयुक्त इमेजिंग गहराई पर ऊर्जा के किसी भी हानि की भरपाई के लिए इनपुट सिग्नल आयाम को समायोजित कर सकता है।[2]

वेव समीकरण जो ध्वनिक क्षीणन के स्थान पर लेते हैं, उन्हें भिन्नात्मक व्युत्पन्न रूप में लिखा जा सकता है।[4] सजातीय मीडिया में ध्वनि क्षीणन में योगदान देने वाले मुख्य भौतिक गुण चिपचिपाहट हैं [5] और तापीय चालकता भी इसका प्रमुख गुण है।[6][7]


क्षीणन गुणांक

आवृत्ति के समारोह के रूप में संचरित अल्ट्रासाउंड आयाम कितनी दृढ़ता से घटता है। इसके अनुसार विभिन्न मीडिया को मापने के लिएक्षीणन गुणांक का उपयोग किया जाता है। क्षीणन गुणांक () निम्नलिखित सूत्र का उपयोग करके माध्यम में डेसिबल में कुल क्षीणन निर्धारित करने के लिए प्रयोग किया जा सकता है। जिसको हम निम्न सूत्र से ज्ञात कर सकते हैं-

क्षीणन माध्यम लंबाई और क्षीणन गुणांक पर रैखिक रूप से निर्भर करते हैं। साथ ही लगभग जैविक ऊतक के लिए घटना अल्ट्रासाउंड बीम कीआवृत्ति (जबकि सरल मीडिया के लिए जैसे कि हवा संबंध स्टोक्स के ध्वनि क्षीणन का नियम है) विभिन्न मीडिया के लिए क्षीणन गुणांक व्यापक रूप से भिन्न होते हैं। बायोमेडिकल अल्ट्रासाउंड इमेजिंग में जैविक सामग्री और पानी सबसे अधिक उपयोग किए जाने वाले मीडिया हैं। 1 मेगाहर्ट्ज की आवृत्ति पर सामान्य जैविक सामग्री के क्षीणन गुणांक नीचे सूचीबद्ध हैं:[8]

Material
हवा, at 20 °C[9] 1.64
रक्त 0.2
हड्डी, कॉर्टिकल 6.9
हड्डी, त्रिकोणीय 9.94
मस्तिष्क 0.6
स्तन 0.75
ह्दय 0.52
संयोजी ऊतक 1.57
दंतधातु 80
तामचीनी 120
चर्बी 0.48
यकृत 0.5
मज्जा 0.5
मांसपेशियां 1.09
पट्टा 4.7
Sनरम ऊतक (औसत) 0.54
पानी 0.0022

ध्वनिक ऊर्जा हानि के दो सामान्य प्रकार हैं:अवशोषण (ध्वनिकी) और प्रकीर्णन।[10] सजातीय (रसायन विज्ञान) मीडिया के माध्यम से अल्ट्रासाउंड प्रसार केवल अवशोषण के साथ जुड़ा हुआ है और इसे केवल अवशोषण गुणांक के साथ चित्रित किया जा सकता है। विषम मीडिया के माध्यम से प्रसार के लिए बिखरने को ध्यान में रखना आवश्यक है।[11]


पानी में प्रकाश क्षीणन

सूर्य से निकलने वाली शॉर्टवेव विकिरण में प्रकाश के दृश्य स्पेक्ट्रम में तरंग दैर्ध्य होते हैं। जो 360 एनएम (बैंगनी) से 750 एनएम (लाल) तक होते हैं। जब सूर्य का विकिरण समुद्र की सतह पर पहुँचता है। तो लघु तरंग विकिरण पानी द्वारा क्षीण हो जाता है और प्रकाश की तीव्रता पानी की गहराई के साथ चरघातांकी रूप से घट जाती है। गहराई पर प्रकाश की तीव्रता की गणना बीयर-लैम्बर्ट लॉ का उपयोग करके की जा सकती है।

समुद्र के साफ पानी में दृश्य प्रकाश सबसे लंबी तरंग दैर्ध्य पर सबसे अधिक मजबूती से अवशोषित होता है। इस प्रकार लाल, नारंगी और पीले तरंग दैर्ध्य पूरी तरह से कम गहराई पर अवशोषित होते हैं। जबकि नीले और बैंगनी तरंग दैर्ध्य पानी के स्तंभ में गहराई तक पहुंचते हैं क्योंकि नीले और बैंगनी तरंग दैर्ध्य अन्य तरंग दैर्ध्य की तुलना में कम से कम अवशोषित होते हैं और खुले समुद्र का पानी आंखों को नीला रंग दिखाई देता है।

तट के पास तटीय जल में बहुत साफ मध्य-समुद्र के पानी की तुलना में अधिकपादप प्लवक होते है। फाइटोप्लांकटन में क्लोरोफिल वर्णक प्रकाश को अवशोषित करता है और पौधे स्वयं प्रकाश बिखेरते हैं। जिससे तटीय जल मध्य-समुद्र के जल की तुलना में कम स्पष्ट हो जाता है। क्लोरोफिल-ए दृश्यमान स्पेक्ट्रम की सबसे छोटी तरंग दैर्ध्य (नीला और बैंगनी) में प्रकाश को सबसे अधिक मजबूती से अवशोषित करता है। तटीय जल में जहां फाइटोप्लांकटन की उच्च सांद्रता होती है। उस स्थान पर हरे रंग की तरंग दैर्ध्य पानी के स्तंभ में सबसे गहरी पहुंच जाती है और पानी का रंग नीला-हरा या वसंत हरा या समुद्री हरा दिखाई देता है।

भूकंपीय

जिसऊर्जा से भूकंप किसी स्थान को प्रभावित करता है। वह चलने वाली दूरी पर निर्भर करता है। स्थलीय गति इंटेंसिटी के सिग्नल में क्षीणन संभावित मजबूत ग्राउंडशेकिंग के आकलन में महत्वपूर्ण भूमिका प्रदान करता है। भूकंपीय तरंग ऊर्जा को नष्ट कर देती है क्योंकि यह पृथ्वी (भूकंपीय क्षीणन) के माध्यम से फैलती है। यह घटना दूरी के साथ भूकंपीय ऊर्जा के फैलाव वाले द्रव्यमान हस्तांतरण में बंधी हुई है।अपव्यय ऊर्जा दो प्रकार की होती है:

  • अधिक मात्रा में भूकंपीय ऊर्जा के वितरण के कारण ज्यामितीय फैलाव
  • ऊष्मा के रूप में बिखराव, जिसे आंतरिक क्षीणन या एनालेस्टिक क्षीणन भी कहा जाता है।

सरंध्रता के कारण चट्टानों के द्रव-संरंध्रता-संतृप्त तलछटी चट्टानें जैसे किबलुआ पत्थर ,भूकंपीय तरंगों का आंतरिक क्षीणन मुख्य रूप से ठोस फ्रेम के सापेक्ष द्रव के तरंग-प्रेरित प्रवाह के कारण होता है। [12]

विद्युत चुम्बकीय

अवशोषण (विद्युत चुम्बकीय विकिरण ) याफोटोन के बिखरने के कारण क्षीणन विद्युत चुम्बकीय विकिरण की तीव्रता को कम करता है। व्युत्क्रम-वर्ग नियम ज्यामितीय प्रसार के कारण क्षीणता में तीव्रता में कमी सम्मिलित नहीं है। इसलिए तीव्रता में कुल परिवर्तन की गणना में व्युत्क्रम-वर्ग नियम और पथ पर क्षीणन का अनुमान दोनों सम्मिलित हैं।

पदार्थ में क्षीणन के प्राथमिक कारण प्रकाश विद्युत प्रभाव, कॉम्पटन स्कैटेरिंग और 1.022 MeV से ऊपर के फोटॉन ऊर्जा के लिए जोड़ी उत्पादन हैं।

समाक्षीय और सामान्य आरएफ केबल

आरएफ केबलों के क्षीणन द्वारा परिभाषित किया गया है:

कहां 100 मीटर लंबी केबल में इनपुट शक्ति है। जो इसकी विशेषता प्रतिबाधा के न्यूनतम मूल्य के साथ समाप्त हो जाती है और इस केबल के दूर किनारे पर आउटपुट पावर है।[13] समाक्षीय केबल में क्षीणन सामग्री और निर्माण का कार्य है।

रेडियोग्राफी

एक्स-रे की किरण तब क्षीण हो जाती है। जब फोटॉन अवशोषित हो जाते हैं और जब एक्स-रे किरण ऊतक से गुजरती है। तब उच्च ऊर्जा फोटॉनों और कम ऊर्जा फोटॉनों के बीच पदार्थ के साथ परस्पर क्रिया भिन्न होती है। उच्च ऊर्जा पर यात्रा करने वाले फोटोन ऊतक के सूक्ष्मतम रूप के माध्यम से यात्रा करने में अधिक सक्षम होते हैं क्योंकि उनके पास पदार्थ के साथ स्थान बनाने की संभावना कम होती है। यह मुख्य रूप से फोटोइलेक्ट्रिक प्रभाव के कारण है। जो यह स्पष्ट करता है कि फोटोइलेक्ट्रिक अवशोषण की संभावना लगभग (Z/E) के समानुपाती है। जहां Z ऊतक परमाणु की परमाणु संख्या है और E फोटॉन ऊर्जा है।[14] इसके संदर्भ में फोटॉन ऊर्जा (ई) में वृद्धि से पदार्थ के साथ संपर्क में तेजी से कमी आएगी।

प्रकाशिकी

फाइबर ऑप्टिक्स में क्षीणन, जिसे संचरण हानि के रूप में भी जाना जाता है, संचरण माध्यम से तय की गई दूरी के संबंध में प्रकाश किरण (या संकेत) की तीव्रता में कमी है। फाइबर ऑप्टिक्स में क्षीणन गुणांक सामान्यतः आधुनिक ऑप्टिकल ट्रांसमिशन की पारदर्शिता की अपेक्षाकृत उच्च गुणवत्ता के कारण माध्यम से डीबी/किमी की इकाइयों का उपयोग करते हैं। माध्यम सामान्यतः सिलिका ग्लास का फाइबर होता है। जो घटना प्रकाश किरण को अंदर तक सीमित करता है। बड़ी दूरी पर डिजिटल सिग्नल के प्रसारण को सीमित करने वाला क्षीणन महत्वपूर्ण कारक है। इस प्रकार क्षीणन को सीमित करने और ऑप्टिकल सिग्नल के प्रवर्धन को अधिकतम करने में बहुत शोध किया गया है। अनुभवजन्य शोध से पता चला है कि ऑप्टिकल फाइबर में क्षीणन मुख्य रूप से बिखरने और अवशोषण दोनों के कारण होता है।

निम्नलिखित समीकरण का उपयोग करके फाइबर ऑप्टिक्स में क्षीणन की मात्रा निर्धारित की जा सकती है:

प्रकाश प्रकीर्णन

परावर्तक प्रतिबिंब

एक ऑप्टिकल फाइबर के कोर के माध्यम से प्रकाश का प्रसार प्रकाश तरंग के कुल आंतरिक प्रतिबिंब पर आधारित होता है। कांच के आणविक स्तर पर भी खुरदरी और अनियमित सतहें प्रकाश किरणों को कई यादृच्छिक दिशाओं में परावर्तित करने का कारण बन सकती हैं। इस प्रकार के प्रतिबिंब को विसरित प्रतिबिंब के रूप में संदर्भित किया जाता है और यह सामान्यतः विभिन्न प्रकार के प्रतिबिंब कोणों की विशेषता है। अधिकांश वस्तुएँ जिन्हें नग्न आँखों से देखा जा सकता है, विसरित परावर्तन के कारण दिखाई देती हैं। इस प्रकार के परावर्तन के लिए सामान्यतः प्रयोग किया जाने वाला अन्य शब्द प्रकाश प्रकीर्णन है। वस्तुओं की सतहों से प्रकाश का प्रकीर्णन भौतिक अवलोकन का हमारा प्राथमिक तंत्र है।[15] कई सामान्य सतहों से प्रकाश का प्रकीर्णन परावर्तन द्वारा प्रतिरूपित किया जा सकता है।

प्रकाश का प्रकीर्णन प्रकीर्णित प्रकाश की तरंग दैर्ध्य पर निर्भर करता है। इस प्रकार घटना प्रकाश तरंग की आवृत्ति और प्रकीर्णन केंद्र के भौतिक आयाम (या स्थानिक पैमाने) के आधार पर दृश्यता के स्थानिक पैमानों की सीमाएँ उत्पन्न होती हैं। जो सामान्यतः पर कुछ विशिष्ट माइक्रोस्ट्रक्चरल विशेषता के रूप में होती हैं। उदाहरण के लिए, चूंकि दृश्यमान प्रकाश में माइक्रोमीटर के क्रम में तरंग दैर्ध्य का पैमाना होता है और बिखरने वाले केंद्रों के समान स्थानिक पैमाने पर आयाम होंगे।

इस प्रकार आंतरिक सतहों और इंटरफेस पर प्रकाश के असंगत बिखरने से क्षीणन का परिणाम होता है। (पॉली) क्रिस्टलीय सामग्री जैसे धातु और सिरेमिक में छिद्रों के अतिरिक्त अधिकांश आंतरिक सतहें या इंटरफेस की सीमाओं के रूप में होते हैं। जो क्रिस्टलीय क्रम के छोटे क्षेत्रों को अलग करते हैं। यह दिखाया गया है कि जब प्रकीर्णन केंद्र (या कण सीमा) का आकार बिखरी हुई प्रकाश की तरंग दैर्ध्य के आकार से कम हो जाता है। तो प्रकीर्णन किसी भी महत्वपूर्ण सीमा तक नहीं होता है। इस घटना ने पारदर्शी सिरेमिक सामग्री के उत्पादन को उत्पन्न किया है।

इसी तरह ऑप्टिकल गुणवत्ता वाले ग्लास फाइबर में प्रकाश का प्रकीर्णन कांच की संरचना में आणविक-स्तर की अनियमितताओं (रचनात्मक उतार-चढ़ाव) के कारण होता है। इस विचार का उभरता हुआ कारण यह है कि गिलास केवल पॉलीक्रिस्टलाइन ठोस की सीमित स्थिति है। इस ढांचे के अन्दर शॉर्ट-रेंज ऑर्डर की विभिन्न डिग्री प्रदर्शित करने वाले डोमेन धातुओं और मिश्र धातुओं के साथ-साथ ग्लास और सिरेमिक दोनों के बिल्डिंग-ब्लॉक बन जाते हैं। इन डोमेन के बीच और भीतर दोनों में वितरित माइक्रोस्ट्रक्चरल दोष हैं। जो प्रकाश के बिखरने की घटना के लिए सबसे आदर्श स्थान प्रदान करेंगे। इसी घटना को आईआर मिसाइल डोम्स की पारदर्शिता में सीमित कारकों में से के रूप में देखा जाता है।[16]

यूवी-विज़-आईआर अवशोषण

प्रकाश के बिखरने के अतिरिक्त विशिष्ट तरंग दैर्ध्य के चयनात्मक अवशोषण के कारण क्षीणन या संकेत हानि भी हो सकती है। जो कि रंग की उपस्थिति के लिए आवश्यक है। प्राथमिक सामग्री के विचारों में इलेक्ट्रॉनों और अणुओं दोनों सम्मिलित हैं:

  • इलेक्ट्रॉनिक स्तर पर यह इस बात पर निर्भर करता है कि इलेक्ट्रॉन ऑर्बिटल्स के बीच की दूरी (या परिमाणित) इस तरह है कि वे पराबैंगनी (यूवी) या दृश्यमान रेंज में विशिष्ट तरंग दैर्ध्य या आवृत्ति के प्रकाश (या फोटॉन) की मात्रा को अवशोषित कर सकते हैं। यही रंग को उत्पन्न करते है।
  • परमाणु या आणविक स्तर पर यह परमाणु या आणविक कंपन या रासायनिक बंधनों की आवृत्तियों पर निर्भर करता हैऔर इसके परमाणु या अणु कितने पास-पैक होते हैं और परमाणु या अणु लंबी दूरी के क्रम को प्रदर्शित करते हैं या नहीं। ये कारक इन्फ्रारेड (आईआर), सुदूर आईआर, रेडियो और माइक्रोवेव रेंज में लंबी तरंग दैर्ध्य को प्रसारित करने वाली सामग्री की क्षमता निर्धारित करेंगे।

किसी विशेष सामग्री द्वारा अवरक्त (आईआर) प्रकाश का चयनात्मक अवशोषण इसलिए होता है क्योंकि प्रकाश तरंग की चयनित आवृत्ति उस आवृत्ति (या आवृत्ति का अभिन्न गुणक) से मिलती-जुलती प्रतीत होती है। जिस पर उस सामग्री के कण कंपन करते हैं। चूंकि अलग-अलग परमाणुओं और अणुओं में कंपन की अलग-अलग प्राकृतिक आवृत्तियां होती हैं। इसलिए वे इन्फ्रारेड (आईआर) प्रकाश के विभिन्न आवृत्तियों (या स्पेक्ट्रम के भाग) को मुख्य रूप से अवशोषित करेंगे।

अनुप्रयोग

ऑप्टिकल फाइबर में क्षीणन वह दर है जिस पर सिग्नल लाइट की तीव्रता कम हो जाती है। इस कारण से, लंबी दूरी के फाइबर ऑप्टिक केबल के लिए ग्लास फाइबर (जिसमें कम क्षीणन होता है) का उपयोग किया जाता है; प्लास्टिक फाइबर में उच्च क्षीणन होता है और इसलिए, छोटी सीमा होती है। ऑप्टिकल एटेन्यूएटर्स भी मौजूद हैं जो फाइबर ऑप्टिक केबल में जानबूझकर सिग्नल को कम करते हैं।

भौतिक समुद्रशास्त्र में प्रकाश का क्षीणन भी महत्वपूर्ण है। यही प्रभाव मौसम रडार # क्षीणन में महत्वपूर्ण विचार है, क्योंकि वर्षाबूंदें उत्सर्जित बीम के हिस्से को अवशोषित करती हैं जो उपयोग किए गए तरंग दैर्ध्य के आधार पर अधिक या कम महत्वपूर्ण होती है।

उच्च-ऊर्जा फोटॉनों के हानिकारक प्रभावों के कारण यह जानना आवश्यक है कि इस तरह के विकिरण से जुड़े उपचार के विकसित ऊतक में कितनी ऊर्जा जमा होती है। इसके अतिरिक्त गामा विकिरण का उपयोग कैंसर के उपचार में किया जाता है। जहां यह जानना महत्वपूर्ण है कि स्वस्थ और ट्यूमरस ऊतक में कितनी ऊर्जा जमा होगी।

कंप्यूटर ग्राफिक्स में क्षीणन प्रकाश स्रोतों और बल क्षेत्रों के स्थानीय या वैश्विक प्रभाव को परिभाषित करता है।

सीटी स्कैन में क्षीणन छवि (चित्र) के घनत्व या अंधेरे का वर्णन करता है।

रेडियो

वायरलेस दूरसंचार की आधुनिक दुनिया में क्षीणन महत्वपूर्ण विचार है। क्षीणन रेडियो संकेतों की सीमा को सीमित करता है और उन सामग्रियों से प्रभावित होता है। जिनके माध्यम से सिग्नल को भेजना चाहिए (जैसे हवा, लकड़ी, कंक्रीट, वर्षा)। वायरलेस कम्युनिकेशन में सिग्नल लॉस के बारे में अधिक जानकारी के लिए मार्ग विचलन पर लेख देखें।

यह भी देखें


संदर्भ

  1. Essentials of Ultrasound Physics, James A. Zagzebski, Mosby Inc., 1996.
  2. Diagnostic Ultrasound, Stewart C. Bushong and Benjamin R. Archer, Mosby Inc., 1991.
  3. ISO 20998-1:2006 "Measurement and characterization of particles by acoustic methods"
  4. S. P. Näsholm and S. Holm, "On a Fractional Zener Elastic Wave Equation," Fract. Calc. Appl. Anal. Vol. 16, No 1 (2013), pp. 26–50, doi:10.2478/s13540-013--0003-1 Link to e-print
  5. Stokes, G.G. "On the theories of the internal friction in fluids in motion, and of the equilibrium and motion of elastic solids", Transactions of the Cambridge Philosophical Society, vol.8, 22, pp. 287-342 (1845)
  6. G. Kirchhoff, "Ueber den Einfluss der Wärmeleitung in einem Gase auf die Schallbewegung", Ann. Phys. , 210: 177-193 (1868). Link to paper
  7. S. Benjelloun and J. M. Ghidaglia, "On the dispersion relation for compressible Navier-Stokes Equations," Link to Archiv e-print Link to Hal e-print
  8. Culjat, Martin O.; Goldenberg, David; Tewari, Priyamvada; Singh, Rahul S. (2010). "अल्ट्रासाउंड इमेजिंग के लिए ऊतक के विकल्प की समीक्षा". Ultrasound in Medicine & Biology. 36 (6): 861–873. doi:10.1016/j.ultrasmedbio.2010.02.012. PMID 20510184. Archived from the original on 2013-04-16.
  9. Jakevičius, L.; Demčenko, A. (2008). "Ultrasound attenuation dependence on air temperature in closed chambers" (PDF). Ultragarsas (Ultrasound). 63 (1): 18–22. ISSN 1392-2114.
  10. Bohren, C. F. and Huffman, D.R. "Absorption and Scattering of Light by Small Particles", Wiley, (1983), ISBN 0-471-29340-7
  11. Dukhin, A.S. and Goetz, P.J. "Ultrasound for characterizing colloids", Elsevier, 2002
  12. Müller, Tobias M.; Gurevich, Boris; Lebedev, Maxim (September 2010). "झरझरा चट्टानों में तरंग-प्रेरित प्रवाह से उत्पन्न भूकंपीय तरंग क्षीणन और फैलाव - एक समीक्षा". Geophysics. 75 (5): 75A147–75A164. Bibcode:2010Geop...75A.147M. doi:10.1190/1.3463417. hdl:20.500.11937/35921.
  13. "तकनीकी जानकारी - समाक्षीय पारेषण लाइनें" (PDF). rfsworld.com. p. 644. Archived from the original (PDF) on 2018-07-12.
  14. "एक्स-रे भौतिकी: पदार्थ के साथ एक्स-रे इंटरेक्शन, एक्स-रे कंट्रास्ट, और खुराक – XRayPhysics". xrayphysics.com. Retrieved 2018-09-21.
  15. Mandelstam, L.I. (1926). "अमानवीय मीडिया द्वारा प्रकाश प्रकीर्णन". Zh. Russ. Fiz-Khim. Ova. 58: 381.
  16. Archibald, P.S. and Bennett, H.E., "Scattering from infrared missile domes", Opt. Engr., Vol. 17, p.647 (1978)


बाहरी कड़ियाँ

श्रेणी: दूरसंचार इंजीनियरिंग श्रेणी:ध्वनिकी