ऊष्मप्रवैगिकी के नियम

From Vigyanwiki

ऊष्मागतिकी के नियम वैज्ञानिक नियमों का एक भाग हैं जो भौतिक राशियों के समूह को परिभाषित करते हैं जैसे कि तापमान, ऊर्जा और एन्ट्रापी ऊष्मागतिकी संतुलन में ऊष्मागतिकी निकायों की विशेषताए है जो ऊष्मागतिकी प्रक्रियाओं के लिए विभिन्न मापदंडों का भी उपयोग करती हैं जैसे ऊष्मागतिकी कार्य, ऊष्मा और उनके बीच संबंध स्थापित करते हैं। और अनुभवजन्य नियम को बताते हैं जो कुछ घटनाओं की संभावना को स्थगित करने का आधार हैं जैसे कि सतत गति ऊष्मागतिकी में उनके उपयोग के अतिरिक्त वे सामान्य रूप से भौतिकी के महत्वपूर्ण मूलभूत नियम हैं और अन्य प्राकृतिक विज्ञानों में प्रयुक्त होते हैं।

परंपरागत रूप से, ऊष्मागतिकी ने तीन मौलिक नियमों को स्वीकृति दी है जिन्हें केवल एक क्रमसूचक पहचान, पहला नियम, दूसरा नियम और तीसरा नियम कहा जाता है।[1][2][3] पहले तीन नियमों की स्थापना के बाद एक अधिक मौलिक कथन को बाद में शून्य नियम के रूप में वर्गीकारण किया गया था।

ऊष्मागतिकी का शून्यवाँ नियम तापीय संतुलन को परिभाषित करता है और तापमान की परिभाषा के लिए एक आधार बनाता है यदि दो निकाय एक तीसरी निकाय के साथ तापीय संतुलन में हैं, तो वे एक दूसरे के साथ तापीय संतुलन में होती हैं।

ऊष्मागतिकी का पहला नियम बताता है कि जब ऊर्जा किसी निकाय (कार्य, ऊष्मा या पदार्थ के रूप में) में या बाहर जाती है तो निकाय की आंतरिक ऊर्जा ऊर्जा के संरक्षण के नियम के अनुसार रूपांतरित हो जाती है।

ऊष्मागतिकी के दूसरे नियम में कहा गया है कि एक प्राकृतिक ऊष्मागतिकी प्रक्रिया में अंतःक्रियात्मक ऊष्मागतिकी निकायों की एन्ट्रापी का योग कभी कम नहीं होता है। जिसका एक सामान्य परिणाम यह है कि ऊष्मा स्वतः ठंडे शरीर से गर्म शरीर में नहीं प्रवेश करती है।

ऊष्मागतिकी के तीसरे नियम में कहा गया है कि जैसे ही तापमान पूर्ण शून्य तक अभिगम्य होता है तब निकाय की एन्ट्रापी एक स्थिर मान तक अभिगम्य हो जाती है गैर-क्रिस्टलीय ठोस के अपवाद के साथ पूर्ण शून्य पर निकाय की एन्ट्रापी सामान्यतः शून्य के निकट होती है।[2]

पहला और दूसरा नियम क्रमशः दो प्रकार की सतत गति मशीनों को प्रतिबंधित करता है: पहली प्रकार की सतत गति मशीन जो बिना ऊर्जा इनपुट के कार्य करती है और दूसरी प्रकार की सतत गति मशीन जो ऊष्मीय ऊर्जा को स्वचालित रूप से यांत्रिक कार्यों में परिवर्तित करती है।

इतिहास

ऊष्मागतिकी का इतिहास मौलिक रूप से भौतिकी के इतिहास और रसायन विज्ञान के इतिहास के साथ जुड़ा हुआ है और अंततः पुरातनता में ऊष्मा के सिद्धांतों की प्रारम्भ हुआ है। ऊष्मागतिकी के नियम उन्नीसवीं और बीसवीं शताब्दी के प्रारंभ में इस क्षेत्र में हुई प्रगति का परिणाम हैं। पहला स्थापित ऊष्मागतिकी सिद्धांत, जो अंततः ऊष्मागतिकी का दूसरा नियम बन गया है 1824 में साडी कार्नोट द्वारा अपनी पुस्तक "रिफ्लेक्शंस ऑन द मोटिव पावर ऑफ फायर" अर्थात "आग की प्रेरक ऊर्जा पर विचार" में 1860 तक तैयार किया गया था। जैसा कि रुडोल्फ क्लॉसियस और विलियम थॉमसन जैसे वैज्ञानिकों के कार्यों में औपचारिक रूप दिया गया था जिसे अब पहले और दूसरे नियमो के रूप में जाना जाता है जो बाद में नेर्न्‍स्ट की प्रमेय या नेर्न्‍स्ट की अभिधारणा के रूप मे स्थापित किए गए थे जिसे अब तीसरे नियम के रूप में जाना जाता है वाल्थर नर्नस्टा द्वारा 1906-1912 की अवधि में तैयार की गई थी। जबकि नियमो की संख्या आज सार्वभौमिक है 20 वीं शताब्दी के समय विभिन्न पाठ्यपुस्तकों ने नियमो को अलग-अलग क्रमांकित किया है। कुछ क्षेत्रों में, दूसरे नियम को केवल ऊष्मा इंजनों की दक्षता के लिए माना जाता था जबकि जिसे तीसरा नियम कहा जाता था वह एन्ट्रापी वृद्धि से संबंधित था। धीरे-धीरे, यह अपने आप हल हो गया और तापमान की एक आत्मनिर्भर परिभाषा की स्वीकृति देने के लिए बाद में एक शून्य नियम जोड़ा गया था। अतिरिक्त नियमों का सुझाव दिया गया है लेकिन चार स्वीकृत नियमों की व्यापकता प्राप्त नहीं की है और सामान्यतः मानक पाठ्यपुस्तकों में चर्चा नहीं की जाती है।

शून्य नियम

ऊष्मागतिकी का शून्यवाँ नियम ऊष्मागतिक निकायों में एक अनुभवजन्य पैरामीटर के रूप में तापमान की नींव प्रदान करता है और तापीय संतुलन में कई निकायों के तापमान के बीच सकर्मक संबंध स्थापित करता है इस नियम को निम्नलिखित रूप में कहा जा सकता है:

"यदि दो निकाय किसी तीसरे निकाय के साथ तापीय संतुलन में हैं, तो वे एक दूसरे के साथ तापीय संतुलन में होते हैं।"[4]

हालांकि इस नियम का यह संस्करण सबसे सामान्य रूप से वर्णित संस्करणों में से एक है यह केवल नियमों की विविधता में से एक है जिसे "शून्य नियम" के रूप में वर्गीकृत किया गया है। कुछ नियम आगे बढ़ते हैं ताकि महत्वपूर्ण भौतिक नियम की आपूर्ति की जा सके कि तापमान एक आयामी है और इसमे ठंडे से गर्म तक वास्तविक संख्या अनुक्रम में अवधारणात्मक रूप से निकायों की व्यवस्था की जा सकती है।[5][6][7]

तापमान और तापीय संतुलन की ये अवधारणाएँ ऊष्मागतिकी के लिए मौलिक हैं और उन्नीसवीं शताब्दी में स्पष्ट रूप से बताई गई थीं। 1930 के दशक में राल्फ एच. फाउलर द्वारा 'ज़ीरोथ लॉ' नाम का आविष्कार किया गया था पहले, दूसरे और तीसरे नियमों को व्यापक रूप से मान्यता मिलने के बाद नियम एंट्रॉपी इसके संयुग्म चर (ऊष्मागतिकी) के संदर्भ के बिना गैर-परिपत्र तरीके से तापमान की परिभाषा की स्वीकृति देता है। ऐसी तापमान परिभाषा को 'अनुभवजन्य' कहा जाता है।[8][9][10][11][12][13]

पहला नियम

ऊष्मागतिकी का पहला नियम ऊर्जा के संरक्षण के नियम का एक संस्करण है जो ऊष्मागतिकी प्रक्रियाओं के लिए अनुकूलित है। सामान्यतः संरक्षण नियम बताता है कि एक पृथक निकाय की कुल ऊर्जा स्थिर है और ऊर्जा को एक रूप से दूसरे रूप में रूपांतरित किया जा सकता है लेकिन इसे न तो बनाया जा सकता है और न ही नष्ट किया जा सकता है।

एक संवृत निकाय में (अर्थात् निकाय में या निकाय के बाहर पदार्थ का कोई स्थानांतरण नहीं होता है), पहला नियम यह बताता है कि निकाय के आंतरिक ऊर्जा में परिवर्तन (ΔU system) निकाय को आपूर्ति की गई ऊष्मा (Q) और कार्य W के अंतर के बराबर होती है और इसके परिवेश पर निकाय द्वारा किए गए कार्य W पर ध्यान दें, एक वैकल्पिक चिह्न जिसका इस आलेख में उपयोग नहीं किया गया है W को उसके परिवेश द्वारा निकाय पर किए गए कार्य के रूप में परिभाषित करना है:

.

उन प्रक्रियाओं के लिए जिनमें पदार्थ का स्थानांतरण सम्मिलित है उनमे एक और विवरण की आवश्यकता होती है।

जब दो आरंभिक पृथक निकायों को एक नई प्रणाली में संयोजित किया जाता है तो नई प्रणाली की कुल आंतरिक ऊर्जा Usystem, दो प्रारंभिक निकायों U1 और U2 की आंतरिक ऊर्जाओं के योग के बराबर होती है:

.

पहले नियम में कई सिद्धांत सम्मिलित हैं:

  • ऊर्जा का संरक्षण, जो कहता है कि ऊर्जा न तो बनाई जा सकती है और न ही नष्ट की जा सकती है, बल्कि केवल कई रूप मे परिवर्तित की जा सकती है। इसका एक विशेष परिणाम यह है कि एक पृथक निकाय की कुल ऊर्जा में परिवर्तन नहीं होता है।
  • आंतरिक ऊर्जा की अवधारणा और तापमान मे यदि किसी निकाय का संबंध एक निश्चित से तापमान होता है तो इसकी कुल ऊर्जा में तीन अलग-अलग घटक होते हैं जिन्हें गतिज ऊर्जा कहा जाता है संपूर्ण निकाय की गति के कारण ऊर्जा, संभावित ऊर्जा अर्थात बाह्य रूप से लगाए गए बल क्षेत्र से उत्पन्न ऊर्जा को आंतरिक ऊर्जा कहा जाता है। आंतरिक ऊर्जा की अवधारणा की स्थापना ऊष्मागतिकी के पहले नियम को ऊर्जा के संरक्षण के अधिक सामान्य नियम से अलग करती है।
  • कार्य ऊर्जा को एक निकाय से या उस तरीके से स्थानांतरित करने की एक प्रक्रिया है जिसे निकाय और उसके परिवेश के बीच कार्य करने वाले स्थूलदर्शीय यांत्रिक बलों द्वारा वर्णित किया जा सकता है। निकाय द्वारा किया गया कार्य इसकी समग्र गतिज ऊर्जा से, इसकी समग्र संभावित ऊर्जा से या इसकी आंतरिक ऊर्जा से आ सकता है। उदाहरण के लिए, जब कोई मशीन (निकाय का भाग नहीं) किसी निकाय को ऊपर की ओर उठाती है तो कुछ ऊर्जा मशीन से निकाय में स्थानांतरित हो जाती है। जैसे-जैसे निकाय पर कार्य किया जाता है तो निकाय की ऊर्जा बढ़ती है और इस विशेष स्थिति में, निकाय की ऊर्जा में वृद्धि निकाय की गुरुत्वाकर्षण संभावित ऊर्जा में वृद्धि के रूप में प्रकट होती है। निकाय में जोड़ा गया कार्य निकाय की संभावित ऊर्जा को बढ़ाता है:
  • जब पदार्थ को एक निकाय में स्थानांतरित किया जाता है तो इससे सम्बद्ध आंतरिक ऊर्जा और संभावित ऊर्जा को नई संयुक्त निकाय में स्थानांतरित कर दिया जाता है जहां U स्थानांतरित पदार्थ की प्रति इकाई द्रव्यमान की आंतरिक ऊर्जा को दर्शाता है जैसा कि परिवेश में मापा जाता है और ΔM स्थानांतरित द्रव्यमान की मात्रा को दर्शाता है।
  • ऊष्मा का प्रवाह ऊर्जा हस्तांतरण का एक रूप है। ऊष्मा का स्थानांतरण कार्य या पदार्थ के स्थानांतरण के अतिरिक्त किसी अन्य निकाय से या उससे ऊर्जा को स्थानांतरित करने की प्राकृतिक प्रक्रिया है। डायथर्मल या पारतानीय दीवार निकाय में, आंतरिक ऊर्जा को केवल ऊर्जा के हस्तांतरण द्वारा ऊष्मा के रूप में परिवर्तित किया जा सकता है इन सिद्धांतों के संयोजन से ऊष्मागतिकी के पहले नियम का एक पारंपरिक कथन सामने आता है कि एक ऐसी मशीन का निर्माण करना संभव नहीं है जो उस मशीन की समान मात्रा में ऊर्जा इनपुट के बिना निरंतर कार्य करे या अधिक संक्षेप में पहली प्रकार की सतत गति मशीन का निर्माण करना असंभव है।

दूसरा नियम

ऊष्मागतिकी का दूसरा नियम प्राकृतिक प्रक्रियाओं की अपरिवर्तनीयता को स्पष्ट करता है और कई स्थितियों में प्राकृतिक प्रक्रियाओं की प्रवृत्ति, पदार्थ और ऊर्जा की स्थानिक एकरूपता विशेष रूप से तापमान की ओर ले जाती है इसे सामान्यतः विभिन्न रोचक और महत्वपूर्ण तरीकों से तैयार किया जा सकता है। सबसे सरल में से एक क्लॉसियस का कथन है कि ऊष्मा स्वतः ठंडे शरीर से गर्म शरीर में नहीं जाती है।

इसका तात्पर्य एक मात्रा के अस्तित्व से है जिसे ऊष्मागतिकी निकाय की एन्ट्रापी कहा जाता है। इस मात्रा के संदर्भ में इसका तात्पर्य यह है कि:

जब अलग-अलग लेकिन अंतरिक्ष के आस-पास के क्षेत्रों में दो अलग-अलग निकाय, प्रत्येक ऊष्मा गतिकी संतुलन में स्वयं के साथ लेकिन आवश्यक नहीं कि एक-दूसरे के साथ पारस्परिक प्रक्रिया करने की अनुमति दी जाए, तो वे अंततः एक पारस्परिक ऊष्मा गतिकी संतुलन तक अभिगम्य हो जाते है आरंभिक पृथक प्रणालियों की एन्ट्रॉपी का योग अंतिम संयोजन की कुल एन्ट्रापी से कम या उसके बराबर होता है। समानता तब होती है जब दो मूल प्रणालियों में उनके संबंधित सघन चर (तापमान, दाब) बराबर होते हैं तब अंतिम निकाय में भी समान मान होते हैं।

दूसरा नियम विभिन्न प्रकार की दोनों प्रतिवर्ती और अपरिवर्तनीय प्रक्रियाओं पर प्रयुक्त होता है दूसरे नियम के अनुसार, एक उत्क्रमणीय ऊष्मा अंतरण में, स्थानांतरित ऊष्मा का एक तत्व, डेल्टा Q तापमान (T) का गुणनफल है निकाय और ऊष्मा के स्रोतों या गंतव्य दोनों की वृद्धि (dS) के साथ निकाय का संयुग्म चर इसकी एन्ट्रापी (S) है:

[1]

जबकि प्रतिवर्ती प्रक्रियाएं एक उपयोगी और सुविधाजनक सैद्धांतिक सीमित स्थिति हैं सभी प्राकृतिक प्रक्रियाएं अपरिवर्तनीय हैं। इस अपरिवर्तनीयता का एक प्रमुख उदाहरण चालन या विकिरण द्वारा ऊष्मा का स्थानांतरण है। एन्ट्रापी की धारणा की खोज से बहुत पहले यह ज्ञात था कि जब दो शरीर प्रारम्भ में अलग-अलग तापमान और प्रत्यक्ष तापीय संबंध में आते हैं तो शीघ्र ऊष्मा होती है और स्वतः ऊष्मा गर्म शरीर से ठंडे शरीर में प्रवाहित होती है।

एन्ट्रापी को एक भौतिक उपाय के रूप में भी देखा जा सकता है जो किसी निकाय की गति और विन्यास के सूक्ष्म विवरण से संबंधित है जब केवल स्थूल अवस्थाएँ ज्ञात होती हैं। इस प्रकार के विवरण को प्रायः सूक्ष्म या आणविक पैमाने पर विकार के रूप में संदर्भित किया जाता है और कम ऊर्जा के विस्तार के रूप में एक निकाय के दो दिए गए सूक्ष्मदर्शीय के रूप से निर्दिष्ट अवस्थाओ के लिए, गणितीय रूप से परिभाषित राशि होती है जिसे उनके बीच सूचना एंट्रॉपी का अंतर कहा जाता है। यह परिभाषित करता है कि सूक्ष्मदर्शीय रूप से निर्दिष्ट अवस्थाओ में से एक को निर्दिष्ट करने के लिए कितनी अतिरिक्त सूक्ष्म भौतिक जानकारी की आवश्यकता होती है, दूसरे सूक्ष्मदर्शीय विनिर्देश के अनुसार, प्रायः एक सुविधाजनक रूप से चयन की गई संदर्भ स्थिति जो स्पष्ट रूप से बताए जाने के अतिरिक्त सम्मिलित हो सकती है। एक प्राकृतिक प्रक्रिया की अंतिम स्थिति में सदैव सूक्ष्म रूप से विशिष्ट प्रभाव होते हैं जो प्रक्रिया की प्रारंभिक स्थिति के सूक्ष्मदर्शीय विनिर्देश से पूरी तरह से और शुद्ध रूप से अनुमानित नहीं होते हैं। यही कारण है कि प्राकृतिक प्रक्रियाओं में एन्ट्रापी बढ़ जाती है और वृद्धि यह बताती है कि प्रारंभिक सूक्ष्मदर्शीय रूप से निर्दिष्ट अवस्था को अंतिम सूक्ष्मदर्शीय रूप से निर्दिष्ट अवस्था से अलग करने के लिए कितनी अतिरिक्त सूक्ष्म जानकारी की आवश्यकता है।[14] समान रूप से, ऊष्मागतिकी प्रक्रिया में ऊर्जा प्रसारित होती है।

तीसरा नियम

ऊष्मागतिकी के तीसरे नियम को इस प्रकार कहा जा सकता है:[2]

जैसे-जैसे तापमान पूर्ण शून्य तक बढ़ता है निकाय की एन्ट्रापी एक स्थिर मान तक अभिगम्य हो जाती है।

(ए) पूर्ण शून्य पर निकाय के लिए एकल संभव परिवर्तन, अर्थात केवल एक सूक्ष्म अवस्था अभिगम्य योग्य है। (बी) परम शून्य से अधिक तापमान पर, परमाणु कंपन के कारण कई सूक्ष्म अवस्था सक्षम होती हैं (चित्र में अतिरंजित)

शून्य तापमान पर, निकाय को न्यूनतम तापीय ऊर्जा, मूल अवस्था के साथ अवस्था में होना चाहिए इस बिंदु पर एन्ट्रापी का निरंतर मान (आवश्यक नहीं कि शून्य) निकाय का अवशिष्ट एन्ट्रापी कहलाता है। ध्यान दें कि गैर-क्रिस्टलीय ठोस (जैसे, चश्मा) के अपवाद के साथ एक निकाय की अवशिष्ट एन्ट्रॉपी सामान्यतः शून्य के निकट होती है।[2] हालाँकि, यह शून्य तक तभी जाता है जब निकाय में एक अद्वितीय मूल स्थिति होती है अर्थात, न्यूनतम तापीय ऊर्जा वाली अवस्था में केवल एक परिवर्तन या सूक्ष्म अवस्था (सांख्यिकीय यांत्रिकी) होती है एक विशिष्ट स्थिति में निकाय की संभावना का वर्णन करने के लिए यहां सूक्ष्म अवस्था का उपयोग किया जाता है क्योंकि प्रत्येक सूक्ष्म अवस्था को होने की समान संभावना माना जाता है, इसलिए अपेक्षाकृत कम सूक्ष्म अवस्था वाले सूक्ष्मदर्शीय अवस्थाओ की संभावना कम होती है। सामान्यतः एन्ट्रापी बोल्ट्जमैन सिद्धांत के अनुसार संभावित सूक्ष्म अवस्था की संख्या से संबंधित है:


जहाँ S निकाय की एन्ट्रापी है, kB बोल्ट्ज़मैन का स्थिरांक है और Ω सूक्ष्म अवस्था की संख्या है। पूर्ण शून्य पर केवल 1 सूक्ष्म अवस्था (Ω = 1 संभव है क्योंकि सभी परमाणु एक शुद्ध पदार्थ के लिए समान हैं और इसके परिणामस्वरूप सभी आदेश समान होते हैं क्योंकि केवल इसमे एक संयोजन होता है।

ओन्सागर संबंध

ओन्सागर पारस्परिक संबंध को ऊष्मागतिकी का चौथा नियम माना गया है।[15][16][17] वे गैर-संतुलन ऊष्मागतिकी प्रवाह और गैर-संतुलन ऊष्मागतिकी में बलों के बीच संबंध का वर्णन करते हैं इस धारणा के अंतर्गत स्थानीय संतुलन की स्थिति में ऊष्मागतिकी चर को स्थानीय रूप से परिभाषित किया जा सकता है। ये संबंध सूक्ष्म उत्क्रमणीयता (बाहरी चुंबकीय क्षेत्र की अनुपस्थिति में) के सिद्धांत के अंतर्गत सांख्यिकीय यांत्रिकी से प्राप्त होते हैं। व्यापक पैरामीटर्स Xi (ऊर्जा, द्रव्यमान, एन्ट्रॉपी, कणों की संख्या) और ऊष्मागतिकी बल Fi (तापमान और दाब जैसे आंतरिक मापदंडों से संबंधित), ओन्सागर प्रमेय कहता है कि: [16]

जहाँ

ऊष्मागतिकी प्रवाह कहलाते हैं।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Guggenheim, E.A. (1985). Thermodynamics. An Advanced Treatment for Chemists and Physicists, seventh edition, North Holland, Amsterdam, ISBN 0-444-86951-4.
  2. 2.0 2.1 2.2 2.3 Kittel, C. Kroemer, H. (1980). Thermal Physics, second edition, W.H. Freeman, San Francisco, ISBN 0-7167-1088-9.
  3. Adkins, C.J. (1968). Equilibrium Thermodynamics, McGraw-Hill, London, ISBN 0-07-084057-1.
  4. Guggenheim (1985), p. 8.
  5. Sommerfeld, A. (1951/1955). Thermodynamics and Statistical Mechanics, vol. 5 of Lectures on Theoretical Physics, edited by F. Bopp, J. Meixner, translated by J. Kestin, Academic Press, New York, p. 1.
  6. Serrin, J. (1978). The concepts of thermodynamics, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations. Proceedings of the International Symposium on Continuum Mechanics and Partial Differential Equations, Rio de Janeiro, August 1977, edited by G.M. de La Penha, L.A.J. Medeiros, North-Holland, Amsterdam, ISBN 0-444-85166-6, pp. 411–51.
  7. Serrin, J. (1986). Chapter 1, 'An Outline of Thermodynamical Structure', pp. 3–32, in New Perspectives in Thermodynamics, edited by J. Serrin, Springer, Berlin, ISBN 3-540-15931-2.
  8. Adkins, C.J. (1968/1983). Equilibrium Thermodynamics, (first edition 1968), third edition 1983, Cambridge University Press, ISBN 0-521-25445-0, pp. 18–20.
  9. Bailyn, M. (1994). A Survey of Thermodynamics, American Institute of Physics Press, New York, ISBN 0-88318-797-3, p. 26.
  10. Buchdahl, H.A. (1966), The Concepts of Classical Thermodynamics, Cambridge University Press, London, pp. 30, 34ff, 46f, 83.
  11. *Münster, A. (1970), Classical Thermodynamics, translated by E.S. Halberstadt, Wiley–Interscience, London, ISBN 0-471-62430-6, p. 22.
  12. Pippard, A.B. (1957/1966). Elements of Classical Thermodynamics for Advanced Students of Physics, original publication 1957, reprint 1966, Cambridge University Press, Cambridge, p. 10.
  13. Wilson, H.A. (1966). Thermodynamics and Statistical Mechanics, Cambridge University Press, London, pp. 4, 8, 68, 86, 97, 311.
  14. Ben-Naim, A. (2008). A Farewell to Entropy: Statistical Thermodynamics Based on Information, World Scientific, New Jersey, ISBN 978-981-270-706-2.
  15. Wendt, Richard P. (1974). "इलेक्ट्रोलाइट समाधान के लिए सरलीकृत परिवहन सिद्धांत". Journal of Chemical Education. American Chemical Society (ACS). 51 (10): 646. Bibcode:1974JChEd..51..646W. doi:10.1021/ed051p646. ISSN 0021-9584.
  16. 16.0 16.1 Deffner, Sebastian (2019). क्वांटम थर्मोडायनामिक्स: क्वांटम सूचना के थर्मोडायनामिक्स का परिचय. Steve Campbell, Morgan & Claypool Publishers, Institute of Physics. San Rafael, CA. ISBN 978-1-64327-658-8. OCLC 1112388794.{{cite book}}: CS1 maint: location missing publisher (link)
  17. "लार्स ऑनसागर - अमेरिकी रसायनज्ञ". Encyclopaedia Britannica (biography) (in English). Retrieved 2021-03-10.


अग्रिम पठन


बाहरी संबंध