सेप्टिक समीकरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 31: Line 31:


:<math>x_k = \omega_k\sqrt[7]{y_1} + \omega_k^6\sqrt[7]{y_2}</math>
:<math>x_k = \omega_k\sqrt[7]{y_1} + \omega_k^6\sqrt[7]{y_2}</math>
जहाँ पर {{math|''ω<sub>k</sub>''}} इकाई के 7 सातवें मूल में से कोई भी है। इस सेप्टिक का गैलोज़ समूह क्रम 42 का अधिकतम हल करने योग्य समूह है। इसे आसानी से किसी भी अन्य डिग्री {{math|''k''}} के लिए सामान्यीकृत किया जाता है, जरूरी नहीं  है कि प्रधान हो।
जहाँ पर {{math|''ω<sub>k</sub>''}} इकाई के 7 सातवें मूल में से कोई भी है। इस सेप्टिक का गैलोइस समूह क्रम 42 का अधिकतम हल करने योग्य समूह है। इसे आसानी से किसी भी अन्य डिग्री {{math|''k''}} के लिए सामान्यीकृत किया जाता है, जरूरी नहीं  है कि यह प्रधान हो।


एक और समाधान परिवार है,
एक और समाधान परिवार है,
Line 39: Line 39:


:<math>\Delta = -4^4\left(4\alpha^3+99\alpha^2-34\alpha+467\right)^3\,</math>
:<math>\Delta = -4^4\left(4\alpha^3+99\alpha^2-34\alpha+467\right)^3\,</math>
इन सेप्टिक्स का गैलोज़ समूह ऑर्डर 14 का [[डायहेड्रल समूह]] है।
इन सेप्टिक्स का गैलोइस समूह क्रम 14 का [[डायहेड्रल समूह]] है।


सामान्य सेप्टिक समीकरण को [[वैकल्पिक समूह|वैकल्पिक]] या [[सममित समूह|सममित]] गैलोइस समूह {{math|''A''<sub>7</sub>}} या {{math|''S''<sub>7</sub>}} के साथ हल किया जा सकता है। <ref name="BeyondQuartic"/>इस तरह के समीकरणों को उनके समाधान के लिए [[जीनस (गणित)|जीनस]] 3 के [[हाइपरेलिप्टिक फ़ंक्शन|हाइपरेलिप्टिक फलन]] और उससे संबंधित थीटा फलनो की आवश्यकता होती है।<ref name="BeyondQuartic"/>चूंकि, उन्नीसवीं शताब्दी के गणितज्ञों द्वारा बीजीय समीकरणों के समाधान का अध्ययन करते इन समीकरणों का विशेष रूप से अध्ययन नहीं किया गया था, क्योंकि सेक्स्टिक समीकरणों के समाधान पहले से ही कंप्यूटर के बिना उनकी कम्प्यूटेशनल क्षमताओं की सीमा पर थे।<ref name="BeyondQuartic">{{citation|url=https://books.google.com/books?id=9cKX_9zkeg4C&q=septic+equation&pg=PA143 |author=R. Bruce King |title=Beyond the Quartic Equation |date=16 January 2009 |publisher= Birkhaüser|page=  143 and 144|isbn=9780817648497 }}</ref>  
सामान्य सेप्टिक समीकरण को [[वैकल्पिक समूह|वैकल्पिक]] या [[सममित समूह|सममित]] गैलोइस समूह {{math|''A''<sub>7</sub>}} या {{math|''S''<sub>7</sub>}} के साथ हल किया जा सकता है। <ref name="BeyondQuartic"/>इस तरह के समीकरणों को उनके समाधान के लिए [[जीनस (गणित)|जीनस]] 3 के [[हाइपरेलिप्टिक फ़ंक्शन|हाइपरेलिप्टिक फलन]] और उससे संबंधित थीटा फलनो की आवश्यकता होती है।<ref name="BeyondQuartic"/>चूंकि, उन्नीसवीं शताब्दी के गणितज्ञों द्वारा बीजीय समीकरणों के समाधान का अध्ययन करते इन समीकरणों का विशेष रूप से अध्ययन नहीं किया गया था, क्योंकि सेक्स्टिक समीकरणों के समाधान पहले से ही कंप्यूटर के बिना उनकी कम्प्यूटेशनल क्षमताओं की सीमा पर थे।<ref name="BeyondQuartic">{{citation|url=https://books.google.com/books?id=9cKX_9zkeg4C&q=septic+equation&pg=PA143 |author=R. Bruce King |title=Beyond the Quartic Equation |date=16 January 2009 |publisher= Birkhaüser|page=  143 and 144|isbn=9780817648497 }}</ref>  


सेप्टिक्स निम्नतम क्रम के समीकरण हैं  जिनके लिए यह स्पष्ट नहीं है कि उनके समाधान दो चरों के निरंतर फलनो को अध्यारोपित करके प्राप्त किए जा सकते हैं।  हिल्बर्ट की 13वीं समस्या अनुमान था, यह सातवें डिग्री के समीकरणों के सामान्य स्थिति में संभव नहीं था। [[व्लादिमीर अर्नोल्ड]] ने 1957 में यह प्रदर्शित करते हुए इसे हल किया कि यह हमेशा संभव था।<ref>{{citation |chapter-url=https://books.google.com/books?id=SpTv44Ia-J0C&pg=PA254 |title=Kolmogorov's heritage in mathematics |author=Vasco Brattka |chapter=Kolmogorov's Superposition Theorem|date=13 September 2007 |publisher=Springer|isbn=9783540363514 }}</ref> चूंकि, अर्नोल्ड ने खुद को वास्तविक हिल्बर्ट समस्या माना कि क्या सेप्टिक्स के लिए उनके समाधान दो चर के बीजगणितीय फलनो को अध्यारोपित करके प्राप्त किए जा सकते हैं (समस्या अभी भी बनी हुयी है)<ref>{{citation |url=http://www.pdmi.ras.ru/~arnsem/Arnold/arnlect1.ps.gz |title=From Hilbert's Superposition Problem to Dynamical Systems |author=V.I. Arnold |page=4}}</ref>
सेप्टिक्स निम्नतम क्रम के समीकरण हैं  जिनके लिए यह स्पष्ट नहीं है कि उनके समाधान दो चरों के निरंतर फलनो को अध्यारोपित करके प्राप्त किए जा सकते हैं।  हिल्बर्ट की 13वीं समस्या अनुमान था, यह सातवें डिग्री के समीकरणों के सामान्य स्थिति में संभव नहीं था। [[व्लादिमीर अर्नोल्ड]] ने 1957 में यह प्रदर्शित करते हुए इसे हल किया कि यह हमेशा संभव था।<ref>{{citation |chapter-url=https://books.google.com/books?id=SpTv44Ia-J0C&pg=PA254 |title=Kolmogorov's heritage in mathematics |author=Vasco Brattka |chapter=Kolmogorov's Superposition Theorem|date=13 September 2007 |publisher=Springer|isbn=9783540363514 }}</ref> चूंकि, अर्नोल्ड ने स्वयं को वास्तविक हिल्बर्ट समस्या माना कि क्या सेप्टिक्स के लिए उनके समाधान दो चर के बीजगणितीय फलनो को अध्यारोपित करके प्राप्त किए जा सकते हैं। (समस्या अभी भी बनी हुयी है) <ref>{{citation |url=http://www.pdmi.ras.ru/~arnsem/Arnold/arnlect1.ps.gz |title=From Hilbert's Superposition Problem to Dynamical Systems |author=V.I. Arnold |page=4}}</ref>






== गैलोइस समूह ==
== गैलोइस समूह ==
[[Image:Fano plane.svg|thumb|[[फानो विमान]]]]रेडिकल्स द्वारा हल किए जा सकने वाले सेप्टिक समीकरणों में गैलोज़ समूह होता है जो या तो ऑर्डर 7 का [[चक्रीय समूह]] होता है, या ऑर्डर 14 का डायहेड्रल समूह या ऑर्डर 21 या 42 का [[मेटासाइक्लिक समूह]] होता है।<ref name="BeyondQuartic"/>  
[[Image:Fano plane.svg|thumb|[[फानो विमान|फेनो तल]]]]रेडिकल्स द्वारा हल किए जा सकने वाले सेप्टिक समीकरणों में गैलोइस समूह होता है जो या तो क्रम 7 का [[चक्रीय समूह]] होता है, या क्रम 14 का डायहेड्रल समूह या क्रम 21 अथवा 42 का [[मेटासाइक्लिक समूह]] होता है।<ref name="BeyondQuartic"/>  


{{math|''L''(3, 2)}} गाल्वा समूह (क्रम 168 का) 7 शीर्ष लेबल के [[क्रमपरिवर्तन]] से बनता है जो फ़ानो विमान में 7 पंक्तियों को संरक्षित करता है।<ref name="BeyondQuartic" /> गैलोज़ समूह के साथ इस सेप्टिक समीकरण {{math|''L''(3, 2)}}  को अपने समाधान के लिए दीर्घवृत्तीय फलनो की आवश्यकता होती है, अतिपरवलयाकर फलनो की आवश्यकता नहीं होती है ।<ref name="BeyondQuartic" />
{{math|''L''(3, 2)}} गाल्वा समूह (क्रम 168 का) 7 शीर्ष लेबल के [[क्रमपरिवर्तन]] से बनता है जो फेनो तल में 7 पंक्तियों को संरक्षित करता है।<ref name="BeyondQuartic" /> गैलोइस समूह के साथ इस सेप्टिक समीकरण {{math|''L''(3, 2)}}  को अपने समाधान के लिए दीर्घवृत्तीय फलनो की आवश्यकता होती है, अतिपरवलयाकर फलनो की आवश्यकता नहीं होती है ।<ref name="BeyondQuartic" />


अन्यथा एक सेप्टिक का गैलोज़ समूह या तो क्रम 2520 का वैकल्पिक समूह है या क्रम 5040 का सममित समूह है।
अन्यथा एक सेप्टिक का गैलोइस समूह या तो क्रम 2520 का वैकल्पिक समूह है या क्रम 5040 का सममित समूह है।


== एक चक्रीय पंचभुज या षट्भुज के वर्ग क्षेत्र के लिए सेप्टिक समीकरण ==
== एक चक्रीय पंचभुज या षट्भुज के वर्ग क्षेत्र के लिए सेप्टिक समीकरण ==


चक्रीय पंचभुज के क्षेत्रफल का वर्ग एक सेप्टिक समीकरण का एक मूल है, जिसके गुणांक पंचभुज की भुजाओं के सममित फलन होते हैं।<ref>Weisstein, Eric W. "Cyclic Pentagon." From MathWorld--A Wolfram Web Resource. [http://mathworld.wolfram.com/CyclicPentagon.html]</ref> चक्रीय षट्भुज के क्षेत्रफल के वर्ग के बारे में भी यही बात सच है।<ref>Weisstein, Eric W. "Cyclic Hexagon." From MathWorld--A Wolfram Web Resource. [http://mathworld.wolfram.com/CyclicHexagon.html]</ref>
चक्रीय पंचभुज के क्षेत्रफल का वर्ग एक सेप्टिक समीकरण का एक मूल है, जिसके गुणांक पंचभुज की भुजाओं के सममित फलन हैं।<ref>Weisstein, Eric W. "Cyclic Pentagon." From MathWorld--A Wolfram Web Resource. [http://mathworld.wolfram.com/CyclicPentagon.html]</ref> चक्रीय षट्भुज के क्षेत्रफल के वर्ग के बारे में भी यही बात सच है।<ref>Weisstein, Eric W. "Cyclic Hexagon." From MathWorld--A Wolfram Web Resource. [http://mathworld.wolfram.com/CyclicHexagon.html]</ref>





Revision as of 14:27, 8 December 2022

डिग्री 7 के एक बहुपद का ग्राफ, 7 वास्तविक संख्या के साथ एक बहुपद का मूल (क्रॉसिंग) x अक्ष) और 6 महत्वपूर्ण बिंदु (गणित)न्यूनतम की संख्या और ऊर्ध्वाधर स्थान के आधार पर, सेप्टिक में उनकी बहुलता के साथ 7, 5, 3, या 1 वास्तविक मूल गिना जा सकता है; जटिल संख्या गैर-वास्तविक जड़ों की संख्या 7 माइनस वास्तविक जड़ों की संख्या है।

बीजगणित में, एक सेप्टिक समीकरण नीचे लिखे गए समीकरण के रूप का होता है

जहाँ पर a ≠ 0.

एक सेप्टिक फलन, निम्नलिखित रूप का एक फलन होता है

जहाँ पर a ≠ 0

दूसरे शब्दों में, यह 7 की घात का एक बहुपद होता है। यदि a = 0 है , तो फलन f, 6 घात का एक फलन होता है ;जहाँ पर (b ≠ 0), इसी तरह 5 घात का फलन यदि (b = 0, c ≠ 0), आदि।

f(x) = 0 रखकर दिए गए फलन से समीकरण प्राप्त किया जा सकता है :

गुणांक a, b, c, d, e, f, g, h या तो पूर्णांक या परिमेय संख्या, वास्तविक संख्या, जटिल संख्या, और अधिक सामान्यतः, किसी भी क्षेत्र के सदस्य हो सकते हैं।

क्योंकि उनके पास एक विषम डिग्री है। जब आलेख बनाया जाता है तो सेप्टिक फलन, क्विंटिक फलन या घनीय फलन के समान दिखाई देते हैं, केवल इसके कि उनके पास कुछ अतिरिक्त उच्चतम मान, निम्नतम मान और स्थानीय निम्न (तीन उच्चतम मान और तीन निम्नतम मान तक) हो सकते हैं। सेप्टिक फलन का अवकलन एक सेक्स्टिक फलन (6 घात का एक फलन) होता है।

हल करने योग्य सेप्टिक्स

कुछ सातवीं डिग्री के समीकरणों को रेडिकल्स में गुणनखंडित करके हल किया जा सकता है, लेकिन अन्य सेप्टिक्स को इस तरह हल नहीं कर सकते है। इवरिस्ट गैलोइस ने यह निर्धारित करने के लिए कि क्या किसी दिए गए समीकरण को रेडिकल्स द्वारा हल किया जा सकता है, एक तकनीक विकसित की, जिसने बाद में गैलोइस सिद्धांत के क्षेत्र को जन्म दिया। एक अखंडनीय लेकिन हल करने योग्य सेप्टिक का उदाहरण लेकर, कोई समीकरण का हल प्राप्त करने के लिए समाधेय डे मोइवर क्विंटिक का सामान्यीकरण कर सकता है,

,

जहाँ सहायक समीकरण है

.

इसका अर्थ है कि सेप्टिक को u तथा v के बीच x = u + v, uv + α = 0 तथा u7 + v7 + β = 0 से प्राप्त किया जाता है।

यह इस प्रकार है जिससे कि सेप्टिक की सातो मूलो को प्राप्त किया जा सकता है

जहाँ पर ωk इकाई के 7 सातवें मूल में से कोई भी है। इस सेप्टिक का गैलोइस समूह क्रम 42 का अधिकतम हल करने योग्य समूह है। इसे आसानी से किसी भी अन्य डिग्री k के लिए सामान्यीकृत किया जाता है, जरूरी नहीं है कि यह प्रधान हो।

एक और समाधान परिवार है,

जिसके सदस्य संख्या क्षेत्रों के क्लूनर के डेटाबेस में दिखाई देते हैं। इसका विवेचक है

इन सेप्टिक्स का गैलोइस समूह क्रम 14 का डायहेड्रल समूह है।

सामान्य सेप्टिक समीकरण को वैकल्पिक या सममित गैलोइस समूह A7 या S7 के साथ हल किया जा सकता है। [1]इस तरह के समीकरणों को उनके समाधान के लिए जीनस 3 के हाइपरेलिप्टिक फलन और उससे संबंधित थीटा फलनो की आवश्यकता होती है।[1]चूंकि, उन्नीसवीं शताब्दी के गणितज्ञों द्वारा बीजीय समीकरणों के समाधान का अध्ययन करते इन समीकरणों का विशेष रूप से अध्ययन नहीं किया गया था, क्योंकि सेक्स्टिक समीकरणों के समाधान पहले से ही कंप्यूटर के बिना उनकी कम्प्यूटेशनल क्षमताओं की सीमा पर थे।[1]

सेप्टिक्स निम्नतम क्रम के समीकरण हैं जिनके लिए यह स्पष्ट नहीं है कि उनके समाधान दो चरों के निरंतर फलनो को अध्यारोपित करके प्राप्त किए जा सकते हैं। हिल्बर्ट की 13वीं समस्या अनुमान था, यह सातवें डिग्री के समीकरणों के सामान्य स्थिति में संभव नहीं था। व्लादिमीर अर्नोल्ड ने 1957 में यह प्रदर्शित करते हुए इसे हल किया कि यह हमेशा संभव था।[2] चूंकि, अर्नोल्ड ने स्वयं को वास्तविक हिल्बर्ट समस्या माना कि क्या सेप्टिक्स के लिए उनके समाधान दो चर के बीजगणितीय फलनो को अध्यारोपित करके प्राप्त किए जा सकते हैं। (समस्या अभी भी बनी हुयी है) [3]


गैलोइस समूह

रेडिकल्स द्वारा हल किए जा सकने वाले सेप्टिक समीकरणों में गैलोइस समूह होता है जो या तो क्रम 7 का चक्रीय समूह होता है, या क्रम 14 का डायहेड्रल समूह या क्रम 21 अथवा 42 का मेटासाइक्लिक समूह होता है।[1]

L(3, 2) गाल्वा समूह (क्रम 168 का) 7 शीर्ष लेबल के क्रमपरिवर्तन से बनता है जो फेनो तल में 7 पंक्तियों को संरक्षित करता है।[1] गैलोइस समूह के साथ इस सेप्टिक समीकरण L(3, 2) को अपने समाधान के लिए दीर्घवृत्तीय फलनो की आवश्यकता होती है, अतिपरवलयाकर फलनो की आवश्यकता नहीं होती है ।[1]

अन्यथा एक सेप्टिक का गैलोइस समूह या तो क्रम 2520 का वैकल्पिक समूह है या क्रम 5040 का सममित समूह है।

एक चक्रीय पंचभुज या षट्भुज के वर्ग क्षेत्र के लिए सेप्टिक समीकरण

चक्रीय पंचभुज के क्षेत्रफल का वर्ग एक सेप्टिक समीकरण का एक मूल है, जिसके गुणांक पंचभुज की भुजाओं के सममित फलन हैं।[4] चक्रीय षट्भुज के क्षेत्रफल के वर्ग के बारे में भी यही बात सच है।[5]


यह भी देखें


संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 1.5 R. Bruce King (16 January 2009), Beyond the Quartic Equation, Birkhaüser, p. 143 and 144, ISBN 9780817648497
  2. Vasco Brattka (13 September 2007), "Kolmogorov's Superposition Theorem", Kolmogorov's heritage in mathematics, Springer, ISBN 9783540363514
  3. V.I. Arnold, From Hilbert's Superposition Problem to Dynamical Systems, p. 4
  4. Weisstein, Eric W. "Cyclic Pentagon." From MathWorld--A Wolfram Web Resource. [1]
  5. Weisstein, Eric W. "Cyclic Hexagon." From MathWorld--A Wolfram Web Resource. [2]