रैखिक लोच: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 4: Line 4:
'''रैखिक लोच''' गणितीय मॉडल है कि कैसे निर्धारित लोडिंग स्थितियों के कारण ठोस वस्तुएं [[विरूपण (भौतिकी)]] और आंतरिक रूप से [[तनाव (यांत्रिकी)]] बन जाती हैं। यह अधिक सामान्य [[परिमित तनाव सिद्धांत]] और सातत्य यांत्रिकी की शाखा का सरलीकरण है।
'''रैखिक लोच''' गणितीय मॉडल है कि कैसे निर्धारित लोडिंग स्थितियों के कारण ठोस वस्तुएं [[विरूपण (भौतिकी)]] और आंतरिक रूप से [[तनाव (यांत्रिकी)]] बन जाती हैं। यह अधिक सामान्य [[परिमित तनाव सिद्धांत]] और सातत्य यांत्रिकी की शाखा का सरलीकरण है।


रेखीय लोच की मौलिक रेखीयकरण धारणाएं हैं: अतिसूक्ष्म तनाव सिद्धांत या छोटे विरूपण (या तनाव) और तनाव और तनाव के घटकों के बीच रैखिक संबंध होता हैं। इसके अतिरिक्त रैखिक लोच केवल तनाव वाले राज्यों के लिए मान्य है जो यील्ड (इंजीनियरिंग) का उत्पादन नहीं करते हैं।
रेखीय लोच की मौलिक रेखीयकरण धारणाएं हैं: अतिसूक्ष्म तनाव सिद्धांत या छोटे विरूपण (या तनाव) और तनाव और तनाव के घटकों के बीच रैखिक संबंध होता हैं। इसके अतिरिक्त रैखिक लोच केवल तनाव वाली स्थिति के लिए मान्य है जो यील्ड (इंजीनियरिंग) का उत्पादन नहीं करते हैं।


ये धारणाएँ कई इंजीनियरिंग सामग्री और इंजीनियरिंग डिज़ाइन परिदृश्यों के लिए उचित हैं। अधिकांशतः परिमित तत्व विश्लेषण की सहायता से रैखिक लोच इसलिए [[संरचनात्मक विश्लेषण]] और इंजीनियरिंग डिजाइन में बड़े पैमाने पर उपयोग किया जाता है।
ये धारणाएँ कई इंजीनियरिंग सामग्री और इंजीनियरिंग डिज़ाइन परिदृश्यों के लिए उचित हैं। अधिकांशतः परिमित तत्व विश्लेषण की सहायता से रैखिक लोच इसलिए [[संरचनात्मक विश्लेषण]] और इंजीनियरिंग डिजाइन में बड़े पैमाने पर उपयोग किया जाता है।
Line 124: Line 124:
इलास्टोस्टैटिक समीकरण लिखा जा सकता है:
इलास्टोस्टैटिक समीकरण लिखा जा सकता है:
<math display="block">(\alpha^2-\beta^2) u_{j,ij} + \beta^2 u_{i,mm} = -F_i.</math>
<math display="block">(\alpha^2-\beta^2) u_{j,ij} + \beta^2 u_{i,mm} = -F_i.</math>
इलास्टोस्टेटिक समीकरण के दोनों पक्षों के [[विचलन]] को लेते हुए और यह मानते हुए कि भौतिक बलों में शून्य विचलन (डोमेन में सजातीय) है (<math>F_{i,i}=0\,\!</math>) अपने पास
इलास्टोस्टेटिक समीकरण के दोनों पक्षों के [[विचलन]] को लेते हुए और यह मानते हुए कि भौतिक बलों (<math>F_{i,i}=0\,\!</math>) में शून्य विचलन (डोमेन में सजातीय) है-
<math display="block">(\alpha^2-\beta^2) u_{j,iij} + \beta^2u_{i,imm} = 0.</math>
<math display="block">(\alpha^2-\beta^2) u_{j,iij} + \beta^2u_{i,imm} = 0.</math>
यह देखते हुए कि सारांशित सूचकांकों का मिलान नहीं होना चाहिए, और यह कि आंशिक डेरिवेटिव कम्यूट करते हैं, दो अंतर शब्द समान दिखाई देते हैं और हमारे पास: <math display="block">\alpha^2 u_{j,iij} = 0</math> जिससे हम यह निष्कर्ष निकालते हैं कि: <math display="block">u_{j,iij} = 0.</math>
यह देखते हुए कि सारांशित सूचकांकों का मिलान नहीं होना चाहिए, और यह कि आंशिक डेरिवेटिव कम्यूट करते हैं, दो अंतर शब्द समान दिखाई देते हैं: <math display="block">\alpha^2 u_{j,iij} = 0</math> जिससे हम यह निष्कर्ष निकालते हैं कि: <math display="block">u_{j,iij} = 0.</math>
इलास्टोस्टैटिक समीकरण के दोनों पक्षों के [[लाप्लासियन]] को लेना, और इसके अतिरिक्त मान लेना <math>F_{i,kk}=0\,\!</math>, अपने पास
इलास्टोस्टैटिक समीकरण के दोनों पक्षों के [[लाप्लासियन]] को लेना, और इसके अतिरिक्त इसका मान <math>F_{i,kk}=0\,\!</math> मानने पर हमारे पास उक्त समीकरण प्राप्त होता हैं-
<math display="block">(\alpha^2-\beta^2) u_{j,kkij} + \beta^2u_{i,kkmm} = 0.</math>
<math display="block">(\alpha^2-\beta^2) u_{j,kkij} + \beta^2u_{i,kkmm} = 0.</math>
अपसरण समीकरण से, बाईं ओर का पहला पद शून्य है (ध्यान दें: फिर से, सारांशित सूचकांकों का मिलान नहीं होना चाहिए) और हमारे पास है:
अपसरण समीकरण से, बाईं ओर का पहला पद शून्य है यहाँ पर ध्यान दें कि फिर से, सारांशित सूचकांकों का मिलान नहीं होना चाहिए:<math display="block">\beta^2 u_{i,kkmm} = 0</math>जिससे हम यह निष्कर्ष निकालते हैं कि:<math display="block">u_{i,kkmm} = 0</math>या, समन्वय मुक्त संकेतन में <math>\nabla^4 \mathbf{u} = 0</math> जो कि सिर्फ [[बिहारमोनिक समीकरण]] <math>\mathbf{u}\,\!</math> से प्रदर्शित होता है।
<math display="block">\beta^2 u_{i,kkmm} = 0</math>
जिससे हम यह निष्कर्ष निकालते हैं कि:
<math display="block">u_{i,kkmm} = 0</math>
या, समन्वय मुक्त संकेतन में <math>\nabla^4 \mathbf{u} = 0</math> जो कि सिर्फ [[बिहारमोनिक समीकरण]] है <math>\mathbf{u}\,\!</math>.


====तनाव सूत्रीकरण====
====तनाव सूत्रीकरण====
इस स्थिति में, सतही सीमा पर हर जगह सतही कर्षण निर्धारित हैं। इस दृष्टिकोण में, तनावों और विस्थापनों को समाप्त कर दिया जाता है जिससे तनावों को अज्ञात के रूप में शासकीय समीकरणों में हल किया जा सकता है। बार तनाव क्षेत्र मिल जाने के बाद, तब संरचनात्मक समीकरणों का उपयोग करके उपभेदों को पाया जाता है।
इस स्थिति में, सतही सीमा पर हर जगह सतही कर्षण निर्धारित हैं। इस दृष्टिकोण में, तनावों और विस्थापनों को समाप्त कर दिया जाता है जिससे तनावों को अज्ञात के रूप में शासकीय समीकरणों में हल किया जा सकता है। इस प्रकार तनाव क्षेत्र मिल जाने के बाद, तब संरचनात्मक समीकरणों का उपयोग करके उपभेदों को पाया जाता है।


स्ट्रेस टेन्सर के छह स्वतंत्र घटक हैं जिन्हें निर्धारित करने की आवश्यकता है, फिर भी विस्थापन सूत्रीकरण में, विस्थापन वेक्टर के केवल तीन घटक हैं जिन्हें निर्धारित करने की आवश्यकता है। इसका मतलब यह है कि स्वतंत्रता की डिग्री की संख्या को तीन तक कम करने के लिए कुछ बाधाएं हैं जिन्हें तनाव टेंसर पर रखा जाना चाहिए। संवैधानिक समीकरणों का उपयोग करते हुए, इन बाधाओं को सीधे संबंधित बाधाओं से प्राप्त किया जाता है, जो तनाव टेंसर के लिए धारण करना चाहिए, जिसमें छह स्वतंत्र घटक भी होते हैं। विस्थापन सदिश क्षेत्र के कार्य के रूप में तनाव टेन्सर पर बाधाएं सीधे तनाव टेंसर की परिभाषा से व्युत्पन्न होती हैं, जिसका अर्थ है कि ये बाधाएं कोई नई अवधारणा या जानकारी प्रस्तुत नहीं करती हैं। यह तनाव टेंसर पर बाधाएं हैं जिन्हें सबसे आसानी से समझा जा सकता है। यदि लोचदार माध्यम को अप्रतिबंधित अवस्था में असीम घनों के सेट के रूप में देखा जाता है, तो माध्यम के तनावग्रस्त होने के बाद, मनमाना तनाव टेंसर को ऐसी स्थिति उत्पन्न करनी चाहिए जिसमें विकृत घन अभी भी अतिव्यापी बिना साथ फिट होते हैं। दूसरे शब्दों में, किसी दिए गए तनाव के लिए, निरंतर सदिश क्षेत्र (विस्थापन) सम्मिलित होना चाहिए जिससे उस तनाव टेंसर को प्राप्त किया जा सके। तनाव टेंसर पर बाधाएं जो यह सुनिश्चित करने के लिए आवश्यक हैं कि यह स्थिति संत वेनेंट द्वारा खोजा गया था, और उन्हें संत-वेनेंट की अनुकूलता की स्थिति कहा जाता है। ये 81 समीकरण हैं, जिनमें से 6 स्वतंत्र गैर-तुच्छ समीकरण हैं, जो विभिन्न तनाव घटकों से संबंधित हैं। इन्हें इंडेक्स नोटेशन में इस प्रकार व्यक्त किया जाता है:
स्ट्रेस टेन्सर के छह स्वतंत्र घटक हैं जिन्हें निर्धारित करने की आवश्यकता है, फिर भी विस्थापन सूत्रीकरण में, विस्थापन वेक्टर के केवल तीन घटक हैं जिन्हें निर्धारित करने की आवश्यकता है। इसका अर्थ यह है कि स्वतंत्रता की डिग्री की संख्या को तीन तक कम करने के लिए कुछ बाधाएं हैं जिन्हें तनाव टेंसर पर रखा जाना चाहिए। इसके लिए संवैधानिक समीकरणों का उपयोग करते हुए, इन बाधाओं को सीधे संबंधित बाधाओं से प्राप्त किया जाता है, जो तनाव टेंसर के लिए धारण करना चाहिए, जिसमें छह स्वतंत्र घटक भी होते हैं। विस्थापन सदिश क्षेत्र के कार्य के रूप में तनाव टेन्सर पर बाधाएं सीधे तनाव टेंसर की परिभाषा से व्युत्पन्न होती हैं, जिसका अर्थ है कि ये बाधाएं कोई नई अवधारणा या जानकारी प्रस्तुत नहीं करती हैं। यह तनाव टेंसर पर बाधाएं हैं जिन्हें सबसे आसानी से समझा जा सकता है। यदि लोचदार माध्यम को अप्रतिबंधित अवस्था में असीम घनों के सेट के रूप में देखा जाता है, तो माध्यम के तनावग्रस्त होने के पश्चात तनाव टेंसर के लिए ऐसी स्थिति में उत्पन्न करनी चाहिए जिसमें विकृत घन अभी भी अतिव्यापी बिना साथ फिट होते हैं। दूसरे शब्दों में, किसी दिए गए तनाव के लिए, निरंतर सदिश क्षेत्र (विस्थापन) सम्मिलित होना चाहिए जिससे उस तनाव टेंसर को प्राप्त किया जा सके। तनाव टेंसर पर बाधाएं जो यह सुनिश्चित करने के लिए आवश्यक हैं कि यह स्थिति संत वेनेंट द्वारा खोजा गया था, और उन्हें संत-वेनेंट की अनुकूलता की स्थिति कहा जाता है। ये 81 समीकरण हैं, जिनमें से 6 स्वतंत्र गैर-तुच्छ समीकरण हैं, जो विभिन्न तनाव घटकों से संबंधित हैं। इन्हें इंडेक्स नोटेशन में इस प्रकार व्यक्त किया जाता है:<math display="block">\varepsilon_{ij,km}+\varepsilon_{km,ij}-\varepsilon_{ik,jm}-\varepsilon_{jm,ik}=0.</math>इसका इंजीनियरिंग संकेतन इस प्रकार हैं:<math display="block">\begin{align}
<math display="block">\varepsilon_{ij,km}+\varepsilon_{km,ij}-\varepsilon_{ik,jm}-\varepsilon_{jm,ik}=0.</math>
इंजीनियरिंग संकेतन में, वे हैं: <math display="block">\begin{align}
&\frac{\partial^2 \epsilon_x}{\partial y^2} + \frac{\partial^2 \epsilon_y}{\partial x^2} = 2 \frac{\partial^2 \epsilon_{xy}}{\partial x \partial y} \\
&\frac{\partial^2 \epsilon_x}{\partial y^2} + \frac{\partial^2 \epsilon_y}{\partial x^2} = 2 \frac{\partial^2 \epsilon_{xy}}{\partial x \partial y} \\
&\frac{\partial^2 \epsilon_y}{\partial z^2} + \frac{\partial^2 \epsilon_z}{\partial y^2} = 2 \frac{\partial^2 \epsilon_{yz}}{\partial y \partial z} \\
&\frac{\partial^2 \epsilon_y}{\partial z^2} + \frac{\partial^2 \epsilon_z}{\partial y^2} = 2 \frac{\partial^2 \epsilon_{yz}}{\partial y \partial z} \\
Line 147: Line 141:
&\frac{\partial^2 \epsilon_y}{\partial z \partial x} = \frac{\partial}{\partial y} \left ( \frac{\partial \epsilon_{yz}}{\partial x} - \frac{\partial \epsilon_{zx}}{\partial y} + \frac{\partial \epsilon_{xy}}{\partial z}\right) \\
&\frac{\partial^2 \epsilon_y}{\partial z \partial x} = \frac{\partial}{\partial y} \left ( \frac{\partial \epsilon_{yz}}{\partial x} - \frac{\partial \epsilon_{zx}}{\partial y} + \frac{\partial \epsilon_{xy}}{\partial z}\right) \\
&\frac{\partial^2 \epsilon_z}{\partial x \partial y} = \frac{\partial}{\partial z} \left ( \frac{\partial \epsilon_{yz}}{\partial x} + \frac{\partial \epsilon_{zx}}{\partial y} - \frac{\partial \epsilon_{xy}}{\partial z}\right)
&\frac{\partial^2 \epsilon_z}{\partial x \partial y} = \frac{\partial}{\partial z} \left ( \frac{\partial \epsilon_{yz}}{\partial x} + \frac{\partial \epsilon_{zx}}{\partial y} - \frac{\partial \epsilon_{xy}}{\partial z}\right)
\end{align}</math>
\end{align}</math>इस समीकरण में उपभेदों को तब संवैधानिक समीकरणों का उपयोग करते हुए तनावों के रूप में व्यक्त किया जाता है, जो तनाव टेंसर पर संबंधित बाधाओं को उत्पन्न करता है। तनाव टेंसर पर इन बाधाओं को बेल्ट्रामी-मिशेल अनुकूलता के समीकरण के रूप में जाना जाता है:<math display="block">\sigma_{ij,kk} + \frac{1}{1+\nu}\sigma_{kk,ij} + F_{i,j} + F_{j,i} + \frac{\nu}{1-\nu}\delta_{i,j} F_{k,k} = 0.</math>विशेष स्थिति में जहां भौतिक बल सजातीय होता है, उपरोक्त समीकरण कम हो जाते हैं<ref name="tribonet">{{Cite news| url=http://www.tribonet.org/wiki/elastic-deformation/ |title=लोचदार विकृति|last=tribonet|date=2017-02-16 | newspaper=Tribology |access-date=2017-02-16 | language=en-US}}</ref><math display="block"> (1+\nu)\sigma_{ij,kk}+\sigma_{kk,ij}=0.</math>इस स्थिति में अनुकूलता के लिए आवश्यक, किन्तु अपर्याप्त शर्त <math>\boldsymbol{\nabla}^4\boldsymbol{\sigma} = \boldsymbol{0}</math> या <math>\sigma_{ij,kk\ell\ell} = 0</math> है।<ref name="Slau" />
इस समीकरण में उपभेदों को तब संवैधानिक समीकरणों का उपयोग करते हुए तनावों के रूप में व्यक्त किया जाता है, जो तनाव टेंसर पर संबंधित बाधाओं को उत्पन्न करता है। तनाव टेंसर पर इन बाधाओं को बेल्ट्रामी-मिशेल अनुकूलता के समीकरण के रूप में जाना जाता है:
 
<math display="block">\sigma_{ij,kk} + \frac{1}{1+\nu}\sigma_{kk,ij} + F_{i,j} + F_{j,i} + \frac{\nu}{1-\nu}\delta_{i,j} F_{k,k} = 0.</math>
विशेष स्थिति में जहां भौतिक बल सजातीय होता है, उपरोक्त समीकरण कम हो जाते हैं<ref name="tribonet">{{Cite news| url=http://www.tribonet.org/wiki/elastic-deformation/ |title=लोचदार विकृति|last=tribonet|date=2017-02-16 | newspaper=Tribology |access-date=2017-02-16 | language=en-US}}</ref>
<math display="block"> (1+\nu)\sigma_{ij,kk}+\sigma_{kk,ij}=0.</math>
इस स्थिति में अनुकूलता के लिए आवश्यक, किन्तु अपर्याप्त शर्त है <math>\boldsymbol{\nabla}^4\boldsymbol{\sigma} = \boldsymbol{0}</math> या <math>\sigma_{ij,kk\ell\ell} = 0</math>.<ref name=Slau/>


ये बाधाएं, संतुलन समीकरण (या इलास्टोडायनामिक्स के लिए गति के समीकरण) के साथ तनाव टेंसर क्षेत्र की गणना की अनुमति देती हैं। बार इन समीकरणों से तनाव क्षेत्र की गणना हो जाने के बाद, उपभेदों को संवैधानिक समीकरणों से और विस्थापन क्षेत्र को तनाव-विस्थापन समीकरणों से प्राप्त किया जा सकता है।
ये बाधाएं, संतुलन समीकरण (या इलास्टोडायनामिक्स के लिए गति के समीकरण) के साथ तनाव टेंसर क्षेत्र की गणना की अनुमति देती हैं। इन समीकरणों से तनाव क्षेत्र की गणना हो जाने के पश्चात उपभेदों को संवैधानिक समीकरणों से और विस्थापन क्षेत्र को तनाव-विस्थापन समीकरणों से प्राप्त किया जाता हैं।


एक वैकल्पिक समाधान तकनीक तनाव टेंसर को [[तनाव कार्य]]ों के संदर्भ में व्यक्त करना है जो स्वचालित रूप से संतुलन समीकरण के समाधान का उत्पादन करता है। तनाव कार्य तब एकल अंतर समीकरण का पालन करते हैं जो संगतता समीकरणों से मेल खाता है।
इस प्रकार वैकल्पिक समाधान तकनीक तनाव टेंसर को [[तनाव कार्य]] के संदर्भ में व्यक्त किया जाता हैं जो स्वचालित रूप से संतुलन समीकरण के समाधान का उत्पादन करता है। तनाव कार्य तब एकल अंतर समीकरण का पालन करते हैं जो संगतता समीकरणों से मेल खाता है।


==== इलास्टोस्टैटिक स्थिति के लिए समाधान ====
==== इलास्टोस्टैटिक स्थिति के लिए समाधान ====
Line 162: Line 152:
===== थॉमसन का समाधान - अनंत आइसोट्रोपिक माध्यम में बिंदु बल =====
===== थॉमसन का समाधान - अनंत आइसोट्रोपिक माध्यम में बिंदु बल =====


नेवियर-कॉची या इलास्टोस्टैटिक समीकरण का सबसे महत्वपूर्ण समाधान अनंत समस्थानिक माध्यम में बिंदु पर अभिनय करने वाले बल के लिए है। यह समाधान 1848 (थॉमसन 1848) में विलियम थॉमसन, प्रथम बैरन केल्विन (बाद में लॉर्ड केल्विन) द्वारा खोजा गया था। यह समाधान [[इलेक्ट्रोस्टाटिक्स]] में कूलम्ब के नियम का अनुरूप है। लैंडौ और लाइफशिट्ज में व्युत्पत्ति दी गई है।<ref name=LL>{{cite book |title=लोच का सिद्धांत|edition=3rd|last=Landau |first=L.D. |author-link=Lev Landau |author2=Lifshitz, E. M. |author-link2=Evgeny Lifshitz  |year=1986 |publisher=Butterworth Heinemann |location=Oxford, England |isbn=0-7506-2633-X }}</ref>{{rp|§8}} परिभाषित करना
नेवियर-कॉची या इलास्टोस्टैटिक समीकरण का सबसे महत्वपूर्ण समाधान अनंत समस्थानिक माध्यम में बिंदु पर अभिनय करने वाले बल के लिए है। यह समाधान 1848 (थॉमसन 1848) में विलियम थॉमसन, प्रथम बैरन केल्विन (बाद में लॉर्ड केल्विन) द्वारा खोजा गया था। यह समाधान [[इलेक्ट्रोस्टाटिक्स]] में कूलम्ब के नियम का अनुरूप है। लैंडौ और लाइफशिट्ज में व्युत्पत्ति दी गई है।<ref name=LL>{{cite book |title=लोच का सिद्धांत|edition=3rd|last=Landau |first=L.D. |author-link=Lev Landau |author2=Lifshitz, E. M. |author-link2=Evgeny Lifshitz  |year=1986 |publisher=Butterworth Heinemann |location=Oxford, England |isbn=0-7506-2633-X }}</ref>{{rp|§8}}<math display="block">a = 1-2\nu</math><math display="block">b = 2(1-\nu) = a+1</math>जहाँ <math>\nu</math> पोइसन का अनुपात है, समाधान के रूप में व्यक्त किया जा सकता है-<math display="block">u_i = G_{ik} F_k</math>जहाँ <math>F_k</math> बल वेक्टर बिंदु पर लागू किया जा रहा है, और <math>G_{ik}</math> टेंसर ग्रीन का कार्य है जिसे कार्टेशियन निर्देशांक में लिखा जा सकता है:<math display="block">G_{ik} = \frac{1}{4\pi\mu r} \left[ \left(1 - \frac{1}{2b}\right) \delta_{ik} + \frac{1}{2b} \frac{x_i x_k}{r^2} \right]</math>इसे संक्षेप में इस प्रकार भी लिखा जा सकता है:<math display="block">G_{ik} = \frac{1}{4\pi\mu} \left[\frac{\delta_{ik}}{r} - \frac{1}{2b} \frac{\partial^2 r}{\partial x_i \partial x_k}\right]</math>और इसे स्पष्ट रूप से लिखा जा सकता है:<math display="block">G_{ik}=\frac{1}{4\pi\mu r} \begin{bmatrix}
<math display="block">a = 1-2\nu</math><math display="block">b = 2(1-\nu) = a+1</math>
जहाँ <math>\nu</math> पोइसन का अनुपात है, समाधान के रूप में व्यक्त किया जा सकता है <math display="block">u_i = G_{ik} F_k</math> जहाँ <math>F_k</math> बल वेक्टर बिंदु पर लागू किया जा रहा है, और <math>G_{ik}</math> टेंसर ग्रीन का कार्य है जिसे कार्टेशियन निर्देशांक में लिखा जा सकता है:
<math display="block">G_{ik} = \frac{1}{4\pi\mu r} \left[ \left(1 - \frac{1}{2b}\right) \delta_{ik} + \frac{1}{2b} \frac{x_i x_k}{r^2} \right]</math>
इसे संक्षेप में इस प्रकार भी लिखा जा सकता है:
<math display="block">G_{ik} = \frac{1}{4\pi\mu} \left[\frac{\delta_{ik}}{r} - \frac{1}{2b} \frac{\partial^2 r}{\partial x_i \partial x_k}\right]</math>
और इसे स्पष्ट रूप से लिखा जा सकता है:
<math display="block">G_{ik}=\frac{1}{4\pi\mu r} \begin{bmatrix}


1-\frac{1}{2b}+\frac{1}{2b}\frac{x^2}{r^2} &
1-\frac{1}{2b}+\frac{1}{2b}\frac{x^2}{r^2} &
Line 182: Line 165:
   \frac{1}{2b}\frac{zy} {r^2} &
   \frac{1}{2b}\frac{zy} {r^2} &
1-\frac{1}{2b}+\frac{1}{2b}\frac{z^2}{r^2}  
1-\frac{1}{2b}+\frac{1}{2b}\frac{z^2}{r^2}  
\end{bmatrix}</math>
\end{bmatrix}</math>बेलनाकार निर्देशांक में (<math>\rho,\phi,z\,\!</math>) इसे इस प्रकार लिखा जा सकता है:<math display="block">G_{ik} = \frac{1}{4\pi \mu r} \begin{bmatrix}
बेलनाकार निर्देशांक में (<math>\rho,\phi,z\,\!</math>) इसे इस प्रकार लिखा जा सकता है:
<math display="block">G_{ik} = \frac{1}{4\pi \mu r} \begin{bmatrix}
1 - \frac{1}{2b} \frac{z^2}{r^2} & 0 & \frac{1}{2b} \frac{\rho z}{r^2}\\
1 - \frac{1}{2b} \frac{z^2}{r^2} & 0 & \frac{1}{2b} \frac{\rho z}{r^2}\\
0 & 1 - \frac{1}{2b} & 0\\
0 & 1 - \frac{1}{2b} & 0\\
\frac{1}{2b} \frac{z \rho}{r^2}& 0 & 1 - \frac{1}{2b} \frac{\rho^2}{r^2}
\frac{1}{2b} \frac{z \rho}{r^2}& 0 & 1 - \frac{1}{2b} \frac{\rho^2}{r^2}
\end{bmatrix}</math>
\end{bmatrix}</math>जहाँ {{mvar|r}} इंगित करने के लिए कुल दूरी है।
जहाँ {{mvar|r}} इंगित करने के लिए कुल दूरी है।
 
 
बिंदु बल के लिए विस्थापन को बेलनाकार निर्देशांक में लिखना विशेष रूप से सहायक होता है <math>F_z</math> z- अक्ष के साथ निर्देशित। परिभाषित <math>\hat{\boldsymbol{\rho}}</math> और <math>\hat{\mathbf{z}}</math> इकाई वैक्टर के रूप में <math>\rho</math> और <math>z</math> निर्देश क्रमशः इस प्रकार प्रदर्शित किये जा सकते हैं:<math display="block">\mathbf{u} = \frac{F_z}{4\pi\mu r} \left[\frac{1}{4(1-\nu)} \, \frac{\rho z}{r^2} \hat{\boldsymbol{\rho}} + \left(1-\frac{1}{4(1-\nu)}\,\frac{\rho^2}{r^2}\right)\hat{\mathbf{z}}\right]</math>


बिंदु बल के लिए विस्थापन को बेलनाकार निर्देशांक में लिखना विशेष रूप से सहायक होता है <math>F_z</math> z- अक्ष के साथ निर्देशित। परिभाषित <math>\hat{\boldsymbol{\rho}}</math> और <math>\hat{\mathbf{z}}</math> इकाई वैक्टर के रूप में <math>\rho</math> और <math>z</math> निर्देश क्रमशः उपज:
 
<math display="block">\mathbf{u} = \frac{F_z}{4\pi\mu r} \left[\frac{1}{4(1-\nu)} \, \frac{\rho z}{r^2} \hat{\boldsymbol{\rho}} + \left(1-\frac{1}{4(1-\nu)}\,\frac{\rho^2}{r^2}\right)\hat{\mathbf{z}}\right]</math>
यह देखा जा सकता है कि बल की दिशा में विस्थापन का घटक है, जो कम हो जाता है, जैसा कि इलेक्ट्रोस्टैटिक्स में क्षमता के स्थिति में होता है, जैसे बड़े r के लिए 1/r तथा इसके अतिरिक्त ρ-निर्देशित घटक भी सम्मिलित हैं।
यह देखा जा सकता है कि बल की दिशा में विस्थापन का घटक है, जो कम हो जाता है, जैसा कि इलेक्ट्रोस्टैटिक्स में क्षमता के स्थिति में होता है, जैसे बड़े r के लिए 1/r। अतिरिक्त ρ-निर्देशित घटक भी है।


===== बूसिनेसक सेरुति समाधान - अनंत आइसोट्रोपिक अर्ध-स्थान के मूल में बिंदु बल =====
===== बूसिनेसक सेरुति समाधान - अनंत आइसोट्रोपिक अर्ध-स्थान के मूल में बिंदु बल =====
एक अन्य उपयोगी समाधान बिंदु बल का है जो अनंत आधे स्थान की सतह पर कार्य करता है। यह Boussinesq द्वारा प्राप्त किया गया था<ref>{{cite book |title= Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques |last=Boussinesq|first=Joseph |author-link=Joseph Boussinesq |year=1885 |publisher=Gauthier-Villars |location=Paris, France |url=http://name.umdl.umich.edu/ABV5032.0001.001 }}</ref> स्पर्शरेखा बल के लिए सामान्य बल और सेरुति के लिए और लैंडौ और लाइफशिट्ज में व्युत्पत्ति दी गई है।<ref name=LL/>{{rp|§8}} इस स्थिति में, समाधान को फिर से हरे रंग के टेंसर के रूप में लिखा जाता है जो अनंत पर शून्य हो जाता है, और सतह पर सामान्य तनाव टेंसर का घटक गायब हो जाता है। यह समाधान कार्टेशियन निर्देशांक में लिखा जा सकता है [याद रखें: <math>a=(1-2\nu)</math> और <math>b=2(1-\nu)</math>, <math>\nu</math> = प्वासों का अनुपात]:
एक अन्य उपयोगी समाधान बिंदु बल का है जो अनंत आधे स्थान की सतह पर कार्य करता है। यह बाऊसीनेस्क्यू द्वारा प्राप्त किया गया था<ref>{{cite book |title= Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques |last=Boussinesq|first=Joseph |author-link=Joseph Boussinesq |year=1885 |publisher=Gauthier-Villars |location=Paris, France |url=http://name.umdl.umich.edu/ABV5032.0001.001 }}</ref> स्पर्शरेखा बल के लिए सामान्य बल और सेरुति के लिए और लैंडौ और लाइफशिट्ज में व्युत्पत्ति दी गई है।<ref name=LL/>{{rp|§8}} इस स्थिति में, समाधान को फिर से हरे रंग के टेंसर के रूप में लिखा जाता है जो अनंत पर शून्य हो जाता है, और सतह पर सामान्य तनाव टेंसर का घटक विलुप्त हो जाता है। यह समाधान कार्टेशियन निर्देशांक में लिखा जा सकता है [याद रखें: <math>a=(1-2\nu)</math> और <math>b=2(1-\nu)</math>, <math>\nu</math> = प्वासों का अनुपात]:<math display="block">G_{ik} = \frac{1}{4\pi\mu} \begin{bmatrix}
 
<math display="block">G_{ik} = \frac{1}{4\pi\mu} \begin{bmatrix}


\frac{b}{r}+\frac{x^2}{r^3}-\frac{ax^2}{r(r+z)^2}-\frac{az}{r(r+z)} &
\frac{b}{r}+\frac{x^2}{r^3}-\frac{ax^2}{r(r+z)^2}-\frac{az}{r(r+z)} &
Line 213: Line 193:
\end{bmatrix}
\end{bmatrix}
</math>
</math>
===== अन्य उपाय =====
===== अन्य उपाय =====
* एक अनंत समस्थानिक अर्ध-अंतरिक्ष के अंदर बिंदु बल।<ref>{{cite journal |last=Mindlin |first= R. D.|author-link=Raymond D. Mindlin |year=1936|title=अर्ध-अनंत ठोस के आंतरिक भाग में एक बिंदु पर बल|journal=Physics |volume=7| issue= 5| pages=195–202 |url= http://www.dtic.mil/get-tr-doc/pdf?AD=AD0012375|archive-url= https://web.archive.org/web/20170923074956/http://www.dtic.mil/get-tr-doc/pdf?AD=AD0012375|url-status= dead|archive-date= September 23, 2017|doi=10.1063/1.1745385 |bibcode = 1936Physi...7..195M }}</ref>
* एक अनंत समस्थानिक अर्ध-अंतरिक्ष के अंदर बिंदु बल होता हैं।<ref>{{cite journal |last=Mindlin |first= R. D.|author-link=Raymond D. Mindlin |year=1936|title=अर्ध-अनंत ठोस के आंतरिक भाग में एक बिंदु पर बल|journal=Physics |volume=7| issue= 5| pages=195–202 |url= http://www.dtic.mil/get-tr-doc/pdf?AD=AD0012375|archive-url= https://web.archive.org/web/20170923074956/http://www.dtic.mil/get-tr-doc/pdf?AD=AD0012375|url-status= dead|archive-date= September 23, 2017|doi=10.1063/1.1745385 |bibcode = 1936Physi...7..195M }}</ref>
* एक आइसोटोपिक अर्ध-स्थान की सतह पर बिंदु बल।<ref name="tribonet"/>* दो लोचदार निकायों का संपर्क: हर्ट्ज समाधान (देखें [http://www.tribonet.org/cmdownloads/hertz-contact-calculator/ Matlab code])।<ref>{{cite journal |last=Hertz |first= Heinrich|author-link=Heinrich Hertz |year=1882 |title=ठोस लोचदार निकायों के बीच संपर्क|journal=Journal für die reine und angewandte Mathematik|volume=92}}</ref> [[यांत्रिकी से संपर्क करें]] पर पेज भी देखें।
* एक आइसोटोपिक अर्ध-स्थान की सतह पर बिंदु बल।<ref name="tribonet"/>* दो लोचदार निकायों का संपर्क: हर्ट्ज समाधान (देखें [http://www.tribonet.org/cmdownloads/hertz-contact-calculator/ मैटलैब कोड (Matlab code)])।<ref>{{cite journal |last=Hertz |first= Heinrich|author-link=Heinrich Hertz |year=1882 |title=ठोस लोचदार निकायों के बीच संपर्क|journal=Journal für die reine und angewandte Mathematik|volume=92}}</ref> इसके लिए [[यांत्रिकी से संपर्क करें]] पर पेज भी देखें।


=== विस्थापन के संदर्भ में इलास्टोडायनामिक्स ===
=== विस्थापन के संदर्भ में इलास्टोडायनामिक्स ===
Line 222: Line 203:
रैखिक संवेग समीकरण केवल अतिरिक्त जड़त्वीय पद के साथ संतुलन समीकरण है:
रैखिक संवेग समीकरण केवल अतिरिक्त जड़त्वीय पद के साथ संतुलन समीकरण है:
<math display="block"> \sigma_{ji,j}+ F_i = \rho\,\ddot{u}_i = \rho \, \partial_{tt} u_i.</math>
<math display="block"> \sigma_{ji,j}+ F_i = \rho\,\ddot{u}_i = \rho \, \partial_{tt} u_i.</math>
यदि सामग्री अनिसोट्रोपिक हुक के नियम द्वारा नियंत्रित होती है (पूरी सामग्री में कठोरता टेंसर सजातीय के साथ), तो इलास्टोडायनामिक्स का विस्थापन समीकरण प्राप्त करता है:
यदि सामग्री अनिसोट्रोपिक हुक के नियम द्वारा नियंत्रित होती है (पूरी सामग्री में कठोरता टेंसर सजातीय के साथ), तो इलास्टोडायनामिक्स का विस्थापन समीकरण प्राप्त करता है:<math display="block">\left( C_{ijkl} u_{(k},_{l)}\right) ,_{j}+F_{i}=\rho \ddot{u}_{i}.</math>यदि सामग्री आइसोटोपिक और सजातीय है, तो नेवियर-कॉची समीकरण प्राप्त होता है:<math display="block">
<math display="block">\left( C_{ijkl} u_{(k},_{l)}\right) ,_{j}+F_{i}=\rho \ddot{u}_{i}.</math>
यदि सामग्री आइसोटोपिक और सजातीय है, तो नेवियर-कॉची समीकरण प्राप्त होता है:
<math display="block">
\mu u_{i,jj} + (\mu+\lambda)u_{j,ij}+F_i=\rho\partial_{tt}u_i
\mu u_{i,jj} + (\mu+\lambda)u_{j,ij}+F_i=\rho\partial_{tt}u_i
\quad \text{or} \quad
\quad \text{or} \quad
\mu \nabla^2\mathbf{u} + (\mu+\lambda)\nabla(\nabla\cdot\mathbf{u}) + \mathbf{F}=\rho\frac{\partial^2\mathbf{u}}{\partial t^2}.</math>
\mu \nabla^2\mathbf{u} + (\mu+\lambda)\nabla(\nabla\cdot\mathbf{u}) + \mathbf{F}=\rho\frac{\partial^2\mathbf{u}}{\partial t^2}.</math>इलास्टोडायनामिक तरंग समीकरण को इस रूप में भी व्यक्त किया जा सकता है<math display="block"> \left(\delta_{kl} \partial_{tt} - A_{kl}[\nabla]\right) u_l = \frac{1}{\rho} F_k</math>जहाँ<math display="block"> A_{kl}[\nabla]=\frac{1}{\rho} \, \partial_i \, C_{iklj} \, \partial_j</math>ध्वनिक अंतर ऑपरेटर है, और <math> \delta_{kl}</math> क्रोनकर डेल्टा है।
इलास्टोडायनामिक तरंग समीकरण को इस रूप में भी व्यक्त किया जा सकता है
<math display="block"> \left(\delta_{kl} \partial_{tt} - A_{kl}[\nabla]\right) u_l = \frac{1}{\rho} F_k</math>जहाँ<math display="block"> A_{kl}[\nabla]=\frac{1}{\rho} \, \partial_i \, C_{iklj} \, \partial_j</math>ध्वनिक अंतर ऑपरेटर है, और <math> \delta_{kl}</math> क्रोनकर डेल्टा है।


हूक के नियम आइसोट्रोपिक सामग्री मीडिया में, कठोरता टेंसर का रूप है<math display="block"> C_{ijkl}
हूक के नियम आइसोट्रोपिक सामग्री मीडिया में, कठोरता टेंसर का रूप है<math display="block"> C_{ijkl}
= K \, \delta_{ij}\, \delta_{kl}
= K \, \delta_{ij}\, \delta_{kl}
+ \mu\, (\delta_{ik}\delta_{jl} + \delta_{il} \delta_{jk} - \frac{2}{3}\, \delta_{ij}\, \delta_{kl})</math>
+ \mu\, (\delta_{ik}\delta_{jl} + \delta_{il} \delta_{jk} - \frac{2}{3}\, \delta_{ij}\, \delta_{kl})</math>जहाँ <math>K</math> थोक मापांक (या असंपीड़्यता) है, और <math>\mu</math> कतरनी मापांक (या कठोरता) है, दो लोचदार मापांक। यदि सामग्री सजातीय है (अर्ताथ कठोरता टेंसर पूरी सामग्री में स्थिर है), ध्वनिक ऑपरेटर बन जाता है:<math display="block">A_{ij}[\nabla] = \alpha^2 \partial_i \partial_j + \beta^2 (\partial_m \partial_m \delta_{ij} - \partial_i \partial_j)</math>तरंगों के लिए, उपरोक्त अंतर ऑपरेटर ध्वनिक बीजगणितीय ऑपरेटर बन जाता है:<math display="block">A_{ij}[\mathbf{k}] = \alpha^2 k_i k_j + \beta^2(k_m k_m \delta_{ij}-k_i k_j)</math>जहाँ<math display="block"> \alpha^2 = \left(K+\frac{4}{3}\mu\right)/\rho \qquad \beta^2 = \mu / \rho</math>इसका [[eigenvalue|आइजन मान]] <math>A[\hat{\mathbf{k}}]</math> हैं, जिसे [[आइजन्वेक्टर]] के साथ <math>\hat{\mathbf{u}}</math> दिशा के समानांतर और ऑर्थोगोनल <math>\hat{\mathbf{k}}\,\!</math>, द्वारा संबद्ध तरंगों को अनुदैर्ध्य और अपरूपण प्रत्यास्थ तरंगें कहा जाता है। भूकंपीय साहित्य में, संबंधित समतल तरंगों को पी-तरंगें और एस-तरंगें (भूकंपीय तरंग देखें) कहा जाता है।
 
 
जहाँ <math>K</math> थोक मापांक (या असंपीड़्यता) है, और <math>\mu</math> कतरनी मापांक (या कठोरता) है, दो लोचदार मापांक। यदि सामग्री सजातीय है (अर्ताथ कठोरता टेंसर पूरी सामग्री में स्थिर है), ध्वनिक ऑपरेटर बन जाता है:
<math display="block">A_{ij}[\nabla] = \alpha^2 \partial_i \partial_j + \beta^2 (\partial_m \partial_m \delta_{ij} - \partial_i \partial_j)</math>
विमान तरंगों के लिए, उपरोक्त अंतर ऑपरेटर ध्वनिक बीजगणितीय ऑपरेटर बन जाता है:
<math display="block">A_{ij}[\mathbf{k}] = \alpha^2 k_i k_j + \beta^2(k_m k_m \delta_{ij}-k_i k_j)</math>
जहाँ
<math display="block"> \alpha^2 = \left(K+\frac{4}{3}\mu\right)/\rho \qquad \beta^2 = \mu / \rho</math>
इसका [[eigenvalue|आइजन मान]] हैं <math>A[\hat{\mathbf{k}}]</math> [[आइजन्वेक्टर]] के साथ <math>\hat{\mathbf{u}}</math> प्रचार दिशा के समानांतर और ऑर्थोगोनल <math>\hat{\mathbf{k}}\,\!</math>, क्रमश। संबद्ध तरंगों को अनुदैर्ध्य और अपरूपण प्रत्यास्थ तरंगें कहा जाता है। भूकंपीय साहित्य में, संबंधित समतल तरंगों को पी-तरंगें और एस-तरंगें (भूकंपीय तरंग देखें) कहा जाता है।


=== तनाव के संदर्भ में इलास्टोडायनामिक्स ===
=== तनाव के संदर्भ में इलास्टोडायनामिक्स ===
गवर्निंग समीकरणों से विस्थापन और तनाव के उन्मूलन से इलास्टोडायनामिक्स के इग्नाज़ाक समीकरण की ओर जाता है<ref name="OS">[[Ostoja-Starzewski, M.]], (2018), ''Ignaczak equation of elastodynamics'', Mathematics and Mechanics of Solids. {{doi|10.1177/1081286518757284}}</ref>
गवर्निंग समीकरणों से विस्थापन और तनाव के उन्मूलन से इलास्टोडायनामिक्स के इग्नाज़ाक समीकरण की ओर जाता है<ref name="OS">[[Ostoja-Starzewski, M.]], (2018), ''Ignaczak equation of elastodynamics'', Mathematics and Mechanics of Solids. {{doi|10.1177/1081286518757284}}</ref><math display="block">\left( \rho ^{-1} \sigma _{(ik},_{k}\right) ,_{j)} - S_{ijkl} \ddot{\sigma}_{kl} + \left( \rho ^{-1} F_{(i}\right) ,_{j)} = 0.</math>स्थानीय आइसोट्रॉपी के स्थिति में, यह कम हो जाता है<math display="block">\left( \rho ^{-1} \sigma _{(ik},_{k}\right) ,_{j)} - \frac{1}{2\mu } \left(  
<math display="block">\left( \rho ^{-1} \sigma _{(ik},_{k}\right) ,_{j)} - S_{ijkl} \ddot{\sigma}_{kl} + \left( \rho ^{-1} F_{(i}\right) ,_{j)} = 0.</math>
स्थानीय आइसोट्रॉपी के स्थिति में, यह कम हो जाता है
<math display="block">\left( \rho ^{-1} \sigma _{(ik},_{k}\right) ,_{j)} - \frac{1}{2\mu } \left(  
\ddot{\sigma}_{ij} - \frac{\lambda }{3 \lambda +2\mu }\ddot{\sigma}_{kk}\delta
\ddot{\sigma}_{ij} - \frac{\lambda }{3 \lambda +2\mu }\ddot{\sigma}_{kk}\delta
_{ij}\right) +\left( \rho ^{-1} F_{(i}\right) ,_{j)} = 0. </math>
_{ij}\right) +\left( \rho ^{-1} F_{(i}\right) ,_{j)} = 0. </math>इस फॉर्मूलेशन की प्रमुख विशेषताओं में सम्मिलित हैं: (1) अनुपालन के ग्रेडियेंट से बचा जाता है किन्तु द्रव्यमान घनत्व के ग्रेडियेंट प्रस्तुत करता है; (2) यह परिवर्तनशील सिद्धांत से व्युत्पन्न है; (3) यह कर्षण प्रारंभिक-सीमा मूल्य समस्याओं से निपटने के लिए फायदेमंद है, (4) लोचदार तरंगों के तन्य वर्गीकरण की अनुमति देता है, (5) लोचदार तरंग प्रसार समस्याओं में अनुप्रयोगों की श्रृंखला प्रदान करता है; (6) विभिन्न प्रकार के इंटरेक्टिंग क्षेत्रों (थर्मोलेस्टिक, द्रव-संतृप्त झरझरा, पीजोइलेक्ट्रो-इलास्टिक ...) के साथ-साथ नॉनलाइनियर मीडिया के साथ मौलिक या माइक्रोपोलर ठोस की गतिशीलता तक बढ़ाया जा सकता है।
इस फॉर्मूलेशन की प्रमुख विशेषताओं में सम्मिलित हैं: (1) अनुपालन के ग्रेडियेंट से बचा जाता है किन्तु द्रव्यमान घनत्व के ग्रेडियेंट प्रस्तुत करता है; (2) यह परिवर्तनशील सिद्धांत से व्युत्पन्न है; (3) यह कर्षण प्रारंभिक-सीमा मूल्य समस्याओं से निपटने के लिए फायदेमंद है, (4) लोचदार तरंगों के तन्य वर्गीकरण की अनुमति देता है, (5) लोचदार तरंग प्रसार समस्याओं में अनुप्रयोगों की श्रृंखला प्रदान करता है; (6) विभिन्न प्रकार के इंटरेक्टिंग क्षेत्रों (थर्मोलेस्टिक, द्रव-संतृप्त झरझरा, पीजोइलेक्ट्रो-इलास्टिक ...) के साथ-साथ नॉनलाइनियर मीडिया के साथ मौलिक या माइक्रोपोलर ठोस की गतिशीलता तक बढ़ाया जा सकता है।


== अनिसोट्रोपिक सजातीय मीडिया ==
== अनिसोट्रोपिक सजातीय मीडिया ==
Line 258: Line 221:
{{Main|हूक्स का नियम}}
{{Main|हूक्स का नियम}}


अनिसोट्रोपिक मीडिया के लिए, कठोरता टेंसर <math> C_{ijkl}</math> अधिक जटिल है। तनाव टेंसर की समरूपता <math>\sigma_{ij}</math> इसका मतलब है कि तनाव के अधिकतम 6 अलग-अलग तत्व हैं। इसी प्रकार, तनाव टेन्सर के अधिक से अधिक 6 विभिन्न तत्व होते हैं <math>\varepsilon_{ij}\,\!</math>. इसलिए चौथे क्रम की कठोरता टेन्सर <math> C_{ijkl}</math> मैट्रिक्स के रूप में लिखा जा सकता है <math>C_{\alpha \beta}</math> (दूसरे क्रम का टेंसर)। Voigt संकेतन टेन्सर सूचकांकों के लिए मानक मानचित्रण है,
अनिसोट्रोपिक मीडिया के लिए, कठोरता टेंसर <math> C_{ijkl}</math> अधिक जटिल है। तनाव टेंसर की समरूपता <math>\sigma_{ij}</math> इसका मतलब है कि तनाव के अधिकतम 6 अलग-अलग तत्व हैं। इसी प्रकार, तनाव टेन्सर के अधिक से अधिक 6 विभिन्न तत्व होते हैं <math>\varepsilon_{ij}\,\!</math>. इसलिए चौथे क्रम की कठोरता टेन्सर <math> C_{ijkl}</math> मैट्रिक्स के रूप में लिखा जा सकता है <math>C_{\alpha \beta}</math> (दूसरे क्रम का टेंसर)। Voigt संकेतन टेन्सर सूचकांकों के लिए मानक मानचित्रण है,<math display="block">  
<math display="block">  
\begin{matrix}
\begin{matrix}
ij & =\\
ij & =\\
Line 270: Line 232:
\Downarrow & \Downarrow & \Downarrow & \Downarrow & \Downarrow & \Downarrow & \\
\Downarrow & \Downarrow & \Downarrow & \Downarrow & \Downarrow & \Downarrow & \\
1  &2 &  3 &  4 &  5 & 6
1  &2 &  3 &  4 &  5 & 6
\end{matrix}</math>
\end{matrix}</math>इस अंकन के साथ, किसी भी रैखिक रूप से लोचदार माध्यम के लिए लोच मैट्रिक्स लिख सकते हैं:<math display="block"> C_{ijkl}  \Rightarrow C_{\alpha \beta} = \begin{bmatrix}
इस अंकन के साथ, किसी भी रैखिक रूप से लोचदार माध्यम के लिए लोच मैट्रिक्स लिख सकते हैं:
<math display="block"> C_{ijkl}  \Rightarrow C_{\alpha \beta} = \begin{bmatrix}
  C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\
  C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\
  C_{12} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\
  C_{12} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\
Line 279: Line 239:
  C_{15} & C_{25} & C_{35} & C_{45} & C_{55} & C_{56} \\
  C_{15} & C_{25} & C_{35} & C_{45} & C_{55} & C_{56} \\
  C_{16} & C_{26} & C_{36} & C_{46} & C_{56} & C_{66}  
  C_{16} & C_{26} & C_{36} & C_{46} & C_{56} & C_{66}  
\end{bmatrix}.</math>
\end{bmatrix}.</math>जैसा कि दिखाया गया है, मैट्रिक्स <math> C_{\alpha \beta}</math> सममित है, यह तनाव ऊर्जा घनत्व समारोह के अस्तित्व का परिणाम है जो संतुष्ट करता है <math>\sigma_{ij} = \frac{\partial W}{\partial\varepsilon_{ij}}</math>. इसलिए, के अधिकतम 21 अलग-अलग तत्व <math> C_{\alpha \beta}\,\!</math> हैं।
जैसा कि दिखाया गया है, मैट्रिक्स <math> C_{\alpha \beta}</math> सममित है, यह तनाव ऊर्जा घनत्व समारोह के अस्तित्व का परिणाम है जो संतुष्ट करता है <math>\sigma_{ij} = \frac{\partial W}{\partial\varepsilon_{ij}}</math>. इसलिए, के अधिकतम 21 अलग-अलग तत्व हैं <math> C_{\alpha \beta}\,\!</math>.
 


आइसोटोपिक विशेष स्थिति में 2 स्वतंत्र तत्व हैं:
आइसोटोपिक विशेष स्थिति में 2 स्वतंत्र तत्व हैं:<math display="block"> C_{\alpha \beta} = \begin{bmatrix}
<math display="block"> C_{\alpha \beta} = \begin{bmatrix}
  K+4 \mu\ /3  & K-2 \mu\ /3 & K-2 \mu\ /3 & 0 & 0  & 0 \\
  K+4 \mu\ /3  & K-2 \mu\ /3 & K-2 \mu\ /3 & 0 & 0  & 0 \\
  K-2 \mu\ /3  & K+4 \mu\ /3 &  K-2 \mu\ /3 & 0 & 0  & 0 \\
  K-2 \mu\ /3  & K+4 \mu\ /3 &  K-2 \mu\ /3 & 0 & 0  & 0 \\
Line 290: Line 249:
  0  & 0 & 0 & 0 & \mu\  & 0 \\
  0  & 0 & 0 & 0 & \mu\  & 0 \\
  0  & 0 & 0 & 0 & 0  & \mu\  
  0  & 0 & 0 & 0 & 0  & \mu\  
\end{bmatrix}.</math>
\end{bmatrix}.</math>सबसे सरल अनिसोट्रोपिक स्थिति, क्यूबिक समरूपता के 3 स्वतंत्र तत्व हैं:
सबसे सरल अनिसोट्रोपिक स्थिति, क्यूबिक समरूपता के 3 स्वतंत्र तत्व हैं:
<math display="block"> C_{\alpha \beta} = \begin{bmatrix}
<math display="block"> C_{\alpha \beta} = \begin{bmatrix}
  C_{11}  &  C_{12} &  C_{12} & 0 & 0  & 0 \\
  C_{11}  &  C_{12} &  C_{12} & 0 & 0  & 0 \\
Line 311: Line 269:
जब अनुप्रस्थ आइसोट्रॉपी कमजोर होती है (अर्थात आइसोट्रॉपी के करीब), [[थॉमसन पैरामीटर]] का उपयोग करने वाला वैकल्पिक पैरामीट्रिजेशन, तरंग गति के सूत्रों के लिए सुविधाजनक होता है।
जब अनुप्रस्थ आइसोट्रॉपी कमजोर होती है (अर्थात आइसोट्रॉपी के करीब), [[थॉमसन पैरामीटर]] का उपयोग करने वाला वैकल्पिक पैरामीट्रिजेशन, तरंग गति के सूत्रों के लिए सुविधाजनक होता है।


ऑर्थोट्रॉपी (एक ईंट की समरूपता) के स्थिति में 9 स्वतंत्र तत्व हैं:
ऑर्थोट्रॉपी (एक ईंट की समरूपता) के स्थिति में 9 स्वतंत्र तत्व हैं:<math display="block"> C_{\alpha \beta} = \begin{bmatrix}
<math display="block"> C_{\alpha \beta} = \begin{bmatrix}
  C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\
  C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\
  C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\
  C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\
Line 320: Line 277:
  0  & 0 & 0 & 0 & 0 & C_{66}  
  0  & 0 & 0 & 0 & 0 & C_{66}  
\end{bmatrix}.</math>
\end{bmatrix}.</math>
=== इलास्टोडायनामिक्स ===
=== इलास्टोडायनामिक्स ===
अनिसोट्रोपिक मीडिया के लिए इलास्टोडायनामिक वेव समीकरण को इस रूप में व्यक्त किया जा सकता है
अनिसोट्रोपिक मीडिया के लिए इलास्टोडायनामिक वेव समीकरण को इस रूप में व्यक्त किया जा सकता है
<math display="block"> (\delta_{kl} \partial_{tt} - A_{kl}[\nabla])\, u_l = \frac{1}{\rho} F_k</math>
<math display="block"> (\delta_{kl} \partial_{tt} - A_{kl}[\nabla])\, u_l = \frac{1}{\rho} F_k</math>जहाँ<math display="block"> A_{kl}[\nabla]=\frac{1}{\rho} \, \partial_i \, C_{iklj} \, \partial_j</math>ध्वनिक अंतर ऑपरेटर है, और <math> \delta_{kl}</math> क्रोनकर डेल्टा है।
जहाँ<math display="block"> A_{kl}[\nabla]=\frac{1}{\rho} \, \partial_i \, C_{iklj} \, \partial_j</math>ध्वनिक अंतर ऑपरेटर है, और <math> \delta_{kl}</math> क्रोनकर डेल्टा है।
==== समतल तरंगें और क्रिस्टोफेल समीकरण ====
समतल तरंग का रूप होता है<math display="block"> \mathbf{u}[\mathbf{x}, \, t] = U[\mathbf{k} \cdot  \mathbf{x} - \omega \, t] \, \hat{\mathbf{u}}</math>यहाँ पर <math>\hat{\mathbf{u}}\,\!</math> इकाई लंबाई को प्रदर्शित करती हैं।
 
 
यह शून्य बल के साथ तरंग समीकरण का समाधान है, यदि और केवल यदि <math> \omega^2 </math> और <math>\hat{\mathbf{u}}</math> ध्वनिक बीजगणितीय ऑपरेटर के आइगेनवैल्यू/ईजेनवेक्टर जोड़ी का गठन करता हैं।<math display="block"> A_{kl}[\mathbf{k}]=\frac{1}{\rho} \, k_i \, C_{iklj} \, k_j.</math>इस प्रसार की स्थिति (जिसे 'क्रिस्टोफेल समीकरण' के रूप में भी जाना जाता है) को इस रूप में लिखा जा सकता है।<math display="block">A[\hat{\mathbf{k}}] \, \hat{\mathbf{u}} = c^2 \, \hat{\mathbf{u}}</math>जहाँ
 


==== समतल तरंगें और क्रिस्टोफेल समीकरण ====
समतल तरंग का रूप होता है
<math display="block"> \mathbf{u}[\mathbf{x}, \, t] = U[\mathbf{k} \cdot  \mathbf{x} - \omega \, t] \, \hat{\mathbf{u}}</math>
साथ <math>\hat{\mathbf{u}}\,\!</math> इकाई लंबाई का।
यह शून्य बल के साथ तरंग समीकरण का समाधान है, यदि और केवल यदि <math> \omega^2 </math> और <math>\hat{\mathbf{u}}</math> ध्वनिक बीजगणितीय ऑपरेटर के आइगेनवैल्यू/ईजेनवेक्टर जोड़ी का गठन करें
<math display="block"> A_{kl}[\mathbf{k}]=\frac{1}{\rho} \, k_i \, C_{iklj} \, k_j.</math>
इस प्रसार की स्थिति (जिसे 'क्रिस्टोफेल समीकरण' के रूप में भी जाना जाता है) को इस रूप में लिखा जा सकता है
<math display="block">A[\hat{\mathbf{k}}] \, \hat{\mathbf{u}} = c^2 \, \hat{\mathbf{u}}</math>
जहाँ
<math>\hat{\mathbf{k}} = \mathbf{k} / \sqrt{\mathbf{k}\cdot\mathbf{k}}</math>
<math>\hat{\mathbf{k}} = \mathbf{k} / \sqrt{\mathbf{k}\cdot\mathbf{k}}</math>
प्रसार दिशा को दर्शाता है और <math>c = \omega / \sqrt{\mathbf{k} \cdot \mathbf{k}}</math> चरण वेग है।
प्रसार दिशा को दर्शाता है और <math>c = \omega / \sqrt{\mathbf{k} \cdot \mathbf{k}}</math> चरण वेग है।
 
== यह भी देखें ==
== यह भी देखें ==
{{Continuum mechanics|cTopic=[[Solid mechanics]]}}
{{Continuum mechanics|cTopic=[[Solid mechanics]]}}

Revision as of 23:56, 28 February 2023

रैखिक लोच गणितीय मॉडल है कि कैसे निर्धारित लोडिंग स्थितियों के कारण ठोस वस्तुएं विरूपण (भौतिकी) और आंतरिक रूप से तनाव (यांत्रिकी) बन जाती हैं। यह अधिक सामान्य परिमित तनाव सिद्धांत और सातत्य यांत्रिकी की शाखा का सरलीकरण है।

रेखीय लोच की मौलिक रेखीयकरण धारणाएं हैं: अतिसूक्ष्म तनाव सिद्धांत या छोटे विरूपण (या तनाव) और तनाव और तनाव के घटकों के बीच रैखिक संबंध होता हैं। इसके अतिरिक्त रैखिक लोच केवल तनाव वाली स्थिति के लिए मान्य है जो यील्ड (इंजीनियरिंग) का उत्पादन नहीं करते हैं।

ये धारणाएँ कई इंजीनियरिंग सामग्री और इंजीनियरिंग डिज़ाइन परिदृश्यों के लिए उचित हैं। अधिकांशतः परिमित तत्व विश्लेषण की सहायता से रैखिक लोच इसलिए संरचनात्मक विश्लेषण और इंजीनियरिंग डिजाइन में बड़े पैमाने पर उपयोग किया जाता है।

गणितीय सूत्रीकरण

रैखिक लोचदार सीमा मूल्य समस्या को नियंत्रित करने वाले समीकरण संवेग के संरक्षण के लिए तीन टेन्सर आंशिक अंतर समीकरणों और छह अति सूक्ष्म तनाव-विस्थापन क्षेत्र (यांत्रिकी) संबंधों पर आधारित हैं। अवकल समीकरणों की प्रणाली रैखिक समीकरण बीजगणितीय संघटक समीकरणों के सेट द्वारा पूरी की जाती है।

डायरेक्ट टेंसर फॉर्म

प्रत्यक्ष टेंसर रूप में जो समन्वय प्रणाली की पसंद से स्वतंत्र है, उक्त समीकरण इस प्रकार प्रदर्शित किया जाता हैं:[1]

  • संवेग किसी निकाय के लिए रेखीय संवेग, जो न्यूटन के गति के नियमों की अभिव्यक्ति है, न्यूटन का दूसरा नियम के अनुसार:
  • इनफिनिटिमल स्ट्रेन सिद्धांत या स्ट्रेन-विस्थापन समीकरण:
  • संवैधानिक समीकरण को लोचदार सामग्री के लिए, हुक के नियम द्वारा इसके भौतिक स्थिति का प्रतिनिधित्व करता है और अज्ञात तनावों से संबंधित रहता है। हुक के नियम का सामान्य समीकरण है इस प्रकार हैं-

जहाँ कॉची तनाव टेन्सर है, अतिसूक्ष्म तनाव टेंसर है, विस्थापन (वेक्टर) है, चौथा क्रम कठोरता टेन्सर कहलाता हैं, यहाँ पर प्रति इकाई आयतन भौतिक बल है, द्रव्यमान घनत्व है, नाबला ऑपरेटर का प्रतिनिधित्व करता है, स्थानान्तरण का प्रतिनिधित्व करता है, समय के संबंध में दूसरी व्युत्पत्ति का प्रतिनिधित्व करता है, और दो दूसरे क्रम के टेंसरों का आंतरिक उत्पाद है जो विशेषकर दोहराए गए सूचकांकों पर योग को निहित रखता है)।

कार्तीय समन्वय रूप

आयताकार कार्टेशियन समन्वय प्रणाली के संबंध में घटकों के संदर्भ में व्यक्त होने वाले रैखिक लोच के लिए स्थिति समीकरण को इस प्रकार प्रदर्शित करते हैं:[1]

  • कॉची संवेग समीकरण:
    जहां सबस्क्रिप्ट के लिए आशुलिपि है और दर्शाता है , कॉची स्ट्रेस (भौतिकी) टेंसर है, भौतिक बल घनत्व है, द्रव्यमान घनत्व है, और विस्थापन है। ये रेखीय समीकरणों की 3 प्रणाली हैं 6 स्वतंत्र अज्ञात (तनाव) के साथ स्वतंत्रता समीकरण द्वारा इंजीनियरिंग संकेतन के रूप में इस प्रकार प्रदर्शित करते हैं:
  • विरूपण (यांत्रिकी) तनाव या तनाव विस्थापन समीकरण:
    जहाँ तनाव है। ये 9 स्वतंत्र अज्ञात (स्ट्रेन और विस्थापन) के साथ तनाव और विस्थापन से संबंधित 6 स्वतंत्र समीकरण हैं। इंजीनियरिंग संकेतन में ये इस प्रकार हैं:
  • संवैधानिक समीकरण या हुक के नियम का समीकरण है:
    जहाँ कठोरता टेंसर है। ये तनाव और विकृति से संबंधित 6 स्वतंत्र समीकरण हैं। तनाव और तनाव टेंसरों की समरूपता की आवश्यकता से कई लोचदार स्थिरांक की समानता हो जाती है, जिससे विभिन्न तत्वों की संख्या 21 हो जाती है[2] इसे द्वारा प्रदर्शित करते हैं।

आइसोटोपिक सजातीय मीडिया के लिए इलास्टोस्टेटिक सीमा के मान से होने वाली समस्या के लिए 15 स्वतंत्र समीकरणों और समान संख्या में अज्ञात (3 संतुलन समीकरण, 6 तनाव-विस्थापन समीकरण, और 6 संवैधानिक समीकरण) की प्रणाली बनाई जाती है। इस प्रकार सीमा शर्तों को निर्दिष्ट करते हुए सीमा मूल्य समस्या को पूर्ण रूप से परिभाषित किया जा सकता हैं। प्रणाली को हल करने के लिए सीमा मान समस्या की सीमा स्थितियों के अनुसार दो दृष्टिकोण विस्थापन सूत्रीकरण, और तनाव सूत्रीकरण अपनाए जाते हैं।

बेलनाकार निर्देशांक रूप

बेलनाकार निर्देशांक में () गति के समीकरण हैं[1]

तनाव-विस्थापन संबंध हैं


और संवैधानिक संबंध कार्टेशियन निर्देशांक के समान हैं, इसके अतिरिक्त इसका सूचकांक ,, इस स्थिति के लिए क्रमशः ,,, इस प्रकार हैं।

गोलाकार निर्देशांक रूप

गोलाकार निर्देशांक में () गति के समीकरण हैं[1]

गोलाकार निर्देशांक (r, θ, φ) जैसा कि सामान्यतः भौतिकी में उपयोग किया जाता है: रेडियल दूरी r, ध्रुवीय कोण θ (थीटा), और अज़ीमुथल कोण φ (phi)। प्रतीक ρ (रो) अधिकांशतः आर के अतिरिक्त प्रयोग किया जाता है।

गोलाकार निर्देशांक में तनाव टेन्सर है


(ए) आइसोट्रोपिक (इन) सजातीय मीडिया

हूक के नियम आइसोट्रोपिक सामग्री मीडिया में, कठोरता टेन्सर तनावों (परिणामस्वरूप आंतरिक तनावों) और उपभेदों (परिणामस्वरूप विकृतियों) के बीच संबंध देता है। आइसोटोपिक माध्यम के लिए, कठोरता टेंसर की कोई पसंदीदा दिशा नहीं होती है: लागू बल समान विस्थापन (बल की दिशा के सापेक्ष) देगा, चाहे जिस दिशा में बल लगाया जाता हैं। आइसोटोपिक स्थिति में, कठोरता टेंसर लिखा जाता है:

जहाँ क्रोनकर डेल्टा है, K थोक मापांक (या असंपीड़्यता) है, और कतरनी मापांक (या कठोरता) है, जिसके लिए दो लोचदार मापांक निर्धारित किये जाते हैं। यदि माध्यम विषम होता हैं, तो आइसोट्रोपिक मॉडल का उपयोग किया जाता है इसके अतिरिक्त इसके माध्यम के लिए टुकड़े-टुकड़े पर स्थिर या कमजोर रूप से विषम स्थिति को दृढ़ता से अमानवीय चिकने मॉडल में, अनिसोट्रॉपी का हिसाब देना पड़ता है। यदि माध्यम सजातीय (रसायन विज्ञान) है, तो लोचदार मोडुली माध्यम में स्थिति से स्वतंत्र होगी तो संवैधानिक समीकरण को इस रूप में लिखा जा सकता है:
यह अभिव्यक्ति तनाव को बाईं ओर अदिश भाग में अलग करती है जो अदिश दबाव से जुड़ा हो सकता है, और दाईं ओर ट्रेसलेस भाग जो कतरनी बलों से जुड़ा हो सकता है। सरल अभिव्यक्ति है:[3][4]
जहां λ लैम पैरामीटर लैम का पहला पैरामीटर है। चूँकि संवैधानिक समीकरण केवल रेखीय समीकरणों का समूह है, तनाव को तनाव के कार्य के रूप में व्यक्त किया जा सकता है:[5]
जो फिर से, बाईं ओर अदिश भाग और दाईं ओर ट्रेसलेस कतरनी भाग है। इसके लिए समीकरण इस प्रकार हैं:
जहाँ पोइसन का अनुपात है और यंग का मापांक है।

इलास्टोस्टैटिक्स

इलास्टोस्टैटिक्स संतुलन की शर्तों के अनुसार रैखिक लोच का अध्ययन है, जिसमें लोचदार भौतिक पर सभी बलों का योग शून्य होता है, और विस्थापन समय का कार्य नहीं होता है। इस प्रकार इस प्रणाली के लिए रैखिक गति का मान कुछ इस प्रकार होता हैं-

इंजीनियरिंग संकेतन में (कतरनी तनाव के रूप में टाऊ के साथ),

यह खंड केवल आइसोट्रोपिक सजातीय की स्थिति पर आधारित हैं।

विस्थापन सूत्रीकरण

इस स्थिति में, सीमा में हर जगह विस्थापन निर्धारित हैं। इस दृष्टिकोण में, तनाव और तनाव को सूत्रीकरण से समाप्त कर दिया जाता है, विस्थापन को अज्ञात के रूप में इस स्थिति के लिए समीकरणों में हल करने के लिए छोड़ दिया जाता है। इस प्रकार सबसे पहले, तनाव-विस्थापन समीकरणों को संवैधानिक समीकरणों (हुक के नियम) में प्रतिस्थापित किया जाता है, अज्ञात के रूप में उपभेदों को हटा दिया जाता है:

विभेद करना (मान लेना और स्थानिक रूप से समान हैं) उपज:
संतुलन समीकरण पैदावार में प्रतिस्थापन:
या (डबल (डमी) (= सारांश) सूचकांक k,k को j,j द्वारा प्रतिस्थापित करना और सूचकांकों को इंटरचेंज करना, ij से, ji के बाद, दूसरे डेरिवेटिव की समरूपता के आधार पर श्वार्ज प्रमेय द्वारा किया जाता हैं।)
जहाँ और लमे पैरामीटर हैं। इस तरह, केवल अज्ञात ही विस्थापन रह जाता है, इसलिए इस फॉर्मूलेशन का नाम है। इस तरह से प्राप्त नियामक समीकरणों को इलास्टोस्टैटिक समीकरण कहा जाता है, जो नीचे दिए गए 'नेवियर-कॉची समीकरण' का विशेष स्थिति है।

Derivation of Navier–Cauchy equations in Engineering notation

सबसे पहले -दिशा पर विचार किया जाएगा। तनाव-विस्थापन समीकरणों को संतुलन समीकरण में प्रतिस्थापित करना -दिशा हमारे पास है

फिर इन समीकरणों को संतुलन समीकरण में प्रतिस्थापित करना -दिशा हमारे पास है

इस धारणा का उपयोग करना कि और स्थिर हैं हम पुनर्व्यवस्थित और प्राप्त कर सकते हैं:

इसके लिए भी यही प्रक्रिया अपना रहे हैं -दिशा और -दिशा हमारे पास है

ये अंतिम 3 समीकरण नेवियर-कॉची समीकरण हैं, जिन्हें सदिश संकेतन के रूप में भी व्यक्त किया जा सकता है

एक बार विस्थापन क्षेत्र की गणना हो जाने के पश्चात विस्थापन को तनाव के समाधान के लिए तनाव-विस्थापन समीकरणों में प्रतिस्थापित किया जाता है, जो बाद में तनावों को हल करने के लिए संवैधानिक समीकरणों में उपयोग किया जाता है।

बिहारमोनिक समीकरण

इलास्टोस्टैटिक समीकरण लिखा जा सकता है:

इलास्टोस्टेटिक समीकरण के दोनों पक्षों के विचलन को लेते हुए और यह मानते हुए कि भौतिक बलों () में शून्य विचलन (डोमेन में सजातीय) है-
यह देखते हुए कि सारांशित सूचकांकों का मिलान नहीं होना चाहिए, और यह कि आंशिक डेरिवेटिव कम्यूट करते हैं, दो अंतर शब्द समान दिखाई देते हैं:
जिससे हम यह निष्कर्ष निकालते हैं कि:
इलास्टोस्टैटिक समीकरण के दोनों पक्षों के लाप्लासियन को लेना, और इसके अतिरिक्त इसका मान मानने पर हमारे पास उक्त समीकरण प्राप्त होता हैं-
अपसरण समीकरण से, बाईं ओर का पहला पद शून्य है यहाँ पर ध्यान दें कि फिर से, सारांशित सूचकांकों का मिलान नहीं होना चाहिए:
जिससे हम यह निष्कर्ष निकालते हैं कि:
या, समन्वय मुक्त संकेतन में जो कि सिर्फ बिहारमोनिक समीकरण से प्रदर्शित होता है।

तनाव सूत्रीकरण

इस स्थिति में, सतही सीमा पर हर जगह सतही कर्षण निर्धारित हैं। इस दृष्टिकोण में, तनावों और विस्थापनों को समाप्त कर दिया जाता है जिससे तनावों को अज्ञात के रूप में शासकीय समीकरणों में हल किया जा सकता है। इस प्रकार तनाव क्षेत्र मिल जाने के बाद, तब संरचनात्मक समीकरणों का उपयोग करके उपभेदों को पाया जाता है।

स्ट्रेस टेन्सर के छह स्वतंत्र घटक हैं जिन्हें निर्धारित करने की आवश्यकता है, फिर भी विस्थापन सूत्रीकरण में, विस्थापन वेक्टर के केवल तीन घटक हैं जिन्हें निर्धारित करने की आवश्यकता है। इसका अर्थ यह है कि स्वतंत्रता की डिग्री की संख्या को तीन तक कम करने के लिए कुछ बाधाएं हैं जिन्हें तनाव टेंसर पर रखा जाना चाहिए। इसके लिए संवैधानिक समीकरणों का उपयोग करते हुए, इन बाधाओं को सीधे संबंधित बाधाओं से प्राप्त किया जाता है, जो तनाव टेंसर के लिए धारण करना चाहिए, जिसमें छह स्वतंत्र घटक भी होते हैं। विस्थापन सदिश क्षेत्र के कार्य के रूप में तनाव टेन्सर पर बाधाएं सीधे तनाव टेंसर की परिभाषा से व्युत्पन्न होती हैं, जिसका अर्थ है कि ये बाधाएं कोई नई अवधारणा या जानकारी प्रस्तुत नहीं करती हैं। यह तनाव टेंसर पर बाधाएं हैं जिन्हें सबसे आसानी से समझा जा सकता है। यदि लोचदार माध्यम को अप्रतिबंधित अवस्था में असीम घनों के सेट के रूप में देखा जाता है, तो माध्यम के तनावग्रस्त होने के पश्चात तनाव टेंसर के लिए ऐसी स्थिति में उत्पन्न करनी चाहिए जिसमें विकृत घन अभी भी अतिव्यापी बिना साथ फिट होते हैं। दूसरे शब्दों में, किसी दिए गए तनाव के लिए, निरंतर सदिश क्षेत्र (विस्थापन) सम्मिलित होना चाहिए जिससे उस तनाव टेंसर को प्राप्त किया जा सके। तनाव टेंसर पर बाधाएं जो यह सुनिश्चित करने के लिए आवश्यक हैं कि यह स्थिति संत वेनेंट द्वारा खोजा गया था, और उन्हें संत-वेनेंट की अनुकूलता की स्थिति कहा जाता है। ये 81 समीकरण हैं, जिनमें से 6 स्वतंत्र गैर-तुच्छ समीकरण हैं, जो विभिन्न तनाव घटकों से संबंधित हैं। इन्हें इंडेक्स नोटेशन में इस प्रकार व्यक्त किया जाता है:

इसका इंजीनियरिंग संकेतन इस प्रकार हैं: