रैखिक लोच: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Mathematical model of how solid objects deform}} {{More footnotes|date=September 2010}} {{Continuum mechanics|solid}} रैखिक लोच एक ग...")
 
No edit summary
Line 1: Line 1:
{{Short description|Mathematical model of how solid objects deform}}
{{Short description|Mathematical model of how solid objects deform}}
{{More footnotes|date=September 2010}}
{{Continuum mechanics|solid}}
{{Continuum mechanics|solid}}


रैखिक लोच एक गणितीय मॉडल है कि कैसे निर्धारित लोडिंग स्थितियों के कारण ठोस वस्तुएं [[विरूपण (भौतिकी)]] और आंतरिक रूप से [[तनाव (यांत्रिकी)]] बन जाती हैं। यह अधिक सामान्य [[परिमित तनाव सिद्धांत]] और सातत्य यांत्रिकी की एक शाखा का सरलीकरण है।
रैखिक लोच गणितीय मॉडल है कि कैसे निर्धारित लोडिंग स्थितियों के कारण ठोस वस्तुएं [[विरूपण (भौतिकी)]] और आंतरिक रूप से [[तनाव (यांत्रिकी)]] बन जाती हैं। यह अधिक सामान्य [[परिमित तनाव सिद्धांत]] और सातत्य यांत्रिकी की शाखा का सरलीकरण है।


रेखीय लोच की मौलिक रेखीयकरण धारणाएं हैं: अतिसूक्ष्म तनाव सिद्धांत या छोटे विरूपण (या तनाव) और तनाव और तनाव के घटकों के बीच रैखिक संबंध। इसके अलावा रैखिक लोच केवल तनाव वाले राज्यों के लिए मान्य है जो यील्ड (इंजीनियरिंग) का उत्पादन नहीं करते हैं।
रेखीय लोच की मौलिक रेखीयकरण धारणाएं हैं: अतिसूक्ष्म तनाव सिद्धांत या छोटे विरूपण (या तनाव) और तनाव और तनाव के घटकों के बीच रैखिक संबंध। इसके अलावा रैखिक लोच केवल तनाव वाले राज्यों के लिए मान्य है जो यील्ड (इंजीनियरिंग) का उत्पादन नहीं करते हैं।
Line 11: Line 10:
== गणितीय सूत्रीकरण ==
== गणितीय सूत्रीकरण ==


एक रैखिक लोचदार [[सीमा मूल्य समस्या]] को नियंत्रित करने वाले समीकरण संवेग के संरक्षण के लिए तीन [[टेन्सर]] आंशिक अंतर समीकरणों और छह अति सूक्ष्म तनाव-[[विस्थापन क्षेत्र (यांत्रिकी)]] संबंधों पर आधारित हैं। अवकल समीकरणों की प्रणाली रैखिक समीकरण बीजगणितीय संघटक समीकरणों के एक सेट द्वारा पूरी की जाती है।
एक रैखिक लोचदार [[सीमा मूल्य समस्या]] को नियंत्रित करने वाले समीकरण संवेग के संरक्षण के लिए तीन [[टेन्सर]] आंशिक अंतर समीकरणों और छह अति सूक्ष्म तनाव-[[विस्थापन क्षेत्र (यांत्रिकी)]] संबंधों पर आधारित हैं। अवकल समीकरणों की प्रणाली रैखिक समीकरण बीजगणितीय संघटक समीकरणों के सेट द्वारा पूरी की जाती है।


=== डायरेक्ट टेंसर फॉर्म ===
=== डायरेक्ट टेंसर फॉर्म ===
Line 18: Line 17:
* इनफिनिटिमल स्ट्रेन थ्योरी|स्ट्रेन-विस्थापन समीकरण: <math display="block">\boldsymbol{\varepsilon} = \tfrac{1}{2} \left[\boldsymbol{\nabla}\mathbf{u} + (\boldsymbol{\nabla}\mathbf{u})^\mathrm{T}\right]</math>
* इनफिनिटिमल स्ट्रेन थ्योरी|स्ट्रेन-विस्थापन समीकरण: <math display="block">\boldsymbol{\varepsilon} = \tfrac{1}{2} \left[\boldsymbol{\nabla}\mathbf{u} + (\boldsymbol{\nabla}\mathbf{u})^\mathrm{T}\right]</math>
* संवैधानिक समीकरण। लोचदार सामग्री के लिए, हुक का नियम भौतिक व्यवहार का प्रतिनिधित्व करता है और अज्ञात तनावों और तनावों से संबंधित है। हुक के नियम का सामान्य समीकरण है <math display="block"> \boldsymbol{\sigma} = \mathsf{C}:\boldsymbol{\varepsilon},</math>
* संवैधानिक समीकरण। लोचदार सामग्री के लिए, हुक का नियम भौतिक व्यवहार का प्रतिनिधित्व करता है और अज्ञात तनावों और तनावों से संबंधित है। हुक के नियम का सामान्य समीकरण है <math display="block"> \boldsymbol{\sigma} = \mathsf{C}:\boldsymbol{\varepsilon},</math>
कहाँ <math>\boldsymbol{\sigma}</math> [[कॉची तनाव टेन्सर]] है, <math>\boldsymbol{\varepsilon}</math> अतिसूक्ष्म तनाव टेंसर है, <math>\mathbf{u}</math> [[विस्थापन (वेक्टर)]] है, <math>\mathsf{C}</math> चौथा क्रम कठोरता टेन्सर है, <math>\mathbf{F}</math> प्रति इकाई आयतन शरीर बल है, <math>\rho</math> द्रव्यमान घनत्व है, <math>\boldsymbol{\nabla}</math> [[नाबला ऑपरेटर]] का प्रतिनिधित्व करता है, <math>(\bullet)^\mathrm{T}</math> एक स्थानान्तरण का प्रतिनिधित्व करता है, <math>\ddot{(\bullet)}</math> समय के संबंध में दूसरी व्युत्पत्ति का प्रतिनिधित्व करता है, और <math>\mathsf{A}:\mathsf{B} = A_{ij}B_{ij}</math> दो दूसरे क्रम के टेंसरों का आंतरिक उत्पाद है (दोहराए गए सूचकांकों पर योग निहित है)।
कहाँ <math>\boldsymbol{\sigma}</math> [[कॉची तनाव टेन्सर]] है, <math>\boldsymbol{\varepsilon}</math> अतिसूक्ष्म तनाव टेंसर है, <math>\mathbf{u}</math> [[विस्थापन (वेक्टर)]] है, <math>\mathsf{C}</math> चौथा क्रम कठोरता टेन्सर है, <math>\mathbf{F}</math> प्रति इकाई आयतन शरीर बल है, <math>\rho</math> द्रव्यमान घनत्व है, <math>\boldsymbol{\nabla}</math> [[नाबला ऑपरेटर]] का प्रतिनिधित्व करता है, <math>(\bullet)^\mathrm{T}</math> स्थानान्तरण का प्रतिनिधित्व करता है, <math>\ddot{(\bullet)}</math> समय के संबंध में दूसरी व्युत्पत्ति का प्रतिनिधित्व करता है, और <math>\mathsf{A}:\mathsf{B} = A_{ij}B_{ij}</math> दो दूसरे क्रम के टेंसरों का आंतरिक उत्पाद है (दोहराए गए सूचकांकों पर योग निहित है)।


=== कार्तीय समन्वय रूप ===
=== कार्तीय समन्वय रूप ===
Line 24: Line 23:
एक आयताकार कार्टेशियन समन्वय प्रणाली के संबंध में घटकों के संदर्भ में व्यक्त, रैखिक लोच के शासकीय समीकरण हैं:<ref name=Slau/>
एक आयताकार कार्टेशियन समन्वय प्रणाली के संबंध में घटकों के संदर्भ में व्यक्त, रैखिक लोच के शासकीय समीकरण हैं:<ref name=Slau/>


* कॉची संवेग समीकरण: <math display="block"> \sigma_{ji,j} + F_i = \rho \partial_{tt} u_i</math> जहां <math>{(\bullet)}_{,j}</math> सबस्क्रिप्ट के लिए एक आशुलिपि है <math>\partial{(\bullet)} / \partial x_j</math> और <math>\partial_{tt}</math> दर्शाता है <math>\partial^2 / \partial t^2</math>, <math> \sigma_{ij} = \sigma_{ji}</math> कॉची स्ट्रेस (भौतिकी) टेंसर है, <math> F_i</math> शरीर बल घनत्व है, <math> \rho</math> द्रव्यमान घनत्व है, और <math> u_i</math> विस्थापन है।{{pb}}ये रेखीय समीकरणों की 3 प्रणाली हैं # 6 स्वतंत्र अज्ञात (तनाव) के साथ स्वतंत्रता समीकरण।{{pb}} इंजीनियरिंग संकेतन में, वे हैं: <math display="block">\begin{align}
* कॉची संवेग समीकरण: <math display="block"> \sigma_{ji,j} + F_i = \rho \partial_{tt} u_i</math> जहां <math>{(\bullet)}_{,j}</math> सबस्क्रिप्ट के लिए आशुलिपि है <math>\partial{(\bullet)} / \partial x_j</math> और <math>\partial_{tt}</math> दर्शाता है <math>\partial^2 / \partial t^2</math>, <math> \sigma_{ij} = \sigma_{ji}</math> कॉची स्ट्रेस (भौतिकी) टेंसर है, <math> F_i</math> शरीर बल घनत्व है, <math> \rho</math> द्रव्यमान घनत्व है, और <math> u_i</math> विस्थापन है। ये रेखीय समीकरणों की 3 प्रणाली हैं 6 स्वतंत्र अज्ञात (तनाव) के साथ स्वतंत्रता समीकरण। इंजीनियरिंग संकेतन में, वे हैं: <math display="block">\begin{align}
\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + F_x = \rho \frac{\partial^2 u_x}{\partial t^2} \\
\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + F_x = \rho \frac{\partial^2 u_x}{\partial t^2} \\
\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + F_y = \rho \frac{\partial^2 u_y}{\partial t^2} \\
\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + F_y = \rho \frac{\partial^2 u_y}{\partial t^2} \\
\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_z}{\partial z} + F_z = \rho \frac{\partial^2 u_z}{\partial t^2}
\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_z}{\partial z} + F_z = \rho \frac{\partial^2 u_z}{\partial t^2}
\end{align}</math>
\end{align}</math>
* विरूपण (यांत्रिकी)#तनाव|तनाव-विस्थापन समीकरण: <math display="block">\varepsilon_{ij} =\frac{1}{2} (u_{j,i} + u_{i,j})</math> कहाँ <math> \varepsilon_{ij}=\varepsilon_{ji}\,\!</math> तनाव है। ये 9 स्वतंत्र अज्ञात (स्ट्रेन और विस्थापन) के साथ तनाव और विस्थापन से संबंधित 6 स्वतंत्र समीकरण हैं।{{pb}} इंजीनियरिंग संकेतन में, वे हैं: <math display="block">\begin{align}
* विरूपण (यांत्रिकी)#तनाव|तनाव-विस्थापन समीकरण: <math display="block">\varepsilon_{ij} =\frac{1}{2} (u_{j,i} + u_{i,j})</math> कहाँ <math> \varepsilon_{ij}=\varepsilon_{ji}\,\!</math> तनाव है। ये 9 स्वतंत्र अज्ञात (स्ट्रेन और विस्थापन) के साथ तनाव और विस्थापन से संबंधित 6 स्वतंत्र समीकरण हैं। इंजीनियरिंग संकेतन में, वे हैं: <math display="block">\begin{align}
\epsilon_x=\frac{\partial u_x}{\partial x} \\
\epsilon_x=\frac{\partial u_x}{\partial x} \\
\epsilon_y=\frac{\partial u_y}{\partial y} \\
\epsilon_y=\frac{\partial u_y}{\partial y} \\
Line 42: Line 41:
* संवैधानिक समीकरण। हुक के नियम का समीकरण है: <math display="block"> \sigma_{ij} = C_{ijkl} \, \varepsilon_{kl} </math> कहाँ <math>C_{ijkl}</math> कठोरता टेंसर है। ये तनाव और विकृति से संबंधित 6 स्वतंत्र समीकरण हैं। तनाव और तनाव टेंसरों की समरूपता की आवश्यकता से कई लोचदार स्थिरांक की समानता हो जाती है, जिससे विभिन्न तत्वों की संख्या 21 हो जाती है<ref>{{cite journal |last1=Belen'kii |last2= Salaev|date= 1988|title= परत क्रिस्टल में विरूपण प्रभाव|journal= Uspekhi Fizicheskikh Nauk|volume= 155|issue= 5|pages= 89–127|doi= 10.3367/UFNr.0155.198805c.0089}}</ref> <math> C_{ijkl} = C_{klij} = C_{jikl} = C_{ijlk}</math>.
* संवैधानिक समीकरण। हुक के नियम का समीकरण है: <math display="block"> \sigma_{ij} = C_{ijkl} \, \varepsilon_{kl} </math> कहाँ <math>C_{ijkl}</math> कठोरता टेंसर है। ये तनाव और विकृति से संबंधित 6 स्वतंत्र समीकरण हैं। तनाव और तनाव टेंसरों की समरूपता की आवश्यकता से कई लोचदार स्थिरांक की समानता हो जाती है, जिससे विभिन्न तत्वों की संख्या 21 हो जाती है<ref>{{cite journal |last1=Belen'kii |last2= Salaev|date= 1988|title= परत क्रिस्टल में विरूपण प्रभाव|journal= Uspekhi Fizicheskikh Nauk|volume= 155|issue= 5|pages= 89–127|doi= 10.3367/UFNr.0155.198805c.0089}}</ref> <math> C_{ijkl} = C_{klij} = C_{jikl} = C_{ijlk}</math>.


एक आइसोटोपिक-सजातीय मीडिया के लिए एक इलास्टोस्टेटिक सीमा मूल्य समस्या 15 स्वतंत्र समीकरणों और समान संख्या में अज्ञात (3 संतुलन समीकरण, 6 तनाव-विस्थापन समीकरण, और 6 संवैधानिक समीकरण) की एक प्रणाली है। सीमा शर्तों को निर्दिष्ट करते हुए, सीमा मूल्य समस्या पूरी तरह परिभाषित है। प्रणाली को हल करने के लिए सीमा मान समस्या की सीमा स्थितियों के अनुसार दो दृष्टिकोण अपनाए जा सकते हैं: एक विस्थापन सूत्रीकरण, और एक तनाव सूत्रीकरण।
एक आइसोटोपिक-सजातीय मीडिया के लिए इलास्टोस्टेटिक सीमा मूल्य समस्या 15 स्वतंत्र समीकरणों और समान संख्या में अज्ञात (3 संतुलन समीकरण, 6 तनाव-विस्थापन समीकरण, और 6 संवैधानिक समीकरण) की प्रणाली है। सीमा शर्तों को निर्दिष्ट करते हुए, सीमा मूल्य समस्या पूरी तरह परिभाषित है। प्रणाली को हल करने के लिए सीमा मान समस्या की सीमा स्थितियों के अनुसार दो दृष्टिकोण अपनाए जा सकते हैं: विस्थापन सूत्रीकरण, और तनाव सूत्रीकरण।


===बेलनाकार निर्देशांक रूप===
===बेलनाकार निर्देशांक रूप===
Line 81: Line 80:


== (ए) आइसोट्रोपिक (इन) सजातीय मीडिया ==
== (ए) आइसोट्रोपिक (इन) सजातीय मीडिया ==
हूक के नियम#आइसोट्रोपिक सामग्री मीडिया में, कठोरता टेन्सर तनावों (परिणामस्वरूप आंतरिक तनावों) और उपभेदों (परिणामस्वरूप विकृतियों) के बीच संबंध देता है। एक आइसोटोपिक माध्यम के लिए, कठोरता टेंसर की कोई पसंदीदा दिशा नहीं होती है: एक लागू बल समान विस्थापन (बल की दिशा के सापेक्ष) देगा, चाहे जिस दिशा में बल लगाया गया हो। आइसोटोपिक मामले में, कठोरता टेंसर लिखा जा सकता है:{{citation needed|date=June 2012}} <math display="block"> C_{ijkl}
हूक के नियम आइसोट्रोपिक सामग्री मीडिया में, कठोरता टेन्सर तनावों (परिणामस्वरूप आंतरिक तनावों) और उपभेदों (परिणामस्वरूप विकृतियों) के बीच संबंध देता है। आइसोटोपिक माध्यम के लिए, कठोरता टेंसर की कोई पसंदीदा दिशा नहीं होती है: लागू बल समान विस्थापन (बल की दिशा के सापेक्ष) देगा, चाहे जिस दिशा में बल लगाया गया हो। आइसोटोपिक मामले में, कठोरता टेंसर लिखा जा सकता है:{{citation needed|date=June 2012}} <math display="block"> C_{ijkl}
=  K \, \delta_{ij}\, \delta_{kl}
=  K \, \delta_{ij}\, \delta_{kl}
+ \mu\, (\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}- \tfrac{2}{3}\, \delta_{ij}\,\delta_{kl})
+ \mu\, (\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}- \tfrac{2}{3}\, \delta_{ij}\,\delta_{kl})
</math> कहाँ <math>\delta_{ij}</math> [[क्रोनकर डेल्टा]] है, K थोक मापांक (या असंपीड़्यता) है, और <math>\mu</math> कतरनी मापांक (या कठोरता) है, दो लोचदार मापांक। यदि माध्यम विषम है, तो आइसोट्रोपिक मॉडल समझदार है यदि या तो माध्यम टुकड़े-टुकड़े-स्थिर या कमजोर रूप से विषम है; दृढ़ता से अमानवीय चिकने मॉडल में, अनिसोट्रॉपी का हिसाब देना पड़ता है। यदि माध्यम [[सजातीय (रसायन विज्ञान)]] है, तो [[लोचदार मोडुली]] माध्यम में स्थिति से स्वतंत्र होगी। संवैधानिक समीकरण अब इस रूप में लिखा जा सकता है:
</math> कहाँ <math>\delta_{ij}</math> [[क्रोनकर डेल्टा]] है, K थोक मापांक (या असंपीड़्यता) है, और <math>\mu</math> कतरनी मापांक (या कठोरता) है, दो लोचदार मापांक। यदि माध्यम विषम है, तो आइसोट्रोपिक मॉडल समझदार है यदि या तो माध्यम टुकड़े-टुकड़े-स्थिर या कमजोर रूप से विषम है; दृढ़ता से अमानवीय चिकने मॉडल में, अनिसोट्रॉपी का हिसाब देना पड़ता है। यदि माध्यम [[सजातीय (रसायन विज्ञान)]] है, तो [[लोचदार मोडुली]] माध्यम में स्थिति से स्वतंत्र होगी। संवैधानिक समीकरण अब इस रूप में लिखा जा सकता है:
<math display="block"> \sigma_{ij} = K \delta_{ij} \varepsilon_{kk} + 2\mu \left(\varepsilon_{ij} - \tfrac{1}{3} \delta_{ij} \varepsilon_{kk}\right).</math>
<math display="block"> \sigma_{ij} = K \delta_{ij} \varepsilon_{kk} + 2\mu \left(\varepsilon_{ij} - \tfrac{1}{3} \delta_{ij} \varepsilon_{kk}\right).</math>
यह अभिव्यक्ति तनाव को बाईं ओर एक अदिश भाग में अलग करती है जो एक अदिश दबाव से जुड़ा हो सकता है, और दाईं ओर एक ट्रेसलेस भाग जो कतरनी बलों से जुड़ा हो सकता है। एक सरल अभिव्यक्ति है:<ref name="aki">{{cite book |title= मात्रात्मक भूकंप विज्ञान|last1=Aki|first1=Keiiti |last2=Richards|first2= Paul G. | author-link1=Keiiti Aki |author2-link=Paul G. richards |year=2002 | edition= 2| publisher=University Science Books |location=Sausalito, California}}</ref><ref>Continuum Mechanics for Engineers 2001 Mase, Eq. 5.12-2</ref>
यह अभिव्यक्ति तनाव को बाईं ओर अदिश भाग में अलग करती है जो अदिश दबाव से जुड़ा हो सकता है, और दाईं ओर ट्रेसलेस भाग जो कतरनी बलों से जुड़ा हो सकता है। सरल अभिव्यक्ति है:<ref name="aki">{{cite book |title= मात्रात्मक भूकंप विज्ञान|last1=Aki|first1=Keiiti |last2=Richards|first2= Paul G. | author-link1=Keiiti Aki |author2-link=Paul G. richards |year=2002 | edition= 2| publisher=University Science Books |location=Sausalito, California}}</ref><ref>Continuum Mechanics for Engineers 2001 Mase, Eq. 5.12-2</ref>
<math display="block"> \sigma_{ij} = \lambda \delta_{ij} \varepsilon_{kk}+2\mu\varepsilon_{ij}</math>
<math display="block"> \sigma_{ij} = \lambda \delta_{ij} \varepsilon_{kk}+2\mu\varepsilon_{ij}</math>
जहां λ लैम पैरामीटर है | लैम का पहला पैरामीटर। चूँकि संवैधानिक समीकरण केवल रेखीय समीकरणों का एक समूह है, तनाव को तनाव के कार्य के रूप में व्यक्त किया जा सकता है:<ref name=sommerfeld>{{cite book |title= विकृत निकायों के यांत्रिकी|last=Sommerfeld|first=Arnold |author-link=Arnold Sommerfeld|year=1964 |publisher=Academic Press |location=New York}}</ref>
जहां λ लैम पैरामीटर है | लैम का पहला पैरामीटर। चूँकि संवैधानिक समीकरण केवल रेखीय समीकरणों का समूह है, तनाव को तनाव के कार्य के रूप में व्यक्त किया जा सकता है:<ref name=sommerfeld>{{cite book |title= विकृत निकायों के यांत्रिकी|last=Sommerfeld|first=Arnold |author-link=Arnold Sommerfeld|year=1964 |publisher=Academic Press |location=New York}}</ref>
<math display="block">\varepsilon_{ij} = \frac{1}{9K} \delta_{ij} \sigma_{kk} + \frac{1}{2\mu} \left(\sigma_{ij} - \tfrac{1}{3} \delta_{ij} \sigma_{kk}\right)</math>
<math display="block">\varepsilon_{ij} = \frac{1}{9K} \delta_{ij} \sigma_{kk} + \frac{1}{2\mu} \left(\sigma_{ij} - \tfrac{1}{3} \delta_{ij} \sigma_{kk}\right)</math>
जो फिर से, बाईं ओर एक अदिश भाग और दाईं ओर एक ट्रेसलेस कतरनी भाग है। अधिक केवल:
जो फिर से, बाईं ओर अदिश भाग और दाईं ओर ट्रेसलेस कतरनी भाग है। अधिक केवल:
<math display="block">\varepsilon_{ij}
<math display="block">\varepsilon_{ij}
= \frac{1}{2\mu}\sigma_{ij} - \frac{\nu}{E} \delta_{ij}\sigma_{kk} = \frac{1}{E} [(1+\nu) \sigma_{ij}-\nu\delta_{ij}\sigma_{kk}]</math>
= \frac{1}{2\mu}\sigma_{ij} - \frac{\nu}{E} \delta_{ij}\sigma_{kk} = \frac{1}{E} [(1+\nu) \sigma_{ij}-\nu\delta_{ij}\sigma_{kk}]</math>
Line 96: Line 95:


=== इलास्टोस्टैटिक्स ===
=== इलास्टोस्टैटिक्स ===
इलास्टोस्टैटिक्स संतुलन की शर्तों के तहत रैखिक लोच का अध्ययन है, जिसमें लोचदार शरीर पर सभी बलों का योग शून्य होता है, और विस्थापन समय का कार्य नहीं होता है। एक प्रणाली के लिए गति # रैखिक गति तब होती है <math display="block"> \sigma_{ji,j} + F_i = 0.</math>
इलास्टोस्टैटिक्स संतुलन की शर्तों के तहत रैखिक लोच का अध्ययन है, जिसमें लोचदार शरीर पर सभी बलों का योग शून्य होता है, और विस्थापन समय का कार्य नहीं होता है। प्रणाली के लिए गति # रैखिक गति तब होती है <math display="block"> \sigma_{ji,j} + F_i = 0.</math>
इंजीनियरिंग संकेतन में (कतरनी तनाव के रूप में ताऊ के साथ),
इंजीनियरिंग संकेतन में (कतरनी तनाव के रूप में ताऊ के साथ),
* <math>\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + F_x = 0</math>
* <math>\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + F_x = 0</math>
Line 109: Line 108:
= \lambda\delta_{ij}u_{k,k}+\mu\left(u_{i,j}+u_{j,i}\right).
= \lambda\delta_{ij}u_{k,k}+\mu\left(u_{i,j}+u_{j,i}\right).
</math>
</math>
विभेद करना (मान लेना <math>\lambda</math> और <math>\mu</math> स्थानिक रूप से एक समान हैं) उपज:
विभेद करना (मान लेना <math>\lambda</math> और <math>\mu</math> स्थानिक रूप से समान हैं) उपज:
<math display="block">\sigma_{ij,j} = \lambda u_{k,ki}+\mu\left(u_{i,jj}+u_{j,ij}\right).</math>
<math display="block">\sigma_{ij,j} = \lambda u_{k,ki}+\mu\left(u_{i,jj}+u_{j,ij}\right).</math>
संतुलन समीकरण पैदावार में प्रतिस्थापन:
संतुलन समीकरण पैदावार में प्रतिस्थापन:
Line 157: Line 156:


====तनाव सूत्रीकरण====
====तनाव सूत्रीकरण====
इस मामले में, सतही सीमा पर हर जगह सतही कर्षण निर्धारित हैं। इस दृष्टिकोण में, तनावों और विस्थापनों को समाप्त कर दिया जाता है जिससे तनावों को अज्ञात के रूप में शासकीय समीकरणों में हल किया जा सकता है। एक बार तनाव क्षेत्र मिल जाने के बाद, तब संरचनात्मक समीकरणों का उपयोग करके उपभेदों को पाया जाता है।
इस मामले में, सतही सीमा पर हर जगह सतही कर्षण निर्धारित हैं। इस दृष्टिकोण में, तनावों और विस्थापनों को समाप्त कर दिया जाता है जिससे तनावों को अज्ञात के रूप में शासकीय समीकरणों में हल किया जा सकता है। बार तनाव क्षेत्र मिल जाने के बाद, तब संरचनात्मक समीकरणों का उपयोग करके उपभेदों को पाया जाता है।


स्ट्रेस टेन्सर के छह स्वतंत्र घटक हैं जिन्हें निर्धारित करने की आवश्यकता है, फिर भी विस्थापन सूत्रीकरण में, विस्थापन वेक्टर के केवल तीन घटक हैं जिन्हें निर्धारित करने की आवश्यकता है। इसका मतलब यह है कि स्वतंत्रता की डिग्री की संख्या को तीन तक कम करने के लिए कुछ बाधाएं हैं जिन्हें तनाव टेंसर पर रखा जाना चाहिए। संवैधानिक समीकरणों का उपयोग करते हुए, इन बाधाओं को सीधे संबंधित बाधाओं से प्राप्त किया जाता है, जो तनाव टेंसर के लिए धारण करना चाहिए, जिसमें छह स्वतंत्र घटक भी होते हैं। विस्थापन सदिश क्षेत्र के एक कार्य के रूप में तनाव टेन्सर पर बाधाएं सीधे तनाव टेंसर की परिभाषा से व्युत्पन्न होती हैं, जिसका अर्थ है कि ये बाधाएं कोई नई अवधारणा या जानकारी पेश नहीं करती हैं। यह तनाव टेंसर पर बाधाएं हैं जिन्हें सबसे आसानी से समझा जा सकता है। यदि लोचदार माध्यम को अप्रतिबंधित अवस्था में असीम घनों के एक सेट के रूप में देखा जाता है, तो माध्यम के तनावग्रस्त होने के बाद, एक मनमाना तनाव टेंसर को एक ऐसी स्थिति उत्पन्न करनी चाहिए जिसमें विकृत घन अभी भी अतिव्यापी बिना एक साथ फिट होते हैं। दूसरे शब्दों में, किसी दिए गए तनाव के लिए, एक निरंतर सदिश क्षेत्र (विस्थापन) मौजूद होना चाहिए जिससे उस तनाव टेंसर को प्राप्त किया जा सके। तनाव टेंसर पर बाधाएं जो यह सुनिश्चित करने के लिए आवश्यक हैं कि यह मामला संत वेनेंट द्वारा खोजा गया था, और उन्हें संत-वेनेंट की अनुकूलता की स्थिति कहा जाता है। ये 81 समीकरण हैं, जिनमें से 6 स्वतंत्र गैर-तुच्छ समीकरण हैं, जो विभिन्न तनाव घटकों से संबंधित हैं। इन्हें इंडेक्स नोटेशन में इस प्रकार व्यक्त किया जाता है:
स्ट्रेस टेन्सर के छह स्वतंत्र घटक हैं जिन्हें निर्धारित करने की आवश्यकता है, फिर भी विस्थापन सूत्रीकरण में, विस्थापन वेक्टर के केवल तीन घटक हैं जिन्हें निर्धारित करने की आवश्यकता है। इसका मतलब यह है कि स्वतंत्रता की डिग्री की संख्या को तीन तक कम करने के लिए कुछ बाधाएं हैं जिन्हें तनाव टेंसर पर रखा जाना चाहिए। संवैधानिक समीकरणों का उपयोग करते हुए, इन बाधाओं को सीधे संबंधित बाधाओं से प्राप्त किया जाता है, जो तनाव टेंसर के लिए धारण करना चाहिए, जिसमें छह स्वतंत्र घटक भी होते हैं। विस्थापन सदिश क्षेत्र के कार्य के रूप में तनाव टेन्सर पर बाधाएं सीधे तनाव टेंसर की परिभाषा से व्युत्पन्न होती हैं, जिसका अर्थ है कि ये बाधाएं कोई नई अवधारणा या जानकारी पेश नहीं करती हैं। यह तनाव टेंसर पर बाधाएं हैं जिन्हें सबसे आसानी से समझा जा सकता है। यदि लोचदार माध्यम को अप्रतिबंधित अवस्था में असीम घनों के सेट के रूप में देखा जाता है, तो माध्यम के तनावग्रस्त होने के बाद, मनमाना तनाव टेंसर को ऐसी स्थिति उत्पन्न करनी चाहिए जिसमें विकृत घन अभी भी अतिव्यापी बिना साथ फिट होते हैं। दूसरे शब्दों में, किसी दिए गए तनाव के लिए, निरंतर सदिश क्षेत्र (विस्थापन) मौजूद होना चाहिए जिससे उस तनाव टेंसर को प्राप्त किया जा सके। तनाव टेंसर पर बाधाएं जो यह सुनिश्चित करने के लिए आवश्यक हैं कि यह मामला संत वेनेंट द्वारा खोजा गया था, और उन्हें संत-वेनेंट की अनुकूलता की स्थिति कहा जाता है। ये 81 समीकरण हैं, जिनमें से 6 स्वतंत्र गैर-तुच्छ समीकरण हैं, जो विभिन्न तनाव घटकों से संबंधित हैं। इन्हें इंडेक्स नोटेशन में इस प्रकार व्यक्त किया जाता है:
<math display="block">\varepsilon_{ij,km}+\varepsilon_{km,ij}-\varepsilon_{ik,jm}-\varepsilon_{jm,ik}=0.</math>
<math display="block">\varepsilon_{ij,km}+\varepsilon_{km,ij}-\varepsilon_{ik,jm}-\varepsilon_{jm,ik}=0.</math>
इंजीनियरिंग संकेतन में, वे हैं: <math display="block">\begin{align}
इंजीनियरिंग संकेतन में, वे हैं: <math display="block">\begin{align}
Line 173: Line 172:
विशेष स्थिति में जहां शरीर बल सजातीय होता है, उपरोक्त समीकरण कम हो जाते हैं<ref name="tribonet">{{Cite news| url=http://www.tribonet.org/wiki/elastic-deformation/ |title=लोचदार विकृति|last=tribonet|date=2017-02-16 | newspaper=Tribology |access-date=2017-02-16 | language=en-US}}</ref>
विशेष स्थिति में जहां शरीर बल सजातीय होता है, उपरोक्त समीकरण कम हो जाते हैं<ref name="tribonet">{{Cite news| url=http://www.tribonet.org/wiki/elastic-deformation/ |title=लोचदार विकृति|last=tribonet|date=2017-02-16 | newspaper=Tribology |access-date=2017-02-16 | language=en-US}}</ref>
<math display="block"> (1+\nu)\sigma_{ij,kk}+\sigma_{kk,ij}=0.</math>
<math display="block"> (1+\nu)\sigma_{ij,kk}+\sigma_{kk,ij}=0.</math>
इस स्थिति में अनुकूलता के लिए एक आवश्यक, लेकिन अपर्याप्त शर्त है <math>\boldsymbol{\nabla}^4\boldsymbol{\sigma} = \boldsymbol{0}</math> या <math>\sigma_{ij,kk\ell\ell} = 0</math>.<ref name=Slau/>
इस स्थिति में अनुकूलता के लिए आवश्यक, लेकिन अपर्याप्त शर्त है <math>\boldsymbol{\nabla}^4\boldsymbol{\sigma} = \boldsymbol{0}</math> या <math>\sigma_{ij,kk\ell\ell} = 0</math>.<ref name=Slau/>


ये बाधाएं, संतुलन समीकरण (या इलास्टोडायनामिक्स के लिए गति के समीकरण) के साथ तनाव टेंसर क्षेत्र की गणना की अनुमति देती हैं। एक बार इन समीकरणों से तनाव क्षेत्र की गणना हो जाने के बाद, उपभेदों को संवैधानिक समीकरणों से और विस्थापन क्षेत्र को तनाव-विस्थापन समीकरणों से प्राप्त किया जा सकता है।
ये बाधाएं, संतुलन समीकरण (या इलास्टोडायनामिक्स के लिए गति के समीकरण) के साथ तनाव टेंसर क्षेत्र की गणना की अनुमति देती हैं। बार इन समीकरणों से तनाव क्षेत्र की गणना हो जाने के बाद, उपभेदों को संवैधानिक समीकरणों से और विस्थापन क्षेत्र को तनाव-विस्थापन समीकरणों से प्राप्त किया जा सकता है।


एक वैकल्पिक समाधान तकनीक तनाव टेंसर को [[तनाव कार्य]]ों के संदर्भ में व्यक्त करना है जो स्वचालित रूप से संतुलन समीकरण के समाधान का उत्पादन करता है। तनाव कार्य तब एक एकल अंतर समीकरण का पालन करते हैं जो संगतता समीकरणों से मेल खाता है।
एक वैकल्पिक समाधान तकनीक तनाव टेंसर को [[तनाव कार्य]]ों के संदर्भ में व्यक्त करना है जो स्वचालित रूप से संतुलन समीकरण के समाधान का उत्पादन करता है। तनाव कार्य तब एकल अंतर समीकरण का पालन करते हैं जो संगतता समीकरणों से मेल खाता है।


==== इलास्टोस्टैटिक मामलों के लिए समाधान ====
==== इलास्टोस्टैटिक मामलों के लिए समाधान ====


===== थॉमसन का समाधान - एक अनंत आइसोट्रोपिक माध्यम में बिंदु बल =====
===== थॉमसन का समाधान - अनंत आइसोट्रोपिक माध्यम में बिंदु बल =====


नेवियर-कॉची या इलास्टोस्टैटिक समीकरण का सबसे महत्वपूर्ण समाधान अनंत समस्थानिक माध्यम में एक बिंदु पर अभिनय करने वाले बल के लिए है। यह समाधान 1848 (थॉमसन 1848) में विलियम थॉमसन, प्रथम बैरन केल्विन (बाद में लॉर्ड केल्विन) द्वारा खोजा गया था। यह समाधान [[इलेक्ट्रोस्टाटिक्स]] में कूलम्ब के कानून का अनुरूप है। लैंडौ और लाइफशिट्ज में एक व्युत्पत्ति दी गई है।<ref name=LL>{{cite book |title=लोच का सिद्धांत|edition=3rd|last=Landau |first=L.D. |author-link=Lev Landau |author2=Lifshitz, E. M. |author-link2=Evgeny Lifshitz  |year=1986 |publisher=Butterworth Heinemann |location=Oxford, England |isbn=0-7506-2633-X }}</ref>{{rp|§8}} परिभाषित करना
नेवियर-कॉची या इलास्टोस्टैटिक समीकरण का सबसे महत्वपूर्ण समाधान अनंत समस्थानिक माध्यम में बिंदु पर अभिनय करने वाले बल के लिए है। यह समाधान 1848 (थॉमसन 1848) में विलियम थॉमसन, प्रथम बैरन केल्विन (बाद में लॉर्ड केल्विन) द्वारा खोजा गया था। यह समाधान [[इलेक्ट्रोस्टाटिक्स]] में कूलम्ब के कानून का अनुरूप है। लैंडौ और लाइफशिट्ज में व्युत्पत्ति दी गई है।<ref name=LL>{{cite book |title=लोच का सिद्धांत|edition=3rd|last=Landau |first=L.D. |author-link=Lev Landau |author2=Lifshitz, E. M. |author-link2=Evgeny Lifshitz  |year=1986 |publisher=Butterworth Heinemann |location=Oxford, England |isbn=0-7506-2633-X }}</ref>{{rp|§8}} परिभाषित करना
<math display="block">a = 1-2\nu</math>
<math display="block">a = 1-2\nu</math>
<math display="block">b = 2(1-\nu) = a+1</math>
<math display="block">b = 2(1-\nu) = a+1</math>
कहाँ <math>\nu</math> पोइसन का अनुपात है, समाधान के रूप में व्यक्त किया जा सकता है <math display="block">u_i = G_{ik} F_k</math> कहाँ <math>F_k</math> बल वेक्टर बिंदु पर लागू किया जा रहा है, और <math>G_{ik}</math> एक टेंसर ग्रीन का कार्य है जिसे कार्टेशियन निर्देशांक में लिखा जा सकता है:
कहाँ <math>\nu</math> पोइसन का अनुपात है, समाधान के रूप में व्यक्त किया जा सकता है <math display="block">u_i = G_{ik} F_k</math> कहाँ <math>F_k</math> बल वेक्टर बिंदु पर लागू किया जा रहा है, और <math>G_{ik}</math> टेंसर ग्रीन का कार्य है जिसे कार्टेशियन निर्देशांक में लिखा जा सकता है:
<math display="block">G_{ik} = \frac{1}{4\pi\mu r} \left[ \left(1 - \frac{1}{2b}\right) \delta_{ik} + \frac{1}{2b} \frac{x_i x_k}{r^2} \right]</math>
<math display="block">G_{ik} = \frac{1}{4\pi\mu r} \left[ \left(1 - \frac{1}{2b}\right) \delta_{ik} + \frac{1}{2b} \frac{x_i x_k}{r^2} \right]</math>
इसे संक्षेप में इस प्रकार भी लिखा जा सकता है:
इसे संक्षेप में इस प्रकार भी लिखा जा सकता है:
Line 215: Line 214:
बिंदु बल के लिए विस्थापन को बेलनाकार निर्देशांक में लिखना विशेष रूप से सहायक होता है <math>F_z</math> z- अक्ष के साथ निर्देशित। परिभाषित <math>\hat{\boldsymbol{\rho}}</math> और <math>\hat{\mathbf{z}}</math> इकाई वैक्टर के रूप में <math>\rho</math> और <math>z</math> निर्देश क्रमशः उपज:
बिंदु बल के लिए विस्थापन को बेलनाकार निर्देशांक में लिखना विशेष रूप से सहायक होता है <math>F_z</math> z- अक्ष के साथ निर्देशित। परिभाषित <math>\hat{\boldsymbol{\rho}}</math> और <math>\hat{\mathbf{z}}</math> इकाई वैक्टर के रूप में <math>\rho</math> और <math>z</math> निर्देश क्रमशः उपज:
<math display="block">\mathbf{u} = \frac{F_z}{4\pi\mu r} \left[\frac{1}{4(1-\nu)} \, \frac{\rho z}{r^2} \hat{\boldsymbol{\rho}} + \left(1-\frac{1}{4(1-\nu)}\,\frac{\rho^2}{r^2}\right)\hat{\mathbf{z}}\right]</math>
<math display="block">\mathbf{u} = \frac{F_z}{4\pi\mu r} \left[\frac{1}{4(1-\nu)} \, \frac{\rho z}{r^2} \hat{\boldsymbol{\rho}} + \left(1-\frac{1}{4(1-\nu)}\,\frac{\rho^2}{r^2}\right)\hat{\mathbf{z}}\right]</math>
यह देखा जा सकता है कि बल की दिशा में विस्थापन का एक घटक है, जो कम हो जाता है, जैसा कि इलेक्ट्रोस्टैटिक्स में क्षमता के मामले में होता है, जैसे बड़े r के लिए 1/r। एक अतिरिक्त ρ-निर्देशित घटक भी है।
यह देखा जा सकता है कि बल की दिशा में विस्थापन का घटक है, जो कम हो जाता है, जैसा कि इलेक्ट्रोस्टैटिक्स में क्षमता के मामले में होता है, जैसे बड़े r के लिए 1/r। अतिरिक्त ρ-निर्देशित घटक भी है।


===== Boussinesq-Cerruti समाधान - एक अनंत आइसोट्रोपिक अर्ध-स्थान के मूल में बिंदु बल =====
===== Boussinesq-Cerruti समाधान - अनंत आइसोट्रोपिक अर्ध-स्थान के मूल में बिंदु बल =====
एक अन्य उपयोगी समाधान एक बिंदु बल का है जो एक अनंत आधे स्थान की सतह पर कार्य करता है। यह Boussinesq द्वारा प्राप्त किया गया था<ref>{{cite book |title= Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques |last=Boussinesq|first=Joseph |author-link=Joseph Boussinesq |year=1885 |publisher=Gauthier-Villars |location=Paris, France |url=http://name.umdl.umich.edu/ABV5032.0001.001 }}</ref> स्पर्शरेखा बल के लिए सामान्य बल और सेरुति के लिए और लैंडौ और लाइफशिट्ज में एक व्युत्पत्ति दी गई है।<ref name=LL/>{{rp|§8}} इस मामले में, समाधान को फिर से हरे रंग के टेंसर के रूप में लिखा जाता है जो अनंत पर शून्य हो जाता है, और सतह पर सामान्य तनाव टेंसर का घटक गायब हो जाता है। यह समाधान कार्टेशियन निर्देशांक में लिखा जा सकता है [याद रखें: <math>a=(1-2\nu)</math> और <math>b=2(1-\nu)</math>, <math>\nu</math> = प्वासों का अनुपात]:
एक अन्य उपयोगी समाधान बिंदु बल का है जो अनंत आधे स्थान की सतह पर कार्य करता है। यह Boussinesq द्वारा प्राप्त किया गया था<ref>{{cite book |title= Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques |last=Boussinesq|first=Joseph |author-link=Joseph Boussinesq |year=1885 |publisher=Gauthier-Villars |location=Paris, France |url=http://name.umdl.umich.edu/ABV5032.0001.001 }}</ref> स्पर्शरेखा बल के लिए सामान्य बल और सेरुति के लिए और लैंडौ और लाइफशिट्ज में व्युत्पत्ति दी गई है।<ref name=LL/>{{rp|§8}} इस मामले में, समाधान को फिर से हरे रंग के टेंसर के रूप में लिखा जाता है जो अनंत पर शून्य हो जाता है, और सतह पर सामान्य तनाव टेंसर का घटक गायब हो जाता है। यह समाधान कार्टेशियन निर्देशांक में लिखा जा सकता है [याद रखें: <math>a=(1-2\nu)</math> और <math>b=2(1-\nu)</math>, <math>\nu</math> = प्वासों का अनुपात]:


<math display="block">G_{ik} = \frac{1}{4\pi\mu} \begin{bmatrix}
<math display="block">G_{ik} = \frac{1}{4\pi\mu} \begin{bmatrix}
Line 242: Line 241:


=== विस्थापन के संदर्भ में इलास्टोडायनामिक्स ===
=== विस्थापन के संदर्भ में इलास्टोडायनामिक्स ===
{{Expand section|more principles, a brief explanation to each type of wave|discuss=Talk:Linear elasticity#New section needed|date=September 2010}}
इलास्टोडायनामिक्स लोचदार तरंगों का अध्ययन है और इसमें समय में भिन्नता के साथ रैखिक लोच शामिल है। लोचदार तरंग प्रकार की [[यांत्रिक तरंग]] है जो लोचदार या चिपचिपापन सामग्री में फैलती है। सामग्री की लोच लहर की बहाली शक्ति प्रदान करती है। जब वे [[भूकंप]] या अन्य गड़बड़ी के परिणामस्वरूप पृथ्वी में उत्पन्न होती हैं, तो लोचदार तरंगों को आमतौर पर भूकंपीय तरंगें कहा जाता है।
इलास्टोडायनामिक्स लोचदार तरंगों का अध्ययन है और इसमें समय में भिन्नता के साथ रैखिक लोच शामिल है। एक लोचदार तरंग एक प्रकार की [[यांत्रिक तरंग]] है जो लोचदार या चिपचिपापन सामग्री में फैलती है। सामग्री की लोच लहर की बहाली शक्ति प्रदान करती है। जब वे [[भूकंप]] या अन्य गड़बड़ी के परिणामस्वरूप पृथ्वी में उत्पन्न होती हैं, तो लोचदार तरंगों को आमतौर पर भूकंपीय तरंगें कहा जाता है।


रैखिक संवेग समीकरण केवल एक अतिरिक्त जड़त्वीय पद के साथ संतुलन समीकरण है:
रैखिक संवेग समीकरण केवल अतिरिक्त जड़त्वीय पद के साथ संतुलन समीकरण है:
<math display="block"> \sigma_{ji,j}+ F_i = \rho\,\ddot{u}_i = \rho \, \partial_{tt} u_i.</math>
<math display="block"> \sigma_{ji,j}+ F_i = \rho\,\ddot{u}_i = \rho \, \partial_{tt} u_i.</math>
यदि सामग्री अनिसोट्रोपिक हुक के नियम द्वारा नियंत्रित होती है (पूरी सामग्री में कठोरता टेंसर सजातीय के साथ), तो एक इलास्टोडायनामिक्स का विस्थापन समीकरण प्राप्त करता है:
यदि सामग्री अनिसोट्रोपिक हुक के नियम द्वारा नियंत्रित होती है (पूरी सामग्री में कठोरता टेंसर सजातीय के साथ), तो इलास्टोडायनामिक्स का विस्थापन समीकरण प्राप्त करता है:
<math display="block">\left( C_{ijkl} u_{(k},_{l)}\right) ,_{j}+F_{i}=\rho \ddot{u}_{i}.</math>
<math display="block">\left( C_{ijkl} u_{(k},_{l)}\right) ,_{j}+F_{i}=\rho \ddot{u}_{i}.</math>
यदि सामग्री आइसोटोपिक और सजातीय है, तो नेवियर-कॉची समीकरण प्राप्त होता है:
यदि सामग्री आइसोटोपिक और सजातीय है, तो नेवियर-कॉची समीकरण प्राप्त होता है:
Line 274: Line 272:


=== तनाव के संदर्भ में इलास्टोडायनामिक्स ===
=== तनाव के संदर्भ में इलास्टोडायनामिक्स ===
गवर्निंग समीकरणों से विस्थापन और तनाव के उन्मूलन से इलास्टोडायनामिक्स के इग्नाज़ाक समीकरण की ओर जाता है<ref name=OS>[[Ostoja-Starzewski, M.]], (2018), ''Ignaczak equation of elastodynamics'', Mathematics and Mechanics of Solids. {{doi|10.1177/1081286518757284}}</ref>
गवर्निंग समीकरणों से विस्थापन और तनाव के उन्मूलन से इलास्टोडायनामिक्स के इग्नाज़ाक समीकरण की ओर जाता है<ref name="OS">[[Ostoja-Starzewski, M.]], (2018), ''Ignaczak equation of elastodynamics'', Mathematics and Mechanics of Solids. {{doi|10.1177/1081286518757284}}</ref>
<math display="block">\left( \rho ^{-1} \sigma _{(ik},_{k}\right) ,_{j)} - S_{ijkl} \ddot{\sigma}_{kl} + \left( \rho ^{-1} F_{(i}\right) ,_{j)} = 0.</math>
<math display="block">\left( \rho ^{-1} \sigma _{(ik},_{k}\right) ,_{j)} - S_{ijkl} \ddot{\sigma}_{kl} + \left( \rho ^{-1} F_{(i}\right) ,_{j)} = 0.</math>
स्थानीय आइसोट्रॉपी के मामले में, यह कम हो जाता है
स्थानीय आइसोट्रॉपी के मामले में, यह कम हो जाता है
Line 280: Line 278:
\ddot{\sigma}_{ij} - \frac{\lambda }{3 \lambda +2\mu }\ddot{\sigma}_{kk}\delta
\ddot{\sigma}_{ij} - \frac{\lambda }{3 \lambda +2\mu }\ddot{\sigma}_{kk}\delta
_{ij}\right) +\left( \rho ^{-1} F_{(i}\right) ,_{j)} = 0. </math>
_{ij}\right) +\left( \rho ^{-1} F_{(i}\right) ,_{j)} = 0. </math>
इस फॉर्मूलेशन की प्रमुख विशेषताओं में शामिल हैं: (1) अनुपालन के ग्रेडियेंट से बचा जाता है लेकिन द्रव्यमान घनत्व के ग्रेडियेंट पेश करता है; (2) यह परिवर्तनशील सिद्धांत से व्युत्पन्न है; (3) यह कर्षण प्रारंभिक-सीमा मूल्य समस्याओं से निपटने के लिए फायदेमंद है, (4) लोचदार तरंगों के एक तन्य वर्गीकरण की अनुमति देता है, (5) लोचदार तरंग प्रसार समस्याओं में अनुप्रयोगों की एक श्रृंखला प्रदान करता है; (6) विभिन्न प्रकार के इंटरेक्टिंग क्षेत्रों (थर्मोलेस्टिक, द्रव-संतृप्त झरझरा, पीजोइलेक्ट्रो-इलास्टिक ...) के साथ-साथ नॉनलाइनियर मीडिया के साथ शास्त्रीय या माइक्रोपोलर ठोस की गतिशीलता तक बढ़ाया जा सकता है।
इस फॉर्मूलेशन की प्रमुख विशेषताओं में शामिल हैं: (1) अनुपालन के ग्रेडियेंट से बचा जाता है लेकिन द्रव्यमान घनत्व के ग्रेडियेंट पेश करता है; (2) यह परिवर्तनशील सिद्धांत से व्युत्पन्न है; (3) यह कर्षण प्रारंभिक-सीमा मूल्य समस्याओं से निपटने के लिए फायदेमंद है, (4) लोचदार तरंगों के तन्य वर्गीकरण की अनुमति देता है, (5) लोचदार तरंग प्रसार समस्याओं में अनुप्रयोगों की श्रृंखला प्रदान करता है; (6) विभिन्न प्रकार के इंटरेक्टिंग क्षेत्रों (थर्मोलेस्टिक, द्रव-संतृप्त झरझरा, पीजोइलेक्ट्रो-इलास्टिक ...) के साथ-साथ नॉनलाइनियर मीडिया के साथ शास्त्रीय या माइक्रोपोलर ठोस की गतिशीलता तक बढ़ाया जा सकता है।


== अनिसोट्रोपिक सजातीय मीडिया ==
== अनिसोट्रोपिक सजातीय मीडिया ==
Line 286: Line 284:
{{Main|Hooke's law}}
{{Main|Hooke's law}}


अनिसोट्रोपिक मीडिया के लिए, कठोरता टेंसर <math> C_{ijkl}</math> अधिक जटिल है। तनाव टेंसर की समरूपता <math>\sigma_{ij}</math> इसका मतलब है कि तनाव के अधिकतम 6 अलग-अलग तत्व हैं। इसी प्रकार, तनाव टेन्सर के अधिक से अधिक 6 विभिन्न तत्व होते हैं <math>\varepsilon_{ij}\,\!</math>. इसलिए चौथे क्रम की कठोरता टेन्सर <math> C_{ijkl}</math> मैट्रिक्स के रूप में लिखा जा सकता है <math>C_{\alpha \beta}</math> (दूसरे क्रम का एक टेंसर)। Voigt संकेतन टेन्सर सूचकांकों के लिए मानक मानचित्रण है,
अनिसोट्रोपिक मीडिया के लिए, कठोरता टेंसर <math> C_{ijkl}</math> अधिक जटिल है। तनाव टेंसर की समरूपता <math>\sigma_{ij}</math> इसका मतलब है कि तनाव के अधिकतम 6 अलग-अलग तत्व हैं। इसी प्रकार, तनाव टेन्सर के अधिक से अधिक 6 विभिन्न तत्व होते हैं <math>\varepsilon_{ij}\,\!</math>. इसलिए चौथे क्रम की कठोरता टेन्सर <math> C_{ijkl}</math> मैट्रिक्स के रूप में लिखा जा सकता है <math>C_{\alpha \beta}</math> (दूसरे क्रम का टेंसर)। Voigt संकेतन टेन्सर सूचकांकों के लिए मानक मानचित्रण है,
<math display="block">  
<math display="block">  
\begin{matrix}
\begin{matrix}
Line 337: Line 335:
  0  & 0 & 0 & 0 & 0  & C_{66}  
  0  & 0 & 0 & 0 & 0  & C_{66}  
\end{bmatrix}.</math>
\end{bmatrix}.</math>
जब अनुप्रस्थ आइसोट्रॉपी कमजोर होती है (अर्थात आइसोट्रॉपी के करीब), [[थॉमसन पैरामीटर]] का उपयोग करने वाला एक वैकल्पिक पैरामीट्रिजेशन, तरंग गति के सूत्रों के लिए सुविधाजनक होता है।
जब अनुप्रस्थ आइसोट्रॉपी कमजोर होती है (अर्थात आइसोट्रॉपी के करीब), [[थॉमसन पैरामीटर]] का उपयोग करने वाला वैकल्पिक पैरामीट्रिजेशन, तरंग गति के सूत्रों के लिए सुविधाजनक होता है।


ऑर्थोट्रॉपी (एक ईंट की समरूपता) के मामले में 9 स्वतंत्र तत्व हैं:
ऑर्थोट्रॉपी (एक ईंट की समरूपता) के मामले में 9 स्वतंत्र तत्व हैं:
Line 348: Line 346:
  0  & 0 & 0 & 0 & 0 & C_{66}  
  0  & 0 & 0 & 0 & 0 & C_{66}  
\end{bmatrix}.</math>
\end{bmatrix}.</math>
=== इलास्टोडायनामिक्स ===
=== इलास्टोडायनामिक्स ===
अनिसोट्रोपिक मीडिया के लिए इलास्टोडायनामिक वेव समीकरण को इस रूप में व्यक्त किया जा सकता है
अनिसोट्रोपिक मीडिया के लिए इलास्टोडायनामिक वेव समीकरण को इस रूप में व्यक्त किया जा सकता है
<math display="block"> (\delta_{kl} \partial_{tt} - A_{kl}[\nabla])\, u_l = \frac{1}{\rho} F_k</math>
<math display="block"> (\delta_{kl} \partial_{tt} - A_{kl}[\nabla])\, u_l = \frac{1}{\rho} F_k</math>
कहाँ
कहाँ<math display="block"> A_{kl}[\nabla]=\frac{1}{\rho} \, \partial_i \, C_{iklj} \, \partial_j</math>ध्वनिक अंतर ऑपरेटर है, और <math> \delta_{kl}</math> क्रोनकर डेल्टा है।
<math display="block"> A_{kl}[\nabla]=\frac{1}{\rho} \, \partial_i \, C_{iklj} \, \partial_j</math>
ध्वनिक अंतर ऑपरेटर है, और <math> \delta_{kl}</math> क्रोनकर डेल्टा है।


==== समतल तरंगें और क्रिस्टोफेल समीकरण ====
==== समतल तरंगें और क्रिस्टोफेल समीकरण ====
Line 361: Line 355:
<math display="block"> \mathbf{u}[\mathbf{x}, \, t] = U[\mathbf{k} \cdot  \mathbf{x} - \omega \, t] \, \hat{\mathbf{u}}</math>
<math display="block"> \mathbf{u}[\mathbf{x}, \, t] = U[\mathbf{k} \cdot  \mathbf{x} - \omega \, t] \, \hat{\mathbf{u}}</math>
साथ <math>\hat{\mathbf{u}}\,\!</math> इकाई लंबाई का।
साथ <math>\hat{\mathbf{u}}\,\!</math> इकाई लंबाई का।
यह शून्य बल के साथ तरंग समीकरण का समाधान है, अगर और केवल अगर <math> \omega^2 </math> और <math>\hat{\mathbf{u}}</math> ध्वनिक बीजगणितीय ऑपरेटर के एक आइगेनवैल्यू/ईजेनवेक्टर जोड़ी का गठन करें
यह शून्य बल के साथ तरंग समीकरण का समाधान है, अगर और केवल अगर <math> \omega^2 </math> और <math>\hat{\mathbf{u}}</math> ध्वनिक बीजगणितीय ऑपरेटर के आइगेनवैल्यू/ईजेनवेक्टर जोड़ी का गठन करें
<math display="block"> A_{kl}[\mathbf{k}]=\frac{1}{\rho} \, k_i \, C_{iklj} \, k_j.</math>
<math display="block"> A_{kl}[\mathbf{k}]=\frac{1}{\rho} \, k_i \, C_{iklj} \, k_j.</math>
इस प्रसार की स्थिति (जिसे 'क्रिस्टोफेल समीकरण' के रूप में भी जाना जाता है) को इस रूप में लिखा जा सकता है
इस प्रसार की स्थिति (जिसे 'क्रिस्टोफेल समीकरण' के रूप में भी जाना जाता है) को इस रूप में लिखा जा सकता है
Line 390: Line 384:
== संदर्भ ==
== संदर्भ ==
{{Reflist}}
{{Reflist}}
{{Authority control}}


{{DEFAULTSORT:Linear Elasticity}}[[Category: लोच (भौतिकी)]] [[Category: ठोस यांत्रिकी]] [[Category: आवाज़]]  
{{DEFAULTSORT:Linear Elasticity}}[[Category: लोच (भौतिकी)]] [[Category: ठोस यांत्रिकी]] [[Category: आवाज़]]  

Revision as of 21:26, 28 February 2023

रैखिक लोच गणितीय मॉडल है कि कैसे निर्धारित लोडिंग स्थितियों के कारण ठोस वस्तुएं विरूपण (भौतिकी) और आंतरिक रूप से तनाव (यांत्रिकी) बन जाती हैं। यह अधिक सामान्य परिमित तनाव सिद्धांत और सातत्य यांत्रिकी की शाखा का सरलीकरण है।

रेखीय लोच की मौलिक रेखीयकरण धारणाएं हैं: अतिसूक्ष्म तनाव सिद्धांत या छोटे विरूपण (या तनाव) और तनाव और तनाव के घटकों के बीच रैखिक संबंध। इसके अलावा रैखिक लोच केवल तनाव वाले राज्यों के लिए मान्य है जो यील्ड (इंजीनियरिंग) का उत्पादन नहीं करते हैं।

ये धारणाएँ कई इंजीनियरिंग सामग्री और इंजीनियरिंग डिज़ाइन परिदृश्यों के लिए उचित हैं। रैखिक लोच इसलिए संरचनात्मक विश्लेषण और इंजीनियरिंग डिजाइन में बड़े पैमाने पर उपयोग किया जाता है, अक्सर परिमित तत्व विश्लेषण की सहायता से।

गणितीय सूत्रीकरण

एक रैखिक लोचदार सीमा मूल्य समस्या को नियंत्रित करने वाले समीकरण संवेग के संरक्षण के लिए तीन टेन्सर आंशिक अंतर समीकरणों और छह अति सूक्ष्म तनाव-विस्थापन क्षेत्र (यांत्रिकी) संबंधों पर आधारित हैं। अवकल समीकरणों की प्रणाली रैखिक समीकरण बीजगणितीय संघटक समीकरणों के सेट द्वारा पूरी की जाती है।

डायरेक्ट टेंसर फॉर्म

प्रत्यक्ष टेंसर रूप में जो समन्वय प्रणाली की पसंद से स्वतंत्र है, ये शासकीय समीकरण हैं:[1]

  • संवेग#किसी निकाय के लिए रेखीय संवेग, जो न्यूटन के गति के नियमों की अभिव्यक्ति है#न्यूटन का दूसरा नियम|न्यूटन का दूसरा नियम:
  • इनफिनिटिमल स्ट्रेन थ्योरी|स्ट्रेन-विस्थापन समीकरण:
  • संवैधानिक समीकरण। लोचदार सामग्री के लिए, हुक का नियम भौतिक व्यवहार का प्रतिनिधित्व करता है और अज्ञात तनावों और तनावों से संबंधित है। हुक के नियम का सामान्य समीकरण है

कहाँ कॉची तनाव टेन्सर है, अतिसूक्ष्म तनाव टेंसर है, विस्थापन (वेक्टर) है, चौथा क्रम कठोरता टेन्सर है, प्रति इकाई आयतन शरीर बल है, द्रव्यमान घनत्व है, नाबला ऑपरेटर का प्रतिनिधित्व करता है, स्थानान्तरण का प्रतिनिधित्व करता है, समय के संबंध में दूसरी व्युत्पत्ति का प्रतिनिधित्व करता है, और दो दूसरे क्रम के टेंसरों का आंतरिक उत्पाद है (दोहराए गए सूचकांकों पर योग निहित है)।

कार्तीय समन्वय रूप

Note: the Einstein summation convention of summing on repeated indices is used below.

एक आयताकार कार्टेशियन समन्वय प्रणाली के संबंध में घटकों के संदर्भ में व्यक्त, रैखिक लोच के शासकीय समीकरण हैं:[1]

  • कॉची संवेग समीकरण:
    जहां सबस्क्रिप्ट के लिए आशुलिपि है और दर्शाता है , कॉची स्ट्रेस (भौतिकी) टेंसर है, शरीर बल घनत्व है, द्रव्यमान घनत्व है, और विस्थापन है। ये रेखीय समीकरणों की 3 प्रणाली हैं 6 स्वतंत्र अज्ञात (तनाव) के साथ स्वतंत्रता समीकरण। इंजीनियरिंग संकेतन में, वे हैं:
  • विरूपण (यांत्रिकी)#तनाव|तनाव-विस्थापन समीकरण:
    कहाँ तनाव है। ये 9 स्वतंत्र अज्ञात (स्ट्रेन और विस्थापन) के साथ तनाव और विस्थापन से संबंधित 6 स्वतंत्र समीकरण हैं। इंजीनियरिंग संकेतन में, वे हैं:
  • संवैधानिक समीकरण। हुक के नियम का समीकरण है:
    कहाँ कठोरता टेंसर है। ये तनाव और विकृति से संबंधित 6 स्वतंत्र समीकरण हैं। तनाव और तनाव टेंसरों की समरूपता की आवश्यकता से कई लोचदार स्थिरांक की समानता हो जाती है, जिससे विभिन्न तत्वों की संख्या 21 हो जाती है[2] .

एक आइसोटोपिक-सजातीय मीडिया के लिए इलास्टोस्टेटिक सीमा मूल्य समस्या 15 स्वतंत्र समीकरणों और समान संख्या में अज्ञात (3 संतुलन समीकरण, 6 तनाव-विस्थापन समीकरण, और 6 संवैधानिक समीकरण) की प्रणाली है। सीमा शर्तों को निर्दिष्ट करते हुए, सीमा मूल्य समस्या पूरी तरह परिभाषित है। प्रणाली को हल करने के लिए सीमा मान समस्या की सीमा स्थितियों के अनुसार दो दृष्टिकोण अपनाए जा सकते हैं: विस्थापन सूत्रीकरण, और तनाव सूत्रीकरण।

बेलनाकार निर्देशांक रूप

बेलनाकार निर्देशांक में () गति के समीकरण हैं[1]

तनाव-विस्थापन संबंध हैं
और संवैधानिक संबंध कार्टेशियन निर्देशांक के समान हैं, सिवाय इसके कि सूचकांक ,, अब के लिए खड़े हो जाओ ,,, क्रमश।

गोलाकार निर्देशांक रूप

गोलाकार निर्देशांक में () गति के समीकरण हैं[1]

गोलाकार निर्देशांक (r, θ, φ) जैसा कि आमतौर पर भौतिकी में उपयोग किया जाता है: रेडियल दूरी r, ध्रुवीय कोण θ (थीटा), और अज़ीमुथल कोण φ (phi)। प्रतीक ρ (रो) अक्सर आर के बजाय प्रयोग किया जाता है।

गोलाकार निर्देशांक में तनाव टेन्सर है


(ए) आइसोट्रोपिक (इन) सजातीय मीडिया

हूक के नियम आइसोट्रोपिक सामग्री मीडिया में, कठोरता टेन्सर तनावों (परिणामस्वरूप आंतरिक तनावों) और उपभेदों (परिणामस्वरूप विकृतियों) के बीच संबंध देता है। आइसोटोपिक माध्यम के लिए, कठोरता टेंसर की कोई पसंदीदा दिशा नहीं होती है: लागू बल समान विस्थापन (बल की दिशा के सापेक्ष) देगा, चाहे जिस दिशा में बल लगाया गया हो। आइसोटोपिक मामले में, कठोरता टेंसर लिखा जा सकता है:[citation needed]

कहाँ क्रोनकर डेल्टा है, K थोक मापांक (या असंपीड़्यता) है, और कतरनी मापांक (या कठोरता) है, दो लोचदार मापांक। यदि माध्यम विषम है, तो आइसोट्रोपिक मॉडल समझदार है यदि या तो माध्यम टुकड़े-टुकड़े-स्थिर या कमजोर रूप से विषम है; दृढ़ता से अमानवीय चिकने मॉडल में, अनिसोट्रॉपी का हिसाब देना पड़ता है। यदि माध्यम सजातीय (रसायन विज्ञान) है, तो लोचदार मोडुली माध्यम में स्थिति से स्वतंत्र होगी। संवैधानिक समीकरण अब इस रूप में लिखा जा सकता है:
यह अभिव्यक्ति तनाव को बाईं ओर अदिश भाग में अलग करती है जो अदिश दबाव से जुड़ा हो सकता है, और दाईं ओर ट्रेसलेस भाग जो कतरनी बलों से जुड़ा हो सकता है। सरल अभिव्यक्ति है:[3][4]
जहां λ लैम पैरामीटर है | लैम का पहला पैरामीटर। चूँकि संवैधानिक समीकरण केवल रेखीय समीकरणों का समूह है, तनाव को तनाव के कार्य के रूप में व्यक्त किया जा सकता है:[5]
जो फिर से, बाईं ओर अदिश भाग और दाईं ओर ट्रेसलेस कतरनी भाग है। अधिक केवल:
कहाँ पोइसन का अनुपात है और यंग का मापांक है।

इलास्टोस्टैटिक्स

इलास्टोस्टैटिक्स संतुलन की शर्तों के तहत रैखिक लोच का अध्ययन है, जिसमें लोचदार शरीर पर सभी बलों का योग शून्य होता है, और विस्थापन समय का कार्य नहीं होता है। प्रणाली के लिए गति # रैखिक गति तब होती है

इंजीनियरिंग संकेतन में (कतरनी तनाव के रूप में ताऊ के साथ),

यह खंड केवल आइसोट्रोपिक सजातीय मामले पर चर्चा करेगा।

विस्थापन सूत्रीकरण

इस मामले में, सीमा में हर जगह विस्थापन निर्धारित हैं। इस दृष्टिकोण में, तनाव और तनाव को सूत्रीकरण से समाप्त कर दिया जाता है, विस्थापन को अज्ञात के रूप में शासकीय समीकरणों में हल करने के लिए छोड़ दिया जाता है। सबसे पहले, तनाव-विस्थापन समीकरणों को संवैधानिक समीकरणों (हुक के नियम) में प्रतिस्थापित किया जाता है, अज्ञात के रूप में उपभेदों को हटा दिया जाता है:

विभेद करना (मान लेना और स्थानिक रूप से समान हैं) उपज:
संतुलन समीकरण पैदावार में प्रतिस्थापन:
या (डबल (डमी) (= सारांश) सूचकांक k,k को j,j द्वारा प्रतिस्थापित करना और सूचकांकों को इंटरचेंज करना, ij से, ji के बाद, दूसरे डेरिवेटिव की समरूपता के आधार पर|Schwarz' प्रमेय)
कहाँ और लमे पैरामीटर हैं। इस तरह, केवल अज्ञात ही विस्थापन रह जाता है, इसलिए इस फॉर्मूलेशन का नाम है। इस तरह से प्राप्त नियामक समीकरणों को इलास्टोस्टैटिक समीकरण कहा जाता है, जो नीचे दिए गए 'नेवियर-कॉची समीकरण' का विशेष मामला है।

Derivation of Navier–Cauchy equations in Engineering notation

First, the -direction will be considered. Substituting the strain-displacement equations into the equilibrium equation in the -direction we have

Then substituting these equations into the equilibrium equation in the -direction we have

Using the assumption that and are constant we can rearrange and get:

Following the same procedure for the -direction and -direction we have

These last 3 equations are the Navier–Cauchy equations, which can be also expressed in vector notation as

एक बार विस्थापन क्षेत्र की गणना हो जाने के बाद, विस्थापन को तनाव के समाधान के लिए तनाव-विस्थापन समीकरणों में प्रतिस्थापित किया जा सकता है, जो बाद में तनावों को हल करने के लिए संवैधानिक समीकरणों में उपयोग किया जाता है।

बिहारमोनिक समीकरण

इलास्टोस्टैटिक समीकरण लिखा जा सकता है:

इलास्टोस्टेटिक समीकरण के दोनों पक्षों के विचलन को लेते हुए और यह मानते हुए कि शरीर बलों में शून्य विचलन (डोमेन में सजातीय) है () अपने पास
यह देखते हुए कि सारांशित सूचकांकों का मिलान नहीं होना चाहिए, और यह कि आंशिक डेरिवेटिव कम्यूट करते हैं, दो अंतर शब्द समान दिखाई देते हैं और हमारे पास:
जिससे हम यह निष्कर्ष निकालते हैं कि:
इलास्टोस्टैटिक समीकरण के दोनों पक्षों के लाप्लासियन को लेना, और इसके अलावा मान लेना , अपने पास
अपसरण समीकरण से, बाईं ओर का पहला पद शून्य है (ध्यान दें: फिर से, सारांशित सूचकांकों का मिलान नहीं होना चाहिए) और हमारे पास है:
जिससे हम यह निष्कर्ष निकालते हैं कि:
या, समन्वय मुक्त संकेतन में जो कि सिर्फ बिहारमोनिक समीकरण है .

तनाव सूत्रीकरण

इस मामले में, सतही सीमा पर हर जगह सतही कर्षण निर्धारित हैं। इस दृष्टिकोण में, तनावों और विस्थापनों को समाप्त कर दिया जाता है जिससे तनावों को अज्ञात के रूप में शासकीय समीकरणों में हल किया जा सकता है। बार तनाव क्षेत्र मिल जाने के बाद, तब संरचनात्मक समीकरणों का उपयोग करके उपभेदों को पाया जाता है।

स्ट्रेस टेन्सर के छह स्वतंत्र घटक हैं जिन्हें निर्धारित करने की आवश्यकता है, फिर भी विस्थापन सूत्रीकरण में, विस्थापन वेक्टर के केवल तीन घटक हैं जिन्हें निर्धारित करने की आवश्यकता है। इसका मतलब यह है कि स्वतंत्रता की डिग्री की संख्या को तीन तक कम करने के लिए कुछ बाधाएं हैं जिन्हें तनाव टेंसर पर रखा जाना चाहिए। संवैधानिक समीकरणों का उपयोग करते हुए, इन बाधाओं को सीधे संबंधित बाधाओं से प्राप्त किया जाता है, जो तनाव टेंसर के लिए धारण करना चाहिए, जिसमें छह स्वतंत्र घटक भी होते हैं। विस्थापन सदिश क्षेत्र के कार्य के रूप में तनाव टेन्सर पर बाधाएं सीधे तनाव टेंसर की परिभाषा से व्युत्पन्न होती हैं, जिसका अर्थ है कि ये बाधाएं कोई नई अवधारणा या जानकारी पेश नहीं करती हैं। यह तनाव टेंसर पर बाधाएं हैं जिन्हें सबसे आसानी से समझा जा सकता है। यदि लोचदार माध्यम को अप्रतिबंधित अवस्था में असीम घनों के सेट के रूप में देखा जाता है, तो माध्यम के तनावग्रस्त होने के बाद, मनमाना तनाव टेंसर को ऐसी स्थिति उत्पन्न करनी चाहिए जिसमें विकृत घन अभी भी अतिव्यापी बिना साथ फिट होते हैं। दूसरे शब्दों में, किसी दिए गए तनाव के लिए, निरंतर सदिश क्षेत्र (विस्थापन) मौजूद होना चाहिए जिससे उस तनाव टेंसर को प्राप्त किया जा सके। तनाव टेंसर पर बाधाएं जो यह सुनिश्चित करने के लिए आवश्यक हैं कि यह मामला संत वेनेंट द्वारा खोजा गया था, और उन्हें संत-वेनेंट की अनुकूलता की स्थिति कहा जाता है। ये 81 समीकरण हैं, जिनमें से 6 स्वतंत्र गैर-तुच्छ समीकरण हैं, जो विभिन्न तनाव घटकों से संबंधित हैं। इन्हें इंडेक्स नोटेशन में इस प्रकार व्यक्त किया जाता है:

इंजीनियरिंग संकेतन में, वे हैं: