अनुक्रम सिद्धांत(ऑर्डर थ्योरी)

From Vigyanwiki
Revision as of 11:19, 7 July 2022 by alpha>Indicwiki (Created page with "{{Short description|Branch of mathematics}} {{Outline|Outline of order theory}} {{Use American English|date = March 2019}} {{More footnotes|date=December 2015}} ऑर्ड...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

ऑर्डर थ्योरी गणित की एक शाखा है जो द्विआधारी संबंधों का उपयोग करके आदेश की सहज धारणा की जांच करती है।यह बयानों का वर्णन करने के लिए एक औपचारिक रूपरेखा प्रदान करता है जैसे कि यह उससे कम है या यह पूर्ववर्ती है।यह लेख क्षेत्र का परिचय देता है और बुनियादी परिभाषा प्रदान करता है।ऑर्डर-थ्योरिटिक शब्दों की एक सूची ऑर्डर थ्योरी ग्लोसरी में पाई जा सकती है।

पृष्ठभूमि और प्रेरणा

कंप्यूटर विज्ञान जैसे गणित और संबंधित क्षेत्रों में ऑर्डर हर जगह हैं। प्राथमिक विद्यालय में अक्सर चर्चा की गई पहली आदेश प्राकृतिक संख्याओं पर मानक क्रम है उदा। 2 3 से कम है, 10 5 से अधिक है, या टॉम के पास सैली से कम कुकीज़ हैं? । इस सहज अवधारणा को नंबरों के अन्य सेटों, जैसे कि पूर्णांक और रियल पर आदेशों के लिए बढ़ाया जा सकता है। एक और संख्या से अधिक या उससे कम होने का विचार सामान्य रूप से संख्या प्रणालियों (संख्यात्मक प्रणालियों के साथ तुलना) के मूल अंतर्ज्ञान में से एक है (हालांकि एक आमतौर पर दो संख्याओं के वास्तविक अंतर में भी रुचि रखता है, जो आदेश द्वारा नहीं दिया गया है )। आदेशों के अन्य परिचित उदाहरण एक शब्दकोश में शब्दों का वर्णमाला क्रम और लोगों के एक समूह के भीतर वंशावली वंशावली की वंशावली संपत्ति हैं।

आदेश की धारणा बहुत सामान्य है, संदर्भों से परे फैली हुई है जिसमें अनुक्रम या सापेक्ष मात्रा का तत्काल, सहज ज्ञान युक्त महसूस होता है। अन्य संदर्भों में आदेशों में नियंत्रण या विशेषज्ञता की धारणाओं को पकड़ सकते हैं। अमूर्त रूप से, इस प्रकार के ऑर्डर की मात्रा सबसेट संबंध के लिए होती है, जैसे, बाल रोग विशेषज्ञ चिकित्सक हैं, और सर्कल केवल विशेष-केस दीर्घवृत्त हैं।

कुछ आदेश, जैसे कि प्राकृतिक संख्याओं पर कम-से-से-शब्दों पर वर्णमाला के क्रम में, एक विशेष संपत्ति होती है: प्रत्येक तत्व की तुलना किसी भी अन्य तत्व से की जा सकती है, अर्थात् यह छोटा (पहले) की तुलना में छोटा (बाद में) या समान है। । हालांकि, कई अन्य आदेश नहीं हैं। उदाहरण के लिए सेट के संग्रह पर सबसेट ऑर्डर पर विचार करें: हालांकि पक्षियों का सेट और कुत्तों का सेट जानवरों के सेट के सबसेट हैं, न ही पक्षी और न ही कुत्ते दूसरे के एक सबसेट का गठन करते हैं। उन आदेशों की तरह जो सबसेट-संबंध के संबंध में मौजूद हैं, जिनके पास अतुलनीय तत्व मौजूद हैं, उन्हें आंशिक आदेश कहा जाता है; आदेश जिनके लिए तत्वों की हर जोड़ी तुलनीय है, कुल आदेश हैं।

ऑर्डर सिद्धांत एक सामान्य सेटिंग में ऐसे उदाहरणों से उत्पन्न होने वाले आदेशों के अंतर्ज्ञान को पकड़ता है। यह उन गुणों को निर्दिष्ट करके प्राप्त किया जाता है जो एक संबंध the एक गणितीय आदेश होना चाहिए। यह अधिक अमूर्त दृष्टिकोण बहुत समझ में आता है, क्योंकि कोई भी सामान्य सेटिंग में कई प्रमेय प्राप्त कर सकता है, किसी विशेष आदेश के विवरण पर ध्यान केंद्रित किए बिना। इन अंतर्दृष्टि को तब कई कम अमूर्त अनुप्रयोगों में आसानी से स्थानांतरित किया जा सकता है।

आदेशों के व्यापक व्यावहारिक उपयोग से प्रेरित, कई विशेष प्रकार के ऑर्डर किए गए सेटों को परिभाषित किया गया है, जिनमें से कुछ अपने स्वयं के गणितीय क्षेत्रों में विकसित हुए हैं। इसके अलावा, ऑर्डर थ्योरी खुद को ऑर्डर करने वाले संबंधों के विभिन्न वर्गों तक सीमित नहीं रखता है, लेकिन उनके बीच उचित कार्यों पर भी विचार करता है। कार्यों के लिए एक ऑर्डर थ्योरिटिक प्रॉपर्टी का एक सरल उदाहरण विश्लेषण से आता है जहां मोनोटोन फ़ंक्शन अक्सर पाए जाते हैं।

मूल परिभाषाएँ

यह खंड सेट सिद्धांत, अंकगणित और द्विआधारी संबंधों की अवधारणाओं पर निर्माण करके आदेशित सेट का परिचय देता है।

=== आंशिक रूप से ऑर्डर किए गए सेट ===आदेश विशेष द्विआधारी संबंध हैं। मान लीजिए कि P एक सेट है और यह pay p पर एक संबंध है ('एक सेट पर संबंध' का अर्थ 'इसके निवासियों के बीच संबंध' के लिए लिया जाता है)। तब, एक 'आंशिक आदेश' है यदि यह रिफ्लेक्टिव, एंटीसिमेट्रिक और सकर्मक है, अर्थात्, यदि सभी के लिए, सभी के लिए, बी और सी में, हमारे पास है:

ए (ए (रिफ्लेक्सिटी)
यदि a b और b ≤ a तो a = b (एंटीसिमेट्री)
यदि एक ≤ b और b ≤ c तो a (c (संक्रमण)।

उस पर एक आंशिक आदेश के साथ एक सेट को 'आंशिक रूप से ऑर्डर किए गए सेट', 'पॉसेट', या सिर्फ 'ऑर्डर किए गए सेट' कहा जाता है यदि इच्छित अर्थ स्पष्ट है। इन गुणों की जाँच करके, कोई तुरंत देखता है कि प्राकृतिक संख्या, पूर्णांक, तर्कसंगत संख्या और वास्तविक पर प्रसिद्ध आदेश उपरोक्त अर्थों में सभी आदेश हैं। हालांकि, इन उदाहरणों में अतिरिक्त संपत्ति है कि कोई भी दो तत्व तुलनीय हैं, अर्थात्, सभी ए और बी के लिए, हमारे पास है:

a ≤ b या b ≤ a।

इस संपत्ति के साथ एक आंशिक आदेश को कुल आदेश कहा जाता है। इन आदेशों को 'रैखिक आदेश' या 'चेन' भी कहा जा सकता है। जबकि कई परिचित आदेश रैखिक हैं, सेट पर सबसेट ऑर्डर एक उदाहरण प्रदान करता है जहां यह मामला नहीं है। एक अन्य उदाहरण विभाजन (या इज़-ए-फैक्टर-ऑफ) रिलेशन द्वारा दिया गया है। दो प्राकृतिक संख्याओं के लिए n और m के लिए, हम n | m लिखते हैं यदि n बिना शेष के m को विभाजित करता है। एक आसानी से देखता है कि यह एक आंशिक आदेश देता है। किसी भी सेट पर पहचान संबंध = भी एक आंशिक क्रम है जिसमें प्रत्येक दो अलग -अलग तत्व अतुलनीय होते हैं। यह एकमात्र संबंध भी है जो एक आंशिक आदेश और एक समानता संबंध दोनों है। POSET के कई उन्नत गुण मुख्य रूप से गैर-रैखिक आदेशों के लिए दिलचस्प हैं।

एक स्थिति की कल्पना

60 के सभी विभाजकों के सेट का आंशिक आंशिक, आंशिक रूप से विभाजन द्वारा आदेश दिया गया

HASSE आरेख नेत्रहीन रूप से एक आंशिक आदेश के तत्वों और संबंधों का प्रतिनिधित्व कर सकते हैं।ये ग्राफ ड्रॉइंग हैं जहां कोने पोज़िट के तत्व होते हैं और ऑर्डरिंग रिलेशन को किनारों और कोने की सापेक्ष स्थिति दोनों द्वारा इंगित किया जाता है।आदेशों को नीचे-ऊपर खींचा जाता है: यदि कोई तत्व x (पूर्ववर्ती) y से छोटा है, तो X से y तक एक पथ मौजूद है जो ऊपर की ओर निर्देशित है।यह अक्सर एक दूसरे को पार करने के लिए तत्वों को जोड़ने वाले किनारों के लिए आवश्यक होता है, लेकिन तत्वों को कभी भी एक किनारे के भीतर स्थित नहीं होना चाहिए।एक शिक्षाप्रद व्यायाम प्राकृतिक संख्याओं के सेट के लिए HASSE आरेख को आकर्षित करना है जो 13 के बराबर या बराबर हैं, द्वारा आदेश दिया गया है।(विभाजन संबंध)।

यहां तक कि कुछ अनंत सेटों को एक परिमित उप-क्रम पर एक एलिप्सिस (...) को सुपरइम्पोज़िंग करके आरेखित किया जा सकता है।यह प्राकृतिक संख्याओं के लिए अच्छी तरह से काम करता है, लेकिन यह वास्तविकों के लिए विफल रहता है, जहां 0 के ऊपर कोई तत्काल उत्तराधिकारी नहीं है;हालांकि, काफी बार कोई एक समान प्रकार के आरेख से संबंधित एक अंतर्ज्ञान प्राप्त कर सकता है[vague]

एक आदेश के भीतर विशेष तत्व

आंशिक रूप से ऑर्डर किए गए सेट में कुछ तत्व हो सकते हैं जो एक विशेष भूमिका निभाते हैं। सबसे बुनियादी उदाहरण एक स्थिति के सबसे कम तत्व द्वारा दिया गया है। उदाहरण के लिए, 1 सकारात्मक पूर्णांक का सबसे कम तत्व है और खाली सेट सबसेट ऑर्डर के तहत सबसे कम सेट है। औपचारिक रूप से, एक तत्व एम एक कम से कम तत्व है यदि:

M 'A' ', ऑर्डर के सभी तत्वों के लिए' '।

संकेतन 0 अक्सर कम से कम तत्व के लिए पाया जाता है, तब भी जब कोई संख्या चिंतित नहीं होती है। हालांकि, संख्याओं के सेट पर आदेशों में, यह संकेतन अनुचित या अस्पष्ट हो सकता है, क्योंकि संख्या 0 हमेशा कम से कम नहीं होती है। एक उदाहरण उपरोक्त विभाजन आदेश द्वारा दिया गया है।, जहां 1 सबसे कम तत्व है क्योंकि यह अन्य सभी संख्याओं को विभाजित करता है। इसके विपरीत, 0 वह संख्या है जो अन्य सभी संख्याओं से विभाजित है। इसलिए यह आदेश का सबसे बड़ा तत्व है। कम से कम और सबसे महान तत्वों के लिए अन्य लगातार शब्द नीचे और शीर्ष या शून्य और इकाई है।

कम से कम और महानतम तत्व मौजूद होने में विफल हो सकते हैं, क्योंकि वास्तविक संख्याओं का उदाहरण दिखाता है। लेकिन अगर वे मौजूद हैं, तो वे हमेशा अद्वितीय होते हैं। इसके विपरीत, विभाजन संबंध पर विचार करें | सेट पर {2,3,4,5,6}। यद्यपि इस सेट में न तो ऊपर है और न ही नीचे, तत्व 2, 3, और 5 के नीचे कोई तत्व नहीं है, जबकि 4, 5 और 6 के ऊपर कोई भी ऊपर नहीं है। ऐसे तत्वों को क्रमशः न्यूनतम और अधिकतम कहा जाता है। औपचारिक रूप से, एक तत्व एम न्यूनतम है यदि:

?

And का आदान -प्रदान and के साथ अधिकतमता की परिभाषा को पैदावार करता है। जैसा कि उदाहरण से पता चलता है, कई अधिकतम तत्व हो सकते हैं और कुछ तत्व अधिकतम और न्यूनतम (जैसे 5 ऊपर) दोनों हो सकते हैं। हालांकि, यदि कोई कम से कम तत्व है, तो यह आदेश का एकमात्र न्यूनतम तत्व है। फिर से, अनंत पॉज़िट में अधिकतम तत्व हमेशा मौजूद नहीं होते हैं - किसी दिए गए अनंत सेट के सभी परिमित सबसेट का सेट, जो कि सबसेट समावेश द्वारा आदेश दिया गया है, कई काउंटरएक्सैम्पल्स में से एक प्रदान करता है। कुछ शर्तों के तहत अधिकतम तत्वों के अस्तित्व को सुनिश्चित करने के लिए एक महत्वपूर्ण उपकरण ज़ोर्न का लेम्मा है।

आंशिक रूप से ऑर्डर किए गए सेट के सबसेट ऑर्डर को विरासत में मिलते हैं। हमने पहले से ही प्रेरित विभाजन के आदेश के साथ प्राकृतिक संख्याओं के सबसेट {2,3,4,5,6} पर विचार करके इसे लागू किया। अब एक पोज़िट के तत्व भी हैं जो आदेश के कुछ सबसेट के संबंध में विशेष हैं। यह ऊपरी सीमा की परिभाषा की ओर जाता है। कुछ पोज़ेट b '। औपचारिक रूप से, इसका मतलब है कि

'।

कम सीमा को फिर से आदेश को inverting द्वारा परिभाषित किया गया है। उदाहरण के लिए, -5 पूर्णांक के सबसेट के रूप में प्राकृतिक संख्याओं की एक निचली सीमा है। सेट के एक सेट को देखते हुए, सबसेट ऑर्डरिंग के तहत इन सेटों के लिए एक ऊपरी सीमा उनके संघ द्वारा दी गई है। वास्तव में, यह ऊपरी बाउंड काफी विशेष है: यह सबसे छोटा सेट है जिसमें सभी सेट होते हैं। इसलिए, हमें सेट के एक सेट के सबसे कम ऊपरी बाउंड मिले हैं। इस अवधारणा को सुप्रीमम या जॉइन भी कहा जाता है, और एक सेट के लिए एक लिखता है। इसकी कम से कम ऊपरी बाउंड के लिए।इसके विपरीत, सबसे बड़ी निचली बाउंड को अनैतिक रूप से जाना जाता है या मीट और डोंटेड इन्फ ( s ) या ।ये अवधारणाएं ऑर्डर थ्योरी के कई अनुप्रयोगों में महत्वपूर्ण भूमिका निभाती हैं।दो तत्वों के लिए x और y, एक भी लिखता है तथा sup ({x, y}) और inf ({x, y}) के लिए क्रमशः।

उदाहरण के लिए, 1 पूर्णांक के सबसेट के रूप में सकारात्मक पूर्णांक का अनंत है।

एक अन्य उदाहरण के लिए, फिर से संबंध पर विचार करें |प्राकृतिक संख्याओं पर।दो संख्याओं में से सबसे कम ऊपरी सीमा सबसे छोटी संख्या है जो उन दोनों द्वारा विभाजित है, अर्थात् संख्याओं में से सबसे कम सामान्य कई।बदले में सबसे बड़ी निचली सीमा सबसे बड़ी आम भाजक द्वारा दी गई है।

द्वंद्व

पिछली परिभाषाओं में, हमने अक्सर नोट किया कि एक अवधारणा को केवल एक पूर्व परिभाषा में आदेश को इनवर्ट करके परिभाषित किया जा सकता है। यह कम से कम और सबसे महान के लिए मामला है, न्यूनतम और अधिकतम के लिए, ऊपरी सीमा और निचले बाउंड के लिए, और इसी तरह। यह सिद्धांत में एक सामान्य स्थिति है: एक दिए गए आदेश को केवल अपनी दिशा का आदान-प्रदान करके उल्टा किया जा सकता है, चित्रात्मक रूप से हस आरेख शीर्ष-डाउन को फ़्लिप किया जा सकता है। यह तथाकथित दोहरे, व्युत्क्रम या विपरीत क्रम को प्राप्त करता है।

प्रत्येक ऑर्डर थियोरेटिक परिभाषा में इसकी दोहरी है: यह धारणा है कि परिभाषा को उलटा क्रम में लागू करके प्राप्त होता है। चूंकि सभी अवधारणाएं सममित हैं, यह ऑपरेशन आंशिक आदेशों के प्रमेयों को संरक्षित करता है। किसी दिए गए गणितीय परिणाम के लिए, कोई केवल आदेश को उलट सकता है और सभी परिभाषाओं को उनके दोहरे द्वारा बदल सकता है और एक अन्य मान्य प्रमेय प्राप्त करता है। यह महत्वपूर्ण और उपयोगी है, क्योंकि एक की कीमत के लिए दो प्रमेय प्राप्त करते हैं। ऑर्डर थ्योरी में कुछ और विवरण और उदाहरण द्वंद्व पर लेख में पाए जा सकते हैं।

नए आदेशों का निर्माण

दिए गए आदेशों से आदेशों का निर्माण करने के कई तरीके हैं।दोहरी आदेश एक उदाहरण है।एक अन्य महत्वपूर्ण निर्माण दो आंशिक रूप से ऑर्डर किए गए सेटों का कार्टेशियन उत्पाद है, जो तत्वों के जोड़े पर उत्पाद आदेश के साथ लिया गया है।ऑर्डरिंग को (a, x) y (b, y) द्वारा परिभाषित किया गया है यदि (और केवल अगर) a ≤ b और x y y।(ध्यान से नोटिस करें कि इस परिभाषा में संबंध प्रतीक के लिए तीन अलग -अलग अर्थ हैं।) दो पोज़िट का असंतुष्ट संघ आदेश निर्माण का एक और विशिष्ट उदाहरण है, जहां आदेश मूल आदेशों का सिर्फ (असंतुष्ट) संघ है।

प्रत्येक आंशिक आदेश are एक तथाकथित सख्त आदेश को जन्म देता है <, एक <b को परिभाषित करके यदि ≤ b और b ≤ a नहीं।इस परिवर्तन को at b या a = b यदि a सेट करके उल्टा किया जा सकता है।दो अवधारणाएं समतुल्य हैं, हालांकि कुछ परिस्थितियों में एक दूसरे की तुलना में काम करने के लिए अधिक सुविधाजनक हो सकता है।

आदेशों के बीच कार्य

आंशिक रूप से ऑर्डर किए गए सेटों के बीच कार्यों पर विचार करना उचित है, जिसमें कुछ अतिरिक्त गुण हैं जो दो सेटों के ऑर्डरिंग संबंधों से संबंधित हैं। इस संदर्भ में होने वाली सबसे मौलिक स्थिति एकरसता है। एक POSET P से एक POSET Q तक एक फ़ंक्शन F 'मोनोटोन' है, या 'ऑर्डर-प्रेशरिंग' है, यदि P में ≤ B का अर्थ है Q में f (a) ≤ f (b) (यह देखते हुए कि, सख्ती से, दो संबंध, दो संबंध यहाँ अलग हैं क्योंकि वे अलग -अलग सेटों पर आवेदन करते हैं।)। इस निहितार्थ का संकेत उन कार्यों की ओर जाता है जो 'ऑर्डर-रिफ्लेक्टिंग' होते हैं, अर्थात् फ़ंक्शंस f के रूप में ऊपर के रूप में f (a) ≤ f (b) का अर्थ एक ≤ b का अर्थ है। दूसरी ओर, एक फ़ंक्शन भी 'ऑर्डर-रिवरिंग' या 'एंटीटोन' भी हो सकता है, यदि ≤ b का अर्थ f (a) (f (b) होता है।

एक 'ऑर्डर-एम्बेडिंग' आदेशों के बीच एक फ़ंक्शन f है जो ऑर्डर-प्रेशरिंग और ऑर्डर-रिफ्लेक्टिंग दोनों है। इन परिभाषाओं के लिए उदाहरण आसानी से पाए जाते हैं। उदाहरण के लिए, जो फ़ंक्शन अपने उत्तराधिकारी को एक प्राकृतिक संख्या को मैप करता है, वह प्राकृतिक क्रम के संबंध में स्पष्ट रूप से एकरस है। असतत आदेश से कोई भी कार्य, अर्थात् पहचान के आदेश = द्वारा आदेशित एक सेट से, मोनोटोन भी है। प्रत्येक प्राकृतिक संख्या को संबंधित वास्तविक संख्या में मैप करना एक आदेश एम्बेडिंग के लिए एक उदाहरण देता है। एक पॉवरसेट पर सेट पूरक एक एंटीटोन फ़ंक्शन का एक उदाहरण है।

एक महत्वपूर्ण सवाल यह है कि जब दो आदेश अनिवार्य रूप से समान होते हैं, अर्थात जब वे तत्वों के नामकरण के समान होते हैं। 'ऑर्डर आइसोमोर्फिज्म' ऐसे कार्य हैं जो इस तरह के नामकरण को परिभाषित करते हैं। एक आदेश-आइसोमोर्फिज्म एक मोनोटोन द्विध्ररा कार्य है जिसमें एक मोनोटोन उलटा होता है। यह एक सर्जिकल ऑर्डर-एम्बेडिंग होने के बराबर है। इसलिए, एक ऑर्डर-एम्बेडिंग की छवि एफ (पी) हमेशा पी के लिए आइसोमोर्फिक होती है, जो एम्बेडिंग शब्द को सही ठहराता है।

तथाकथित 'गैलोइस कनेक्शन' द्वारा एक अधिक विस्तृत प्रकार के कार्य दिए गए हैं। मोनोटोन गैलोइस कनेक्शन को ऑर्डर-आइसोमोर्फिज्म के सामान्यीकरण के रूप में देखा जा सकता है, क्योंकि वे कॉनवर्स दिशाओं में दो कार्यों की एक जोड़ी का गठन करते हैं, जो एक दूसरे के लिए काफी उलटा नहीं हैं, लेकिन अभी भी करीबी रिश्ते हैं।

एक पोज़ेट पर एक अन्य विशेष प्रकार के स्व-मानचित्र 'क्लोजर ऑपरेटर' हैं, जो न केवल मोनोटोनिक हैं, बल्कि idempotent भी हैं, अर्थात् F (x) = f (X)), और 'व्यापक' (या मुद्रास्फीति), यानी, यानी। x ≤ f (x)। इनमें सभी प्रकार के क्लोजर में कई एप्लिकेशन हैं जो गणित में दिखाई देते हैं।

मात्र आदेश संबंधों के साथ संगत होने के अलावा, POSET के बीच कार्य विशेष तत्वों और निर्माणों के संबंध में भी अच्छा व्यवहार कर सकते हैं। उदाहरण के लिए, जब कम से कम तत्व के साथ पोज़िट के बारे में बात करते हैं, तो यह केवल मोनोटोनिक कार्यों पर विचार करना उचित लग सकता है जो इस तत्व को संरक्षित करते हैं, यानी जो कम से कम तत्वों को कम से कम तत्वों के लिए मानते हैं। यदि बाइनरी इन्फिमा ∧ मौजूद है, तो सभी x और y के लिए एक उचित संपत्ति की आवश्यकता हो सकती है कि f (x y y) = f (x) y f (y) की आवश्यकता होती है। ये सभी गुण, और वास्तव में कई और अधिक, सीमा-संरक्षण फ़ंक्शन (ऑर्डर थ्योरी) के लेबल के तहत संकलित किए जा सकते हैं। सीमा-संरक्षण कार्यों।

अंत में, कोई दृश्य को उल्टा कर सकता है, आदेशों के कार्यों से कार्यों के आदेशों तक स्विच कर सकता है। दरअसल, दो पॉज़िट पी और क्यू के बीच के कार्यों को पॉइंटवाइज ऑर्डर के माध्यम से ऑर्डर किया जा सकता है। दो कार्यों के लिए f और g, हमारे पास f (g (X) if g (x) के सभी तत्वों के लिए X के लिए f (g (x) है। यह डोमेन सिद्धांत में उदाहरण के लिए होता है, जहां फ़ंक्शन स्पेस एक महत्वपूर्ण भूमिका निभाते हैं।

विशेष प्रकार के आदेश

ऑर्डर थ्योरी में अध्ययन किए जाने वाले कई संरचनाएं आगे के गुणों के साथ आदेश संबंधों को नियुक्त करती हैं। वास्तव में, यहां तक ​​कि कुछ संबंध जो आंशिक आदेश नहीं हैं, वे विशेष रुचि के हैं। मुख्य रूप से एक प्रीऑर्डर की अवधारणा का उल्लेख किया जाना है। एक प्रीऑर्डर एक ऐसा संबंध है जो रिफ्लेक्टिव और ट्रांजिटिव है, लेकिन जरूरी नहीं कि एंटीसिमेट्रिक हो। प्रत्येक प्रीऑर्डर तत्वों के बीच एक समतुल्य संबंध को प्रेरित करता है, जहां A B के बराबर है, यदि A ≤ B और B ≤ A। इस संबंध के संबंध में सभी तत्वों की पहचान करके पूर्ववर्ती को आदेशों में बदल दिया जा सकता है।

ऑर्डर की वस्तुओं पर संख्यात्मक डेटा से कई प्रकार के आदेशों को परिभाषित किया जा सकता है: कुल आदेश प्रत्येक आइटम में अलग -अलग वास्तविक संख्याओं को संलग्न करने और आइटम ऑर्डर करने के लिए संख्यात्मक तुलना का उपयोग करने से होता है; इसके बजाय, यदि अलग -अलग वस्तुओं को समान संख्यात्मक स्कोर करने की अनुमति है, तो एक सख्त कमजोर आदेश प्राप्त करता है। एक निश्चित सीमा से अलग होने के लिए दो स्कोर की आवश्यकता होती है, इससे पहले कि वे एक सेमियरर की अवधारणा की तुलना कर सकें, जबकि थ्रेशोल्ड को प्रति-आइटम आधार पर अलग-अलग होने की अनुमति देता है, एक अंतराल आदेश का उत्पादन करता है।

एक अतिरिक्त सरल लेकिन उपयोगी संपत्ति तथाकथित 'अच्छी तरह से स्थापित संबंध | अच्छी तरह से स्थापित' की ओर ले जाती है, जिसके लिए सभी गैर-खाली सबसेट में एक न्यूनतम तत्व होता है। रैखिक से आंशिक आदेशों को अच्छी तरह से आदेशों को सामान्य करना, एक सेट 'अच्छी तरह से आंशिक रूप से आदेश दिया जाता है' यदि इसके सभी गैर-खाली सबसेट में न्यूनतम तत्वों की एक सीमित संख्या है।

कई अन्य प्रकार के आदेश तब उत्पन्न होते हैं जब कुछ सेटों के इन्फिमा और सुप्रेमा के अस्तित्व की गारंटी दी जाती है। इस पहलू पर ध्यान केंद्रित करते हुए, आमतौर पर आदेशों की पूर्णता के रूप में संदर्भित किया जाता है, एक प्राप्त करता है:

  • बाउंडेड पॉज़ेट, अर्थात् कम से कम और सबसे बड़े तत्व के साथ पोज़िट (जो कि खाली सबसेट के सर्वोच्च और अनंत हैं),
  • लैटिस, जिसमें प्रत्येक गैर-खाली परिमित सेट में एक सुप्रीम और अनैतिक होता है,
  • पूर्ण जाली, जहां हर सेट में एक सुप्रीम और अनैतिक होता है, और
  • निर्देशित पूर्ण आंशिक आदेश (DCPOS), जो सभी निर्देशित सबसेट के सुप्रेमा के अस्तित्व की गारंटी देते हैं और जो डोमेन सिद्धांत में अध्ययन किए जाते हैं।
  • पूरक, या पीओसी सेट के साथ आंशिक आदेश,[1] एक अद्वितीय निचला तत्व 0 के साथ पोज़ेट हैं, साथ ही एक आदेश-पुनर्मूल्यांकन इनवोल्यूशन ऐसा है कि

हालांकि, कोई भी आगे भी जा सकता है: यदि सभी परिमित गैर-खाली इन्फिमा मौजूद हैं, तो ∧ को सार्वभौमिक बीजगणित के अर्थ में कुल द्विआधारी संचालन के रूप में देखा जा सकता है। इसलिए, एक जाली में, दो ऑपरेशन ∧ और ∨ उपलब्ध हैं, और कोई भी पहचान देकर नई संपत्तियों को परिभाषित कर सकता है, जैसे

x & nbsp; ∧ & nbsp; ।

इस स्थिति को 'वितरण' कहा जाता है और वितरण को जन्म देता है। कुछ अन्य महत्वपूर्ण वितरण कानून हैं जिन पर आदेश सिद्धांत में वितरण पर लेख में चर्चा की जाती है। कुछ अतिरिक्त ऑर्डर संरचनाएं जो अक्सर बीजगणितीय संचालन और परिभाषित पहचान के माध्यम से निर्दिष्ट की जाती हैं

  • हेयिंग अल्जेब्रा और
  • बूलियन बीजगणित,

जो दोनों एक नया ऑपरेशन पेश करते हैं ~ जिसे 'नकारात्मक' कहा जाता है। दोनों संरचनाएं गणितीय तर्क में एक भूमिका निभाती हैं और विशेष रूप से बूलियन बीजगणितों में कंप्यूटर विज्ञान में प्रमुख अनुप्रयोग हैं। अंत में, गणित में विभिन्न संरचनाएं और भी अधिक बीजगणितीय संचालन के साथ आदेशों को जोड़ती हैं, जैसा कि क्वांटेल्स के मामले में, जो एक अतिरिक्त ऑपरेशन की परिभाषा के लिए अनुमति देता है।

Posets के कई अन्य महत्वपूर्ण गुण मौजूद हैं। उदाहरण के लिए, एक पोज़ेट 'स्थानीय रूप से परिमित' है यदि प्रत्येक बंद अंतराल [ए, बी] इसमें परिमित है। स्थानीय रूप से परिमित पॉज़ेट घटना बीजगणितों को जन्म देते हैं, जिसका उपयोग बदले में परिमित बाउंडेड पॉज़िट की यूलर विशेषता को परिभाषित करने के लिए किया जा सकता है।

ऑर्डर किए गए सेट के सबसेट

एक आदेशित सेट में, कोई दिए गए आदेश के आधार पर कई प्रकार के विशेष सबसेट को परिभाषित कर सकता है। एक साधारण उदाहरण ऊपरी सेट हैं; यानी सेट जिसमें उन सभी तत्व होते हैं जो क्रम में उनके ऊपर होते हैं। औपचारिक रूप से, एक सेट को ऊपरी बंद कुछ y 'x' के साथ है। एक सेट जो इसके ऊपरी क्लोजर के बराबर है, उसे एक ऊपरी सेट कहा जाता है। निचले सेट को परिभाषित किया गया है।

अधिक जटिल निचले सबसेट आदर्श हैं, जिनमें अतिरिक्त संपत्ति है कि उनके प्रत्येक तत्व में आदर्श के भीतर एक ऊपरी सीमा होती है। उनके दोहरे फिल्टर द्वारा दिए गए हैं। एक संबंधित अवधारणा एक निर्देशित सबसेट की है, जिसमें एक आदर्श की तरह परिमित सबसेट की ऊपरी सीमा होती है, लेकिन एक कम सेट नहीं होना चाहिए। इसके अलावा, यह अक्सर पूर्व निर्धारित सेटों के लिए सामान्यीकृत होता है।

एक उपसमुच्चय जो एक उप -पोसेट के रूप में है - रैखिक रूप से आदेश दिया गया है, को एक श्रृंखला कहा जाता है। विपरीत धारणा, एंटीचैन, एक सबसेट है जिसमें कोई दो तुलनीय तत्व नहीं हैं; यानी यह एक असतत आदेश है।

संबंधित गणितीय क्षेत्र

यद्यपि अधिकांश गणितीय क्षेत्र एक या दूसरे तरीके से आदेशों का उपयोग करते हैं, लेकिन कुछ सिद्धांत भी हैं जिनके संबंध हैं जो केवल आवेदन से परे हैं।ऑर्डर थ्योरी के साथ संपर्क के उनके प्रमुख बिंदुओं के साथ, इनमें से कुछ को नीचे प्रस्तुत किया जाना है।

सार्वभौमिक बीजगणित

जैसा कि पहले ही उल्लेख किया गया है, सार्वभौमिक बीजगणित के तरीके और औपचारिकताएं कई आदेशों के लिए एक महत्वपूर्ण उपकरण हैं।बीजगणितीय संरचनाओं के संदर्भ में आदेशों को औपचारिक रूप देने के अलावा, जो कुछ पहचानों को संतुष्ट करते हैं, कोई भी बीजगणित के लिए अन्य कनेक्शन भी स्थापित कर सकता है।एक उदाहरण बूलियन बीजगणित और बूलियन के छल्ले के बीच पत्राचार द्वारा दिया गया है।अन्य मुद्दे मुक्त निर्माणों के अस्तित्व से संबंधित हैं, जैसे कि जनरेटर के दिए गए सेट के आधार पर मुफ्त लैटिस।इसके अलावा, क्लोजर ऑपरेटर यूनिवर्सल बीजगणित के अध्ययन में महत्वपूर्ण हैं।

टोपोलॉजी =

टोपोलॉजी में, आदेश एक बहुत ही प्रमुख भूमिका निभाते हैं।वास्तव में, खुले सेटों का संग्रह एक पूर्ण जाली का एक शास्त्रीय उदाहरण प्रदान करता है, अधिक सटीक रूप से एक पूर्ण हेयिंग बीजगणित (या फ्रेम या लोकेल)।फ़िल्टर और नेट ऑर्डर थ्योरी से निकटता से संबंधित धारणाएं हैं और सेट के क्लोजर ऑपरेटर का उपयोग टोपोलॉजी को परिभाषित करने के लिए किया जा सकता है।इन संबंधों से परे, टोपोलॉजी को पूरी तरह से खुले सेट लैटिस के संदर्भ में देखा जा सकता है, जो व्यर्थ टोपोलॉजी के अध्ययन की ओर जाता है।इसके अलावा, एक टोपोलॉजी के अंतर्निहित सेट के तत्वों का एक प्राकृतिक पूर्ववर्ती तथाकथित विशेषज्ञता आदेश द्वारा दिया गया है, यह वास्तव में एक आंशिक आदेश है यदि टोपोलॉजी T0 स्पेस है।0

इसके विपरीत, क्रम में, एक अक्सर टोपोलॉजिकल परिणामों का उपयोग करता है। एक आदेश के सबसेट को परिभाषित करने के विभिन्न तरीके हैं जिन्हें एक टोपोलॉजी के खुले सेट के रूप में माना जा सकता है। एक पोज़ेट (x, result) पर टोपोलॉजी को ध्यान में रखते हुए, जो बदले में to उनके विशेषज्ञता के आदेश के रूप में प्रेरित करते हैं, इस तरह की सबसे अच्छी टोपोलॉजी अलेक्जेंड्रोव टोपोलॉजी है, जो सभी ऊपरी सेटों को खोलने के रूप में लेता है। इसके विपरीत, COARSEST टोपोलॉजी जो विशेषज्ञता के आदेश को प्रेरित करती है, वह ऊपरी टोपोलॉजी है, जिसमें प्रिंसिपल आदर्शों का पूरक है (यानी कुछ x के लिए {y y y x} के रूप में कुछ x के लिए) एक सबबेस के रूप में। इसके अतिरिक्त, विशेषज्ञता के आदेश के साथ एक टोपोलॉजी, ऑर्डर सुसंगत हो सकती है, जिसका अर्थ है कि उनके खुले सेट निर्देशित सुप्रेमा (≤ के संबंध में) द्वारा दुर्गम हैं। सबसे अच्छा आदेश सुसंगत टोपोलॉजी स्कॉट टोपोलॉजी है, जो अलेक्जेंड्रोव टोपोलॉजी की तुलना में मोटा है। इस भावना में एक तीसरा महत्वपूर्ण टोपोलॉजी लॉसन टोपोलॉजी है। इन टोपोलॉजी और ऑर्डर सिद्धांत की अवधारणाओं के बीच घनिष्ठ संबंध हैं। उदाहरण के लिए, एक फ़ंक्शन निर्देशित सुप्रेमा को संरक्षित करता है यदि और केवल अगर यह स्कॉट टोपोलॉजी के संबंध में निरंतर है (इस कारण से इस आदेश को थियोरेटिक संपत्ति को स्कॉट-निरंतर भी कहा जाता है। स्कॉट-कंटिनिटी)।

श्रेणी सिद्धांत =

Hasse आरेखों के साथ आदेशों के दृश्य में एक सीधा सामान्यीकरण होता है: अधिक से अधिक के नीचे कम तत्वों को प्रदर्शित करने के बजाय, ऑर्डर की दिशा को एक ग्राफ के किनारों को निर्देश देकर भी चित्रित किया जा सकता है। इस तरह, प्रत्येक ऑर्डर को एक निर्देशित एसाइक्लिक ग्राफ के बराबर देखा जाता है, जहां नोड्स पॉज़िट के तत्व होते हैं और ए से बी से बी से एक निर्देशित पथ होता है अगर और केवल एक ≤ बी। एसाइक्लिक होने की आवश्यकता को छोड़कर, कोई भी सभी पूर्ववर्ती प्राप्त कर सकता है।

जब सभी सकर्मक किनारों से लैस होते हैं, तो ये ग्राफ बदले में केवल विशेष श्रेणियां होती हैं, जहां तत्व ऑब्जेक्ट होते हैं और दो तत्वों के बीच मॉर्फिज्म का प्रत्येक सेट अधिकांश सिंगलटन में होता है। ऑर्डर के बीच कार्य श्रेणियों के बीच फंक्शनर्स बन जाते हैं। ऑर्डर थ्योरी के कई विचार छोटे में श्रेणी सिद्धांत की अवधारणाएं हैं। उदाहरण के लिए, एक इनफिमम सिर्फ एक श्रेणीबद्ध उत्पाद है। आम तौर पर, कोई एक श्रेणीबद्ध सीमा (या कॉलिमिट, क्रमशः) की अमूर्त धारणा के तहत इन्फिमा और सुप्रेमा को पकड़ सकता है। एक और जगह जहां श्रेणीबद्ध विचार होते हैं, वह है (मोनोटोन) गैलोइस कनेक्शन की अवधारणा है, जो कि आसन्न फंक्शनर्स की एक जोड़ी के समान है।

लेकिन श्रेणी सिद्धांत का भी बड़े पैमाने पर ऑर्डर सिद्धांत पर इसका प्रभाव पड़ता है। उपयुक्त कार्यों के साथ POSET की कक्षाएं जैसा कि ऊपर चर्चा की गई है, दिलचस्प श्रेणियां। अक्सर कोई भी श्रेणियों के संदर्भ में, उत्पाद आदेश की तरह आदेशों के निर्माण को भी बता सकता है। आगे की अंतर्दृष्टि का परिणाम तब होता है जब ऑर्डर की श्रेणियों को अन्य श्रेणियों के बराबर स्पष्ट रूप से पाया जाता है, उदाहरण के लिए टोपोलॉजिकल रिक्त स्थान के लिए। अनुसंधान की यह पंक्ति विभिन्न प्रतिनिधित्व प्रमेयों की ओर ले जाती है, जिसे अक्सर पत्थर के द्वंद्व के लेबल के तहत एकत्र किया जाता है।

इतिहास

जैसा कि पहले समझाया गया है, गणित में आदेश सर्वव्यापी हैं।हालांकि, आंशिक आदेशों के शुरुआती स्पष्ट उल्लेख शायद 19 वीं शताब्दी से पहले नहीं पाए जाते हैं।इस संदर्भ में जॉर्ज बोले के कार्यों का बहुत महत्व है।इसके अलावा, चार्ल्स सैंडर्स पीयरस, रिचर्ड डेडेकिंड, और अर्नस्ट श्रोडर (गणितज्ञ) के काम करता है। अर्नस्ट श्रोडर भी ऑर्डर थ्योरी की अवधारणाओं पर विचार करते हैं।

आदेशित ज्यामिति के लिए योगदानकर्ताओं को 1961 की पाठ्यपुस्तक में सूचीबद्ध किया गया था:

It was Pasch in 1882, who first pointed out that a geometry of order could be developed without reference to measurement. His system of axioms was gradually improved by Peano (1889), Hilbert (1899), and Veblen (1904).

— H. S. M. Coxeter, Introduction to Geometry

1901 में बर्ट्रेंड रसेल ने आदेश की धारणा पर लिखा[2] श्रृंखला की पीढ़ी के माध्यम से विचार की नींव की खोज।वह गणित के सिद्धांतों (1903) के भाग IV में विषय पर लौट आए। रसेल ने कहा कि बाइनरी रिलेशनशिप एआरबी में ए से बी से बी तक आगे बढ़ने का एक अर्थ है, जिसमें एक विपरीत अर्थ है, और अर्थ ऑर्डर और श्रृंखला का स्रोत है।(पी 95) वह इमैनुएल कांट को स्वीकार करता है[3] तार्किक विरोध और सकारात्मक और नकारात्मक के विरोध के बीच अंतर के बारे में पता था।उन्होंने लिखा कि कांत क्रेडिट के हकदार हैं क्योंकि उन्होंने पहले असममित संबंधों के तार्किक महत्व पर ध्यान दिया था।

आंशिक रूप से ऑर्डर किए गए सेट के लिए एक संक्षिप्त नाम के रूप में स्थित शब्द को गैरेट बिरखॉफ ने अपने प्रभावशाली पुस्तक लैटिस थ्योरी के दूसरे संस्करण में गढ़ा था।[4][5]

यह भी देखें

  • चक्रीय क्रम
  • पदानुक्रम
  • घटना बीजगणित
  • कारण सेट करता है

टिप्पणियाँ

  1. Roller, Martin A. (1998), Poc sets, median algebras and group actions. An extended study of Dunwoody's construction and Sageev's theorem (PDF), Southampton Preprint Archive, archived from the original (PDF) on 2016-03-04, retrieved 2015-01-18
  2. Bertrand Russell (1901) Mind 10(2)
  3. Immanuel Kant (1763) Versuch den Begriff der negativen Grosse in die Weltweisheit einzufuhren
  4. Birkhoff 1940, p. 1.
  5. "Earliest Known Uses of Some of the Words of Mathematics (P)". jeff560.tripod.com.

संदर्भ

बाहरी संबंध

{{Navbox

| name =गणित के क्षेत्र

|state = collapsed

| title =अंक शास्त्र | bodyclass = hlist

|above =


| group1 = नींव | list1 =* श्रेणी सिद्धांत

| group2 =बीजगणित | list2 =* सार

| group3 = विश्लेषण | list3 =* पथरी

| group4 = असतत | list4 =* कॉम्बीनेटरिक्स

| group5 =ज्यामिति | list5 =* बीजगणितीय

| group6 =संख्या सिद्धांत | list6 =* अंकगणित

| group7 =टोपोलॉजी | list7 =* सामान्य

| group8 = लागू | list8 =* इंजीनियरिंग गणित

| group9 = कम्प्यूटेशनल | list9 =* कंप्यूटर विज्ञान

| group10 = संबंधित विषय | list10 =* अनौपचारिक गणित

| below =* '

}}