संकारक (गणित)

From Vigyanwiki
Revision as of 23:06, 13 February 2023 by alpha>Pranjalikushwaha (Edit text)

गणित में, ऑपरेटर समान्यतः एक मैपिंग (गणित) या फलन (गणित) होता है जो किसी स्थान (गणित) के तत्वों पर कार्य करता है ताकि किसी अन्य स्थान के तत्वों का उत्पादन किया जा सके (संभवतः और कभी-कभी एक ही स्थान होने की आवश्यकता होती है)। ऑपरेटर की कोई सामान्य परिभाषा नहीं है, लेकिन इस शब्द का प्रयोग प्रायः फलन के स्थान पर किया जाता है, जब किसी फलन का डोमेन या अन्य संरचित वस्तुओं का एक सेट होता है। इसके अलावा, एक ऑपरेटर के डोमेन को स्पष्ट रूप से चित्रित करना प्रायः मुश्किल होता है (उदाहरण के लिए एक अभिन्न ऑपरेटर के मामले में), और संबंधित वस्तुओं तक बढ़ाया जा सकता है (एक ऑपरेटर जो कार्यों पर कार्य करता है, अंतर समीकरणों पर भी कार्य कर सकता है जिसका समाधान फलन हैं जो समीकरण को संतुष्ट करता है)। अन्य उदाहरणों के लिए ऑपरेटर (भौतिकी) देखें।

सबसे बुनियादी ऑपरेटर रैखिक मानचित्र हैं, जो सदिश रिक्त स्थान पर कार्य करते हैं। रेखीय संचालिकाएँ ऐसे रेखीय मानचित्रों को संदर्भित करती हैं जिनके डोमेन और श्रेणी समान स्थान पर हैं, उदाहरण के लिए को [1] [2]ऐसे ऑपरेटर अक्सर निरंतरता जैसे गुणों को संरक्षित करते हैं। उदाहरण के लिए, अवकलन (गणित) और अनिश्चित समाकलन रैखिक संकारक हैं, ऑपरेटर जो उनसे निर्मित होते हैं, उन्हें अंतर ऑपरेटर, समाकलन ऑपरेटर या समाकल अवकल ऑपरेटर कहा जाता है।

ऑपरेटर का उपयोग गणितीय संक्रियाओं के प्रतीक को दर्शाने के लिए भी किया जाता है। यह कंप्यूटर प्रोग्रामिंग में ऑपरेटर के अर्थ से संबंधित है, ऑपरेटर (कंप्यूटर प्रोग्रामिंग) देखें।

रैखिक ऑपरेटर

सबसे आम प्रकार के ऑपरेटर का सामना रैखिक ऑपरेटरों से होता है। माना U और V क्षेत्र (गणित) K पर सदिश समष्टियाँ है। मानचित्रण (गणित) A: U → V रैखिक है यदि-

सभी x, y के लिए U में और सभके लिए K में। इसका मतलब यह है कि एक रैखिक ऑपरेटर सदिश समष्टियों कि संक्रियाओं को संरक्षित करता है, इस अर्थ में कि इससे कोई फर्क नहीं पड़ता कि आप रैखिक ऑपरेटर को गुणन की संक्रिया और अदिश गुणन के पहले या बाद में लागू करते हैं या नहीं। अधिक तकनीकी शब्दों में, रैखिक ऑपरेटर सदिश समष्टि के बीच मॉर्फिज्म(आकारिता) हैं।

परिमित-आयामी मामले में रैखिक ऑपरेटरों को निम्नलिखित तरीके से आव्यूह (गणित) द्वारा दर्शाया जा सकता है। मान लें कि एक क्षेत्र है और तथा , पर परिमित-आयामी सदिश समष्टि हैं। आइए एक आधार चुनें में तथा में । तब माना , में एक यादृच्छिक सदिश है (आइंस्टीन कान्वेंशन मानते हुए), और एक रैखिक ऑपरेटर है। तब-

तब निश्चित आधारों में ऑपरेटर का आव्यूह है । , की पसंद पर निर्भर नहीं करता है तथा अगर । इस प्रकार निश्चित आधारों में एन-बाय-एम आव्यूह से तक रैखिक ऑपरेटरों के लिए द्विभाजित सामंजस्य में हैं।

परिमित-आयामी सदिश समष्टि के बीच ऑपरेटरों से सीधे संबंधित महत्वपूर्ण अवधारणाएं आव्यूह रैंक, निर्धारक, व्युत्क्रम संकारक और अभिलक्षणिक समष्टि हैं।

रेखीय ऑपरेटर भी अनंत-आयामी मामले में एक बड़ी भूमिका निभाते हैं। रैंक और निर्धारक की अवधारणाओं को अनंत-आयामी आव्यूह तक नहीं बढ़ाया जा सकता है। यही कारण है कि अनंत-आयामी मामले में रैखिक ऑपरेटरों (और सामान्य रूप से ऑपरेटरों) का अध्ययन करते समय बहुत अलग तकनीकें नियोजित होती हैं। अनंत-आयामी मामले में रैखिक ऑपरेटरों के अध्ययन को कार्यात्मक विश्लेषण के रूप में जाना जाता है (इसलिए कहा जाता है क्योंकि कार्यों के विभिन्न वर्ग अनंत-आयामी सदिश समष्टि के महत्वपूर्ण उदाहरण बनाते हैं)।

वास्तविक संख्याओं के अनुक्रमों का स्थान या अधिक सामान्यतः किसी सदिश समष्टि में सदिशों के अनुक्रम, स्वयं एक अनंत-आयामी सदिश समष्टि बनाते हैं। सबसे महत्वपूर्ण मामले वास्तविक या जटिल संख्याओं के अनुक्रम हैं और ये स्थान, रैखिक उप-स्थानों के साथ, अनुक्रम समष्टि के रूप में जाने जाते हैं। इन स्थानों पर ऑपरेटरों को अनुक्रम परिवर्तन के रूप में जाना जाता है।

मानक ऑपरेटर मानदंड के संबंध में बनच समष्टि पर परिबद्ध रैखिक ऑपरेटर एक बनच बीजगणित बनाते हैं। बनच बीजगणित का सिद्धांत स्पेक्ट्रम (कार्यात्मक विश्लेषण) की एक बहुत ही सामान्य अवधारणा विकसित करता है जो अभिलक्षणिक समष्टि के सिद्धांत को सामान्य रूप से सामान्यीकृत करता है।

परिबद्ध ऑपरेटर

माना U और V एक ही क्रमित फ़ील्ड पर दो सदिश समष्टि हैं (उदाहरण के लिए ), और वे मानदंड (गणित) से युक्त हैं। तब U से V तक एक रैखिक संकारक को परिबद्ध कहा जाता है यदि वहाँ C > 0 ऐसा मौजूद हो

में सभी x के लिए।

परिबद्ध संकारक एक सदिश समष्टि बनाते हैं। इस सदिश समष्टि पर हम एक मानदंड पेश कर सकते हैं जो और के मानदंडों के अनुकूल है:

से स्वयं के ऑपरेटरों के मामले में यह दिखाया जा सकता है-
इस विशेषता के साथ किसी भी यूनिटल मानदंडों वाली बीजगणित को बनच बीजगणित कहा जाता है। इस तरह के बीजगणितों के लिए वर्णक्रमीय सिद्धांत को सामान्य बनाना संभव है। सी * - बीजगणित, जो कि कुछ अतिरिक्त संरचना वाले बनच बीजगणित हैं, क्वांटम यांत्रिकी में एक महत्वपूर्ण भूमिका निभाते हैं।

उदाहरण

ज्यामिति

ज्यामिति में, सदिश समष्टि पर अतिरिक्त संरचनाओं का कभी-कभी अध्ययन किया जाता है। संचालक जो इस तरह के सदिश समष्टि में स्वयं को विशेष रूप से मानचित्रित करते हैं, इन अध्ययनों में बहुत उपयोगी होते हैं, वे स्वाभाविक रूप से संरचना द्वारा समूह (गणित) बनाते हैं।

उदाहरण के लिए, सदिश समष्टि की संरचना को संरक्षित करने वाले द्विभाजित संचालको का ठीक उलटा कार्य रैखिक संचालक का हैं। वे रचना के तहत सामान्य रेखीय समूह बनाते हैं। उदाहरण, वे संचालकों के योग के तहत एक सदिश समष्टि नहीं बनाते हैं। दोनों आईडी और -आईडी व्युत्क्रमणीय (द्विभाजित) हैं, लेकिन उनका योग 0 नहीं है।

ऐसे स्थान पर यूक्लिडियन मीट्रिक को संरक्षित करने वाले संचालक सममिति समूह बनाते हैं, और जो मूलभूत रूप को ठीक करते हैं वे एक उपसमूह बनाते हैं जिसे आयतीय समूह के रूप में जाना जाता है। आयतीय समूह में संचालक जो सदिश टपल के अभिविन्यास को भी संरक्षित करते हैं, विशेष आयतीय समूह या घूर्णन समूह का निर्माण करते हैं।

संभाव्यता सिद्धांत

संभाव्यता सिद्धांत में ऑपरेटर भी सम्मिलित हैं, जैसे अपेक्षित मूल्य, भिन्नता और सहप्रसरण। दरअसल, हर सहप्रसरण मूल रूप से एक डॉट उत्पाद है; प्रत्येक विचरण स्वयं के साथ एक सदिश का एक डॉट उत्पाद है, और इस प्रकार एक द्विघात मानदंड है; प्रत्येक मानक विचलन एक मानदंड है (द्विघात मानदंड का वर्गमूल); इस डॉट उत्पाद के अनुरूप कोसाइन पियर्सन सहसंबंध गुणांक है; अपेक्षित मूल्य मूल रूप से एक अभिन्न ऑपरेटर है (अंतरिक्ष में भारित आकृतियों को मापने के लिए उपयोग किया जाता है)।

पथरी

कार्यात्मक विश्लेषण के दृष्टिकोण से, कलन दो रैखिक संकारकों का अध्ययन है: अवकल संकारक , और वोल्टेरा ऑपरेटर .

फूरियर श्रृंखला और फूरियर रूपांतरण

फूरियर रूपांतरण लागू गणित, विशेष रूप से भौतिकी और सिग्नल प्रोसेसिंग में उपयोगी है। यह एक और इंटीग्रल ऑपरेटर है; यह मुख्य रूप से उपयोगी है क्योंकि यह एक (अस्थायी) डोमेन पर एक फ़ंक्शन को दूसरे (फ़्रीक्वेंसी) डोमेन पर एक फ़ंक्शन में परिवर्तित करता है, एक तरह से प्रभावी रूप से उलटा कार्य करता है। कोई सूचना खोई नहीं है, क्योंकि एक व्युत्क्रम परिवर्तन संकारक है। आवधिक कार्यों के सरल मामले में, यह परिणाम प्रमेय पर आधारित होता है कि किसी निरंतर आवधिक कार्य को साइन लहरों और कोसाइन तरंगों की श्रृंखला के योग के रूप में दर्शाया जा सकता है:

टपल (अ़0, ए1, बी1, ए2, बी2, ...) वास्तव में एक अनंत-आयामी सदिश अंतरिक्ष अनुक्रम अंतरिक्ष का एक तत्व है|ℓ2, और इस प्रकार फूरियर श्रृंखला एक रैखिक संकारक है।

सामान्य कार्य से निपटने पर , परिवर्तन एक अभिन्न रूप लेता है:


लाप्लास रूपांतरण

लाप्लास परिवर्तन एक अन्य अभिन्न संकारक है और अंतर समीकरणों को हल करने की प्रक्रिया को सरल बनाने में शामिल है।

दिया हुआ f = f(s), इसे निम्न द्वारा परिभाषित किया गया है:

अदिश और सदिश क्षेत्रों पर मौलिक संचालक

वेक्टर पथरी के लिए तीन ऑपरेटर महत्वपूर्ण हैं:

  • ग्रेड (ग्रेडियेंट), (ऑपरेटर प्रतीक डेल के साथ) स्केलर फ़ील्ड में प्रत्येक बिंदु पर एक वेक्टर निर्दिष्ट करता है जो उस क्षेत्र की परिवर्तन की सबसे बड़ी दर की दिशा में इंगित करता है और जिसका आदर्श परिवर्तन की उस सबसे बड़ी दर के पूर्ण मूल्य को मापता है।
  • Div (विचलन), (संचालक प्रतीक के साथ Del#Divergence|) एक सदिश संचालिका है जो किसी दिए गए बिंदु से किसी सदिश क्षेत्र के विचलन या अभिसरण को मापता है।
  • कर्ल (गणित), (संचालक प्रतीक के साथ Del#Curl|) एक वेक्टर ऑपरेटर है जो किसी दिए गए बिंदु के बारे में वेक्टर फ़ील्ड के कर्लिंग (चारों ओर घुमावदार, चारों ओर घूमना) प्रवृत्ति को मापता है।

भौतिकी, इंजीनियरिंग और टेंसर स्पेस के लिए वेक्टर कैलकुलस ऑपरेटरों के विस्तार के रूप में, ग्रेड, डिव और कर्ल ऑपरेटर भी अक्सर टेंसर कैलकुलेशन के साथ-साथ वेक्टर कैलकुलस से जुड़े होते हैं।[3]


यह भी देखें

संदर्भ

  1. Rudin, Walter (1976). "Chapter 9: Functions of Several Variables". Principles of Mathematical Analysis (3rd ed.). McGraw-Hill. p. 207. ISBN 0-07-054235-X. Linear transformations of X into X are often called linear operators on X.
  2. Roman, Steven (2008). "Chapter 2: Linear Transformations". Advanced Linear Algebra (3rd ed.). Springer. p. 59. ISBN 978-0-387-72828-5. 1) A linear transformation from V to V is called a linear operator on V. The set of all linear operators on V is denoted (V). A linear operator on a real vector space is called a real operator and a linear operator on a complex vector space is called a complex operator. ... We should also mention that some authors use the term linear operator for any linear transformation from V to W. ... DefinitionThe following terms are also employed: 2) endomorphism for linear operator ... 6) automorphism for bijective linear operator.
  3. H.M. Schey (2005). Div Grad Curl and All that. New York: W W Norton. ISBN 0-393-92516-1.