बोर मॉडल
परमाणु भौतिकी 1913 में नील्स बोहर और अर्नेस्ट रदरफोर्ड द्वारा प्रस्तुत बोहर प्रारूप या रदरफोर्ड -बोहर प्रारूप,ऐसी प्रणाली है जिसमें एक छोटा, घना नाभिक होता है, जो इलेक्ट्रॉनों की परिक्रमा करने से लेकर सौर प्रणाली की संरचना के साथ घिरा हुआ है, परन्तु आकर्षण के साथ, गुरुत्वाकर्षण के स्थान पर विद्युत बल द्वारा प्रदान किया गया। यह सोलर मंडल जोसेफ लार्मोर प्रारूप (1897), सौर परिवार जीन पेरिन प्रारूप (1901) के बाद आया,[2] क्यूबिकल एटम (1902), द हाफ -टारो नागाओका सैटर्नियन प्रारूप (1904), द प्लम पुडिंग प्रारूप (1904), क्वांटम आर्थर हास प्रारूप (1910), द रदरफोर्ड प्रारूप (1911), और न्यूक्लियर क्वांटम जॉन विलियम निकोलसन प्रारूप (1912)।1911 के रदरफोर्ड प्रारूप में सुधार मुख्य रूप से हास और निकोलसन द्वारा शुरू की गई नई भौतिक भौतिक व्याख्या से संबंधित है, परन्तु पारम्परिक भौतिकी विकिरण के साथ संरेखित करने के किसी भी प्रयास को छोड़ दिया।
प्रारूप की प्रमुख सफलता परमाणु हाइड्रोजन के स्पेक्ट्रल हाइड्रोजन वर्णक्रमीय श्रृंखला के लिए रिडबर्ग फॉर्मूला की व्याख्या करने में निहित है।जबकि रिडबर्ग फॉर्मूला को प्रयोगात्मक रूप से जाना जाता था, यह बोहर प्रारूप प्रस्तुत होने तक एक सैद्धांतिक शक्ति हासिल नहीं करता था। बोहर प्रारूप ने न केवल राइडबर्ग फॉर्मूला की संरचना के कारणों की व्याख्या की, अपितु इसने मौलिक भौतिक स्थिरांक के लिए एक औचित्य भी प्रदान किया जो सूत्र के अनुभवजन्य परिणामों को बनाते हैं।
बोहर प्रारूप परमाणु कक्षीय प्रारूप की तुलना में हाइड्रोजन परमाणु का एक अपेक्षाकृत आदिम प्रारूप है। सिद्धांत के रूप में, इसे समीपता प्रथम-क्रम के आदेशों के रूप में प्राप्त किया जा सकता है। हाइड्रोजन परमाणु के पहले-क्रम समीपता को व्यापक और बहुत अधिक सटीक क्वांटम यांत्रिकी का उपयोग करके और इस तरह एक अप्रचलित वैज्ञानिक सिद्धांत माना जा सकता है।यद्यपि, इसकी सादगी के कारण, और चयनित प्रणालियों के लिए इसके सही परिणाम बोहर प्रारूप को अभी भी सामान्यतः छात्रों को क्वांटम यांत्रिकी या ऊर्जा स्तर के आरेखों से परिचित कराने के लिए सिखाया जाता है, परन्तु अधिक सटीक पर जाने से पहले, परन्तु अधिक जटिल, रासायनिक संयोजन शेल एटम संबंधित क्वांटम प्रारूप मूल रूप से 1910 में आर्थर एरिच हास द्वारा प्रस्तावित किया गया था, परन्तु 1911 सोल्वे कांग्रेस तक खारिज कर दिया गया था, जहां इस पर पूरी तरह से चर्चा की गई थी।[3] प्लैंक ब्लैक-बॉडी विकिरण के बीच की अवधि का क्वांटम सिद्धांत, प्लैंक की क्वांटम (1900) की खोज और एक परिपक्व क्वांटम यांत्रिकी (1925) के आगमन को प्रायः पुराने क्वांटम सिद्धांत के रूप में संदर्भित किया जाता है।
उद्भव
20 वीं शताब्दी की प्रारम्भ में, गीगर -मार्सडेन के प्रयोग ने स्थापित किया कि परमाणुओं में एक छोटे,घने,सकारात्मक रूप से आवेशित नाभिक के आस-पास नकारात्मक रूप से आवेशित इलेक्ट्रॉनों का फैला हुआ बादल होता है।[5] इस प्रयोगात्मक आंकड़ों को देखते हुए, रदरफोर्ड ने स्वाभाविक रूप से परमाणु के एक ग्रहीय प्रारूप, 1911 के रदरफोर्ड के प्रारूप पर विचार किया। इसमें सौर नाभिक की परिक्रमा करने वाले इलेक्ट्रॉन थे, परन्तु इसमें एक तकनीकी कठिनाई शामिल थी: पारम्परिक यांत्रिकी के नियम (अर्थात लार्मोर फॉर्मूला) का अनुमान है कि इलेक्ट्रॉन एक नाभिक की परिक्रमा करते हुए विद्युत चुम्बकीय विकिरण जारी करेगा। क्योंकि इलेक्ट्रॉन ऊर्जा खो देगा, यह तेजी से अंदर की ओर सर्पिल होगा, लगभग 16 पीकोसैकन्ड के समय के पैमाने पर नाभिक में गिर जाएगा।[6] रदरफोर्ड का परमाणु प्रारूप विनाशकारी है क्योंकि यह भविष्यवाणी करता है कि सभी परमाणु अस्थिर हैं।[7] इसके अतिरिक्त, जैसे-जैसे इलेक्ट्रॉन सर्पिल अंदर की ओर बढ़ता है, कक्षीय अवधि कम होने के कारण उत्सर्जन में तेजी से वृद्धि होगी, जिसके परिणामस्वरूप निरंतर स्पेक्ट्रम के साथ विद्युत चुम्बकीय विकिरण होता है। यद्यपि, बिजली के निर्वहन के साथ 19 वीं सदी के अंत के प्रयोगों से पता चला था कि परमाणु कुछ असतत आवृत्तियों पर केवल प्रकाश अर्थात, विद्युत चुम्बकीय विकिरण का उत्सर्जन करेंगे। 20वीं शताब्दी की प्रारम्भ में, यह उम्मीद की गई थी कि परमाणु वर्णक्रमीय लाइनों के लिए जिम्मेदार होगा।1897 में, लॉर्ड रेले ने समस्या का विश्लेषण किया।1906 तक, रेले ने कहा, "स्पेक्ट्रम में देखी गई आवृत्तियों को सामान्य अर्थों में अशांति या दोलन की आवृत्तियों की आवृत्तियाँ नहीं हो सकती हैं, बल्कि स्थिरता की स्थितियों द्वारा निर्धारित परमाणु के मूल संविधान का एक अनिवार्य हिस्सा बन सकते हैं।"[8][9]
बोहर के परमाणु की रूपरेखा 1911 में विकिरण और क्वांटा के विषय पर पहले सोलवे सम्मेलन की कार्यवाही के दौरान आई थी, जिस पर बोहर के संरक्षक, रदरफोर्ड मौजूद थे। मैक्स प्लैंक का व्याख्यान इस टिप्पणी के साथ समाप्त हो गया: "आणविक बंधन के अधीन परमाणु या इलेक्ट्रॉन क्वांटम सिद्धांत के नियमों का पालन करेंगे"।[10][11] प्लैंक के व्याख्यान की चर्चा में हेंड्रिक लोरेंट्ज़ ने आर्थर एरिच हास द्वारा विकसित परमाणु प्रारूप के आसपास चर्चा के एक महान हिस्से के साथ थॉमसन के प्रारूप पर आधारित परमाणु की रचना का सवाल उठाया। लोरेंट्ज़ ने बताया कि प्लैंक के स्थिरांक को परमाणुओं के आकार का निर्धारण करने के रूप में लिया जा सकता है, अर्थात परमाणुओं के आकार को प्लैंक के स्थिरांक को निर्धारित करने के लिए लिया जा सकता है।[12] लोरेंट्ज़ ने विकिरण के उत्सर्जन और अवशोषण के सन्दर्भ में टिप्पणियों को शामिल किया, जिसमें कहा गया था कि "एक स्थिर स्थिति स्थापित की जाएगी जिसमें उनके क्षेत्रों में प्रवेश करने वाले इलेक्ट्रॉनों की संख्या उन्हें छोड़ने वालों की संख्या के बराबर है।"[3] परमाणुओं के बीच ऊर्जा के अंतर को विनियमित करने की चर्चा में, केवल मैक्स प्लैंक ने कहा: "बिचौलिया इलेक्ट्रॉन हो सकते हैं।"[13] चर्चाओं ने क्वांटम सिद्धांत की आवश्यकता को परमाणु में शामिल करने की आवश्यकता और एक परमाणु सिद्धांत में कठिनाइयों को रेखांकित किया। प्लैंक ने अपनी बात में स्पष्ट रूप से कहा कि “एक थरथरानवाला [अणु या परमाणु] समीकरण के अनुसार विकिरण प्रदान करने में सक्षम होने के लिए, इसके संचालन के कानूनों में प्रस्तुत करना आवश्यक है, जैसा कि हमने प्रारम्भ में ही कहा है की इस रिपोर्ट में, एक विशेष भौतिक परिकल्पना है, जो एक मौलिक बिंदु पर, पारम्परिक यांत्रिकी के साथ विरोधाभास में स्पष्ट रूप से या मौन रूप से है। ”[14] अपने परमाणु मॉडल पर बोहर का पहला पेपर प्लैंक को शब्द दर शब्द उद्धृत करता है: "इलेक्ट्रॉनों की गति के नियमों में जो भी परिवर्तन हो सकता है, यह आवश्यक लगता है कि कानूनों में पारम्परिक विद्युतगतिकीय को एक विदेशी मात्रा जैसे प्लैंक का स्थिरांक, या जैसा कि इसे प्रायः कार्रवाई का प्राथमिक क्वांटम कहा जाता है में प्रस्तुत करना आवश्यक है। ”पृष्ठ के निचले भाग में बोह्र का फुटनोट 1911 सोल्वे कांग्रेस के फ्रांसीसी अनुवाद के लिए है, यह साबित करते हुए कि उन्होंने अपने प्रारूप को सीधे कार्यवाही और मौलिक सिद्धांतों पर प्लैंक, लोरेंट्ज़, और परमाणु के मात्रात्मक आर्थर हास के अबुसार प्रारूपित किया, जिसका उल्लेख सत्रह बार किया गया था।[5] लोरेंत्ज़ ने आइंस्टीन की बात: “यह धारणा कि यह ऊर्जा कई होनी चाहिए निम्नलिखित सूत्र की ओर जाता है, जहां एक पूर्णांक है: की चर्चा को समाप्त कर दिया। "[15] दरफोर्ड इन बिंदुओं को बोह्र को रेखांकित कर सकते थे या उन्हें कार्यवाही की एक प्रति दे सकते थे क्योंकि उन्होंने उनसे उद्धृत किया था और उन्हें एक संदर्भ के रूप में इस्तेमाल किया था।[16] बाद के एक साक्षात्कार में, बोहर ने कहा कि "मैंने सोलवे कांग्रेस की वास्तविक रिपोर्ट देखी और सोल्वे कांग्रेस के बारे में रदरफोर्ड की टिप्पणी को सुनना बहुत रुचिकर था"।[17][18]
फिर 1912 में, बोहर को जॉन विलियम निकोलसन के एटम प्रारूप के सिद्धांत के बारे में ज्ञात हुआ , जिसने कोणीय गति को h/2π के रूप में निर्धारित किया। नेचर मैगज़ीन में बोहर एटम के शताब्दी समारोह के अनुसार, यह निकोलसन ही थे जिन्होंने पता लगाया था कि जब वे नाभिक की ओर जाते हैं तो इलेक्ट्रॉन वर्णक्रमीय रेखाओं को विकीर्ण करते हैं और उनका सिद्धांत परमाणु और क्वांटम दोनों के संबंध में था।[11][19][20] नील्स बोहर ने इसे 1913 में अपने परमाणु के बोहर प्रारूप के लेख में उद्धृत किया।[5]बोह्र के प्रारूप पर निकोलसन के परमाणु क्वांटम परमाणु प्रारूप के काम के महत्व पर कई इतिहासकारों द्वारा जोर दिया गया है।[21][22][20][23]
इसके बाद, बोह्र को उनके मित्र, हंस हैनसेन ने बताया था कि बाल्मर श्रृंखला की गणना 1885 में जोहान बाल्मर द्वारा खोजे गए एक अनुभवजन्य समीकरण, बाल्मर फॉर्मूला का उपयोग करके की जाती है, जिसमें हाइड्रोजन की कुछ वर्णक्रमीय रेखाओं के तरंग दैर्ध्य का वर्णन किया गया था।[17][24] यह 1888 में जोहान्स रिडबर्ग द्वारा सामान्यीकृत किया गया था, जिसके परिणामस्वरूप अब इसे रिडबर्ग प्रमेय के रूप में जाना जाता है। इसके बाद, बोहर ने घोषणा की, "सब कुछ स्पष्ट हो गया"।[24]
रदरफोर्ड के परमाणु की समस्याओं को दूर करने के लिए, 1913 में नील्स बोहर ने तीन अभिधारणाओ के रूप में अपने प्रारूप के रूप में स्थापित किया।
- इलेक्ट्रॉन किसी भी ऊर्जा को विकिरण किए बिना नाभिक के चारों ओर कुछ स्थिर कक्षाओं में घूमने में सक्षम है, जो पारम्परिक विद्युत चुम्बकीयवाद का सुझाव देता है। इन स्थिर कक्षाओं को स्थिर कक्षाएँ कहा जाता है और नाभिक से कुछ असतत दूरी पर प्राप्त किया जाता है। इलेक्ट्रॉन में असतत लोगों के बीच कोई अन्य कक्षा नहीं हो सकती है।
- स्थिर कक्षाओं को दूरी पर प्राप्त किया जाता है जिसके लिए घूमने वाले इलेक्ट्रॉन की कोणीय गति कम प्लैंक स्थिरांक का एक पूर्णांक है: , जहां n = 1, 2, 3, ... को प्रिंसिपल क्वांटम नंबर कहा जाता है, और ħ = h/2π।N का सबसे कम मूल्य 1 है;यह 0.0529 & nbsp का सबसे छोटा संभव कक्षीय त्रिज्या देता है;एक बार एक इलेक्ट्रॉन इस सबसे कम कक्षा में है, यह नाभिक के करीब नहीं पहुंच सकता है। बोहर के रूप में कोणीय गति क्वांटम नियम से शुरू किया गया था, जो पहले निकोलसन द्वारा अपने 1912 के पेपर में दिया गया है,[17][11][19][20]बोहर हाइड्रोजन परमाणु और अन्य हाइड्रोजन जैसे परमाणुओं और आयनों की अनुमत कक्षाओं की ऊर्जा की गणना करने में सक्षम था। ये कक्षाएँ निश्चित ऊर्जाओं से जुड़ी होती हैं और इन्हें ऊर्जा कोश या ऊर्जा स्तर भी कहा जाता है। इन कक्षाओं में, इलेक्ट्रॉन के त्वरण के परिणामस्वरूप विकिरण और ऊर्जा हानि नहीं होती है। परमाणु का बोहर मॉडल प्लैंक के विकिरण के क्वांटम सिद्धांत पर आधारित था।
- प्लैंक संबंध के अनुसार सतहों के ऊर्जा अंतर द्वारा निर्धारित आवृत्ति ν के साथ विद्युत चुम्बकीय विकिरण को अवशोषित या उत्सर्जित करके इलेक्ट्रॉन केवल एक अनुमत कक्षा से दूसरे में कूद कर ऊर्जा प्राप्त कर सकते हैं और ऊर्जा खो सकते हैं, , जहां एच प्लैंक का स्थिरांक है।
अन्य बिंदु हैं:
- प्रकाश विद्युत प्रभाव के आइंस्टीन के सिद्धांत की तरह, बोह्र का सूत्र मानता है कि क्वांटम कूद के दौरान ऊर्जा की एक असतत मात्रा विकिरणित होती है। यद्यपि, आइंस्टीन के विपरीत, बोह्र विद्युत चुम्बकीय क्षेत्र के पारम्परिक मैक्सवेल के समीकरणों से चिपक गया।विद्युत चुम्बकीय क्षेत्र के परिमाणीकरण को परमाणु ऊर्जा स्तरों की विवेकाधीन द्वारा समझाया गया था;बोहर फोटोन के अस्तित्व में विश्वास नहीं करता था।[25][26]
- मैक्सवेल सिद्धांत के अनुसार पारम्परिक विकिरण की आवृत्ति ν रोटेशन आवृत्ति ν के बराबर हैrot इस आवृत्ति के पूर्णांक गुणकों में हार्मोनिक्स के साथ, इसकी कक्षा में इलेक्ट्रॉन की।यह परिणाम ऊर्जा के स्तर ई के बीच कूदने के लिए बोहर प्रारूप से प्राप्त किया जाता हैn और ईn−k जब k n से बहुत छोटा होता है।ये जंप ऑर्बिट एन के के-वें हार्मोनिक की आवृत्ति को पुन: प्रस्तुत करते हैं।N (तथाकथित Rydberg राज्यों) के पर्याप्त बड़े मूल्यों के लिए, उत्सर्जन प्रक्रिया में शामिल दो कक्षाओं में लगभग एक ही रोटेशन आवृत्ति होती है, ताकि पारम्परिक कक्षीय आवृत्ति अस्पष्ट न हो।परन्तु छोटे n (या बड़े k) के लिए, विकिरण आवृत्ति में कोई अस्पष्ट पारम्परिक व्याख्या नहीं है।यह पत्राचार सिद्धांत के जन्म को चिह्नित करता है, जिसमें क्वांटम सिद्धांत को केवल बड़े क्वांटम संख्याओं की सीमा में पारम्परिक सिद्धांत से सहमत होने की आवश्यकता होती है।
- BKS थ्योरी | बोहर -Kramers -Slater थ्योरी (BKS थ्योरी) बोहर प्रारूप का विस्तार करने का एक असफल प्रयास है, जो क्वांटम जंप में ऊर्जा और रैखिक गति के संरक्षण के संरक्षण का उल्लंघन करता है, केवल संरक्षण कानूनों के साथ केवल औसतन पकड़।
बोहर की स्थिति, कि कोणीय गति एक पूर्णांक है, को बाद में 1924 में ब्रोगली की द्वारा एक स्थायी लहर की स्थिति के रूप में फिर से व्याख्या किया गया था: इलेक्ट्रॉन को एक लहर द्वारा वर्णित किया गया है और इलेक्ट्रॉन की कक्षा की परिधि के साथ तरंग दैर्ध्य की एक पूरी संख्या में फिट होना चाहिए:
डी ब्रोगली की परिकल्पना के अनुसार, इलेक्ट्रॉन जैसे पदार्थ कणों को पदार्थ तरंग के रूप में व्यवहार करते हैं।विकीवर्सिटी: डी ब्रोगली वेवलेंथ ऑफ ए इलेक्ट्रॉन है
जिसका अर्थ है कि
या
कहाँ परिक्रमा इलेक्ट्रॉन की कोणीय गति है।लिखना इस कोणीय गति के लिए, पिछले समीकरण बन जाता है
जो बोहर का दूसरा पोस्ट है।
बोहर ने इलेक्ट्रॉन ऑर्बिट के कोणीय गति को 1/2h के रूप में वर्णित किया, जबकि पदार्थ तरंग | डी ब्रोगली की तरंग दैर्ध्य λ = h/p वर्णित एच इलेक्ट्रॉन गति से विभाजित है।1913 में, यद्यपि, बोहर ने किसी भी प्रकार की लहर व्याख्या प्रदान किए बिना, पत्राचार सिद्धांत को अपील करके अपने नियम को सही ठहराया।1913 में, इलेक्ट्रॉन जैसे पदार्थ कणों के तरंग व्यवहार पर संदेह नहीं था।
1925 में, एक नए प्रकार के यांत्रिकी का प्रस्ताव किया गया था, क्वांटम यांत्रिकी, जिसमें बोह्र के इलेक्ट्रॉनों के प्रारूप की मात्रा निर्धारित कक्षाओं में यात्रा की गई थी, जिसे इलेक्ट्रॉन गति के मैट्रिक्स यांत्रिकी में बढ़ाया गया था।नया सिद्धांत वर्नर हाइजेनबर्ग द्वारा प्रस्तावित किया गया था।एक ही सिद्धांत, वेव मैकेनिक्स के श्रोडिंगर समीकरण, ऑस्ट्रियाई भौतिक विज्ञानी इरविन श्रोडिंगर द्वारा स्वतंत्र रूप से, और अलग -अलग तर्क द्वारा खोजा गया था।श्रोडिंगर ने डी ब्रोगली के मामले की तरंगों को नियोजित किया, परन्तु एक तीन-आयामी तरंग समीकरण के तरंग समाधानों की मांग की, जिसमें इलेक्ट्रॉनों का वर्णन किया गया था, जो कि हाइड्रोजन-जैसे परमाणु के नाभिक के बारे में स्थानांतरित करने के लिए विवश थे, सकारात्मक परमाणु आवेशित की क्षमता से फंसने से।
इलेक्ट्रॉन ऊर्जा स्तर
बोहर प्रारूप केवल एक प्रणाली के लिए लगभग सटीक परिणाम देता है जहां दो आवेशित किए गए बिंदु प्रकाश की तुलना में बहुत कम गति से एक दूसरे की परिक्रमा करते हैं।इसमें न केवल एक-इलेक्ट्रॉन सिस्टम जैसे हाइड्रोजन परमाणु, एकल आयनित हीलियम, और दोगुना आयनित लिथियम शामिल हैं, परन्तु इसमें किसी भी परमाणु के पोजिट्रोनियम और रिडबर्ग राज्य शामिल हैं, जहां एक इलेक्ट्रॉन बाकी सब से बहुत दूर है।इसका उपयोग K-Line (X-Ray) के लिए किया जा सकता है। K-Line X-Ray संक्रमण गणना यदि अन्य मान्यताओं को जोड़ा जाता है (देखें #मोसले का कानून और गणना (K-Alpha X-Ray उत्सर्जन लाइनें) | मोसले के कानून नीचे)।उच्च ऊर्जा भौतिकी में, इसका उपयोग क्वार्क मेसन के द्रव्यमान की गणना करने के लिए किया जा सकता है।
कक्षाओं की गणना के लिए दो मान्यताओं की आवश्यकता होती है।
- पारम्परिक यांत्रिकी
- इलेक्ट्रॉन को इलेक्ट्रोस्टैटिक आकर्षण द्वारा एक गोलाकार कक्षा में आयोजित किया जाता है।सेंट्रिपेटल बल कूलम्ब कानून के बराबर है।
- कहाँ एमe इलेक्ट्रॉन का द्रव्यमान है, ई प्राथमिक आवेशित है, केe कूलम्ब स्थिर है और z परमाणु का परमाणु संख्या है।यहां यह माना जाता है कि नाभिक का द्रव्यमान इलेक्ट्रॉन द्रव्यमान (जो एक अच्छी धारणा है) की तुलना में बहुत बड़ा है।यह समीकरण किसी भी त्रिज्या पर इलेक्ट्रॉन की गति निर्धारित करता है:
- यह किसी भी त्रिज्या पर इलेक्ट्रॉन की कुल ऊर्जा को भी निर्धारित करता है:
- कुल ऊर्जा नकारात्मक है और आर के विपरीत आनुपातिक है।इसका मतलब है कि प्रोटॉन से दूर परिक्रमा इलेक्ट्रॉन को खींचने के लिए ऊर्जा लेता है।आर के अनंत मूल्यों के लिए, ऊर्जा शून्य है, जो प्रोटॉन से एक गतिहीन इलेक्ट्रॉन के अनुरूप है।कुल ऊर्जा आधा संभावित ऊर्जा है, अंतर इलेक्ट्रॉन की गतिज ऊर्जा है।यह वायरल प्रमेय द्वारा नॉनक्रिकुलर ऑर्बिट्स के लिए भी सही है।
- 'एक क्वांटम नियम'
- कोणीय गति L = mevr H का एक पूर्णांक है:
व्युत्पत्ति
यदि एक परमाणु में एक इलेक्ट्रॉन अवधि टी के साथ एक कक्षा पर आगे बढ़ रहा है, तो पारम्परिक रूप से विद्युत चुम्बकीय विकिरण हर कक्षीय अवधि को दोहराएगा।यदि विद्युत चुम्बकीय क्षेत्र में युग्मन कमजोर है, ताकि कक्षा एक चक्र में बहुत अधिक क्षय न हो, विकिरण को एक पैटर्न में उत्सर्जित किया जाएगा जो हर अवधि को दोहराता है, ताकि फूरियर ट्रांसफॉर्म में आवृत्तियां हों जो केवल गुणक हों1/टी।यह पारम्परिक विकिरण कानून है: उत्सर्जित आवृत्तियों 1/टी के पूर्णांक गुणक हैं।
क्वांटम यांत्रिकी में, यह उत्सर्जन प्रकाश की क्वांटा में होना चाहिए, आवृत्तियों की आवृत्तियों में 1/टी के पूर्णांक गुणकों से मिलकर, ताकि पारम्परिक यांत्रिकी बड़े क्वांटम संख्याओं पर एक अनुमानित विवरण हो।इसका मतलब यह है कि अवधि 1/T की एक पारम्परिक कक्षा के अनुरूप ऊर्जा स्तर में पास के ऊर्जा का स्तर होना चाहिए जो एच/टी द्वारा ऊर्जा में भिन्न होता है, और उन्हें उस स्तर के पास समान रूप से फैलाया जाना चाहिए,
बोहर ने चिंतित किया कि क्या ऊर्जा की स्थिति की अवधि के साथ 1/टी की ऊर्जा की सबसे अच्छी गणना की जानी चाहिए , या , या कुछ औसत -हेंडसाइट में, यह प्रारूप केवल अग्रणी अर्धविराम समीपता है।
बोहर ने गोलाकार कक्षाओं पर विचार किया।पारम्परिक रूप से, इन कक्षाओं को छोटे घेरे में क्षय होना चाहिए जब फोटॉन उत्सर्जित होते हैं।परिपत्र कक्षाओं के बीच स्तर की रिक्ति की गणना पत्राचार सूत्र के साथ की जा सकती है।एक हाइड्रोजन परमाणु के लिए, पारम्परिक कक्षाओं में केप्लर्स कानून द्वारा निर्धारित एक अवधि होती है। केप्लर का तीसरा कानून आर के रूप में स्केल करने के लिए3/2 ।ऊर्जा तराजू 1/आर के रूप में होती है, इसलिए स्तर की रिक्ति सूत्र की मात्रा होती है
ऑर्बिट द्वारा ऑर्बिट को पुन: व्यवस्थित करके ऊर्जा के स्तर को निर्धारित करना संभव है, परन्तु एक शॉर्टकट है।
के रूप में परिपत्र कक्षा के कोणीय गति l ।कोणीय गति के संदर्भ में ऊर्जा तब है
बोह्र के साथ, एल के मात्राबद्ध मान समान रूप से फैले हुए हैं, पड़ोसी ऊर्जा के बीच रिक्ति है
यह उतना ही वांछित कोणीय क्षण के लिए वांछित है।यदि कोई स्थिरांक पर नज़र रखता है, तो रिक्ति ħ होगी, इसलिए कोणीय गति ħ का एक पूर्णांक कई होना चाहिए,
इस तरह बोहर अपने प्रारूप पर पहुंचे।
- वेग के लिए अभिव्यक्ति को प्रतिस्थापित करना n के संदर्भ में r के लिए एक समीकरण देता है:
- ताकि किसी भी n पर अनुमत कक्षा त्रिज्या हो
- हाइड्रोजन परमाणु में आर का सबसे छोटा संभव मूल्य (Z = 1) को बोहर त्रिज्या कहा जाता है और इसके बराबर है:
- किसी भी परमाणु के लिए एन-वें स्तर की ऊर्जा त्रिज्या और क्वांटम संख्या द्वारा निर्धारित की जाती है:
हाइड्रोजन के सबसे कम ऊर्जा स्तर में एक इलेक्ट्रॉन (n = 1) इसलिए लगभग 13.6 & nbsp; इलेक्ट्रॉनवोल्ट कम ऊर्जा की तुलना में एक गतिहीन इलेक्ट्रॉन से असीम रूप से नाभिक से दूर है।अगला ऊर्जा स्तर (n = 2) −3.4 & nbsp; ev है।तीसरा (n = 3) is1.51 & nbsp; ev, और इसी तरह है।एन के बड़े मूल्यों के लिए, ये परमाणु के बाकी हिस्सों के आसपास एक बड़े गोलाकार कक्षा में एक इलेक्ट्रॉन के साथ एक अत्यधिक उत्साहित परमाणु की बाध्यकारी ऊर्जा भी हैं।हाइड्रोजन सूत्र भी वालिस उत्पाद के साथ मेल खाता है।[27] ऊर्जा सूत्र में प्राकृतिक स्थिरांक के संयोजन को Rydburg ऊर्जा (R) कहा जाता हैE):
यह अभिव्यक्ति इसे उन संयोजनों में व्याख्या करके स्पष्ट की जाती है जो अधिक प्राकृतिक इकाइयाँ बनाते हैं:
- इलेक्ट्रॉन की बाकी द्रव्यमान ऊर्जा है (511 & nbsp; kev),
- ठीक संरचना स्थिर है,
- ।
चूंकि यह व्युत्पत्ति इस धारणा के साथ है कि नाभिक को एक इलेक्ट्रॉन द्वारा परिक्रमा की जाती है, हम इस परिणाम को सामान्यीकृत कर सकते हैं। q = Ze, जहां z परमाणु संख्या है।यह अब हमें हाइड्रोजेनिक (हाइड्रोजन-जैसे) परमाणुओं के लिए ऊर्जा का स्तर देगा, जो वास्तविक ऊर्जा स्तरों के एक मोटे क्रम-के-परिमाण समीपता के रूप में काम कर सकता है।तो जेड प्रोटॉन के साथ नाभिक के लिए, ऊर्जा का स्तर (एक मोटे समीपता के लिए) है:
वास्तविक ऊर्जा स्तर को एक से अधिक इलेक्ट्रॉन के लिए विश्लेषणात्मक रूप से हल नहीं किया जा सकता है (एन-बॉडी समस्या देखें। एन-बॉडी समस्या) क्योंकि इलेक्ट्रॉन न केवल परमाणु नाभिक से प्रभावित होते हैं, बल्कि कूलम्ब बल के माध्यम से एक दूसरे के साथ भी बातचीत करते हैं।
जब z = 1/α (Z ≈ 137), गति अत्यधिक सापेक्ष हो जाती है, और z2 α को रद्द कर देता हैआर में 2 ;कक्षा ऊर्जा आराम ऊर्जा के लिए तुलनीय होने लगती है।पर्याप्त रूप से बड़े नाभिक, यदि वे स्थिर थे, तो वैक्यूम से एक बाध्य इलेक्ट्रॉन बनाकर, पॉज़िट्रॉन को अनंत से बाहर निकालकर अपने आवेशित को कम कर देंगे।यह विद्युत चुम्बकीय आवेशित स्क्रीनिंग की सैद्धांतिक घटना है जो अधिकतम परमाणु आवेश की भविष्यवाणी करती है।अस्थायी सुपर-भारी नाभिक बनाने के लिए भारी आयनों के टकराव में इस तरह के पॉज़िट्रॉन का उत्सर्जन देखा गया है।[28] बोहर सूत्र इलेक्ट्रॉन के द्रव्यमान के बजाय सभी स्थितियों में इलेक्ट्रॉन और प्रोटॉन के कम द्रव्यमान का उपयोग करता है,
यद्यपि, ये संख्या बहुत लगभग समान हैं, प्रोटॉन के बहुत बड़े द्रव्यमान के कारण, इलेक्ट्रॉन के द्रव्यमान से लगभग 1836.1 गुना अधिक है, ताकि सिस्टम में कम द्रव्यमान निरंतर 1836.1/(((((1+1836.1) = 0.99946।यह तथ्य बोह्र के प्रारूप के महत्व के रदरफोर्ड को समझाने में ऐतिहासिक रूप से महत्वपूर्ण था, क्योंकि इस तथ्य ने इस तथ्य को समझाया कि एकल आयनित हीलियम के लिए स्पेक्ट्रा में लाइनों की आवृत्तियों ने हाइड्रोजन के उन कारक से अलग नहीं किया है, बल्कि 4 के एक कारक से, बल्कि 4 से 4 तक नहीं हैहाइड्रोजन बनाम हीलियम सिस्टम के लिए कम द्रव्यमान का अनुपात, जो कि बिल्कुल 4 की तुलना में प्रयोगात्मक अनुपात के बहुत करीब था।
पॉज़िट्रोनियम के लिए, सूत्र कम द्रव्यमान का भी उपयोग करता है, परन्तु इस मामले में, यह बिल्कुल 2 से विभाजित इलेक्ट्रॉन द्रव्यमान है। त्रिज्या के किसी भी मूल्य के लिए, इलेक्ट्रॉन और पॉज़िट्रॉन प्रत्येक अपने सामान्य केंद्र के चारों ओर आधी गति से चल रहे हैं।द्रव्यमान, और प्रत्येक में केवल एक चौथाई गतिज ऊर्जा है।कुल गतिज ऊर्जा आधी है जो एक एकल इलेक्ट्रॉन के लिए एक भारी नाभिक के चारों ओर घूमने के लिए होगी।
- & emsp; (पॉज़िट्रोनियम)।
Rydberg फॉर्मूला
Rydberg फॉर्मूला, जिसे बोह्र के सूत्र से पहले अनुभवजन्य रूप से जाना जाता था, को बोह्र के सिद्धांत में देखा जाता है, जो कक्षीय ऊर्जा स्तरों के बीच संक्रमण या परमाणु इलेक्ट्रॉन संक्रमण की ऊर्जा का वर्णन करता है।बोह्र का सूत्र पहले से ज्ञात और मापा राइडबर्ग स्थिरांक का संख्यात्मक मान देता है, परन्तु प्रकृति के अधिक मौलिक स्थिरांक के संदर्भ में, जिसमें इलेक्ट्रॉन के आवेशित और प्लैंक स्थिरांक शामिल हैं।
जब इलेक्ट्रॉन अपने मूल ऊर्जा स्तर से एक उच्चतर हो जाता है, तो यह तब तक प्रत्येक स्तर पर वापस कूद जाता है जब तक कि यह मूल स्थिति में नहीं आता है, जिसके परिणामस्वरूप एक फोटॉन उत्सर्जित होता है।हाइड्रोजन वन के विभिन्न ऊर्जा स्तरों के लिए व्युत्पन्न सूत्र का उपयोग करना प्रकाश की तरंग दैर्ध्य का निर्धारण कर सकता है जो एक हाइड्रोजन परमाणु का उत्सर्जन कर सकता है।
हाइड्रोजन परमाणु द्वारा उत्सर्जित एक फोटॉन की ऊर्जा दो हाइड्रोजन ऊर्जा स्तरों के अंतर से दी जाती है:
कहाँ nf अंतिम ऊर्जा स्तर है, और ni प्रारंभिक ऊर्जा स्तर है।
चूंकि एक फोटॉन की ऊर्जा है
दिए गए फोटॉन की तरंग दैर्ध्य द्वारा दिया गया है
इसे Rydberg फॉर्मूला, और Rydberg Constanch के रूप में जाना जाता है R है RE/hc, या RE/2π प्राकृतिक इकाइयों में।यह सूत्र उन्नीसवीं शताब्दी में स्पेक्ट्रोस्कोपी का अध्ययन करने वाले वैज्ञानिकों के लिए जाना जाता था, परन्तु इस रूप के लिए कोई सैद्धांतिक स्पष्टीकरण या मूल्य के लिए एक सैद्धांतिक भविष्यवाणी नहीं थी R, बोहर तक।वास्तव में, रिडबर्ग कॉन्स्टेंट की बोहर की व्युत्पत्ति, साथ ही साथ बोह्र के फार्मूले के सहवर्ती समझौते के साथ लिमन श्रृंखला के प्रयोगात्मक रूप से देखे गए वर्णक्रमीय रेखाओं के साथ (nf = 1), बाल्मर श्रृंखला (nf = 2), और पास्चेन श्रृंखला (nf = 3) श्रृंखला, और अन्य पंक्तियों की सफल सैद्धांतिक भविष्यवाणी अभी तक नहीं देखी गई, एक कारण था कि उनके प्रारूप को तुरंत स्वीकार कर लिया गया था।
एक से अधिक इलेक्ट्रॉन के साथ परमाणुओं पर लागू करने के लिए, Rydberg फॉर्मूला को प्रतिस्थापित करके संशोधित किया जा सकता है Z साथ Z − b या n साथ n − b कहाँ b आंतरिक-शेल और अन्य इलेक्ट्रॉनों के कारण स्क्रीनिंग प्रभाव का प्रतिनिधित्व करता है (देखें इलेक्ट्रॉन कवच और बाद में परमाणु के शेल प्रारूप की चर्चा)।बोहर ने अपना प्रारूप प्रस्तुत करने से पहले यह अनुभवजन्य रूप से स्थापित किया गया था।
शेल प्रारूप (भारी परमाणु)
1913 में बोह्र के मूल तीन पत्रों ने मुख्य रूप से लाइटर तत्वों में इलेक्ट्रॉन कॉन्फ़िगरेशन का वर्णन किया।बोहर ने 1913 में अपने इलेक्ट्रॉन के गोले, "रिंग्स" को बुलाया। गोले के भीतर परमाणु ऑर्बिटल्स उनके ग्रह प्रारूप के समय मौजूद नहीं थे।बोहर ने अपने प्रसिद्ध 1913 पेपर के भाग 3 में बताया कि एक शेल में अधिकतम इलेक्ट्रॉन आठ हैं, लिखते हैं: "हम देखते हैं, आगे, एन इलेक्ट्रॉनों की एक अंगूठी एक ही रिंग राउंड में एक नाभिक n के एक नाभिक में नहीं घूम सकती है।eजब तक n <8. "छोटे परमाणुओं के लिए, इलेक्ट्रॉन के गोले निम्नानुसार भरे जाएंगे: “इलेक्ट्रॉनों के छल्ले केवल एक साथ जुड़ेंगे जब उनमें इलेक्ट्रॉनों की समान संख्या हो;और तदनुसार आंतरिक छल्ले पर इलेक्ट्रॉनों की संख्या केवल 2, 4, 8 ”होगी।यद्यपि, बड़े परमाणुओं में अंतरतम शेल में आठ इलेक्ट्रॉन होंगे, "दूसरी ओर, तत्वों की आवधिक प्रणाली दृढ़ता से बताती है कि पहले से ही नीयन n = 10 में आठ इलेक्ट्रॉनों की एक आंतरिक अंगूठी होगी"।बोह्र ने उपरोक्त से लिखा है कि हम प्रकाश परमाणुओं में इलेक्ट्रॉनों की व्यवस्था के लिए निम्नलिखित संभावित योजना के लिए नेतृत्व कर रहे हैं:[29][30][4][16]
| Element | इलेक्ट्रानs per shell | Element | इलेक्ट्रानs per shell | Element | इलेक्ट्रानs per shell |
|---|---|---|---|---|---|
| 1 | 1 | 9 | 4, 4, 1 | 17 | 8, 4, 4, 1 |
| 2 | 2 | 10 | 8, 2 | 18 | 8, 8, 2 |
| 3 | 2, 1 | 11 | 8, 2, 1 | 19 | 8, 8, 2, 1 |
| 4 | 2, 2 | 12 | 8, 2, 2 | 20 | 8, 8, 2, 2 |
| 5 | 2, 3 | 13 | 8, 2, 3 | 21 | 8, 8, 2, 3 |
| 6 | 2, 4 | 14 | 8, 2, 4 | 22 | 8, 8, 2, 4 |
| 7 | 4, 3 | 15 | 8, 4, 3 | 23 | 8, 8, 4, 3 |
| 8 | 4, 2, 2 | 16 | 8, 4, 2, 2 | 24 | 8, 8, 4, 2, 2 |
बोह्र के तीसरे 1913 के पेपर पार्ट III में कई नाभिक वाले सिस्टम कहा जाता है, उनका कहना है कि दो परमाणु एक सममित विमान पर अणु बनाते हैं और वह हाइड्रोजन का वर्णन करने के लिए श्रद्धा करता है।[31] 1913 के बोह्र प्रारूप ने उच्च तत्वों पर विस्तार से चर्चा नहीं की और जॉन विलियम निकोलसन 1914 में यह साबित करने वाले पहले लोगों में से एक थे कि यह लिथियम के लिए काम नहीं कर सकता था, परन्तु हाइड्रोजन और आयनित हीलियम के लिए एक आकर्षक सिद्धांत था।[16][32] 1921 में, समय -समय पर काम में शामिल रसायनज्ञों और अन्य लोगों के काम के बाद, बोह्र ने भारी परमाणुओं के लिए एक अनुमानित प्रारूप देने के लिए हाइड्रोजन के प्रारूप को बढ़ाया।इसने एक भौतिक तस्वीर दी, जिसने पहली बार कई ज्ञात परमाणु गुणों को पुन: प्रस्तुत किया, यद्यपि इन गुणों को केमिस्ट चार्ल्स रगले बरी के समान कार्य के साथ समकालीन रूप से प्रस्तावित किया गया था[4][33] 1914 से 1916 के दौरान अनुसंधान में बोह्र के साथी वाल्थर कोसेल थे जिन्होंने बोह्र के काम को ठीक किया था ताकि यह दिखाया जा सके कि इलेक्ट्रॉनों ने बाहरी छल्ले के माध्यम से बातचीत की, और कोसेल ने द रिंग्स: "शेल" कहा।[34][35] इरविंग लैंगमुइर को पहले शेल में केवल दो के साथ गोले में इलेक्ट्रॉनों की पहली व्यवहार्य व्यवस्था के साथ श्रेय दिया जाता है और 1904 के ऑक्टेट नियम के अनुसार अगले में आठ तक जा रहा है, यद्यपि कोसेल ने पहले ही 1916 में अधिकतम आठ प्रति शेल की भविष्यवाणी की थी।[36] भारी परमाणुओं में नाभिक में अधिक प्रोटॉन होते हैं, और आवेशित को रद्द करने के लिए अधिक इलेक्ट्रॉन होते हैं।बोहर ने इन रसायनज्ञों से यह विचार लिया कि प्रत्येक असतत कक्षा केवल एक निश्चित संख्या में इलेक्ट्रॉनों को पकड़ सकती है।प्रति कोसेल, उसके बाद कक्षा भरी हुई है, अगले स्तर का उपयोग करना होगा।[4]यह परमाणु को Kossel, Langmuir, और Bury द्वारा डिज़ाइन किया गया एक ऋणावेशित सूक्ष्म अणु का विन्यास देता है, जिसमें प्रत्येक शेल बोहर कक्षा से मेल खाता है।
यह प्रारूप हाइड्रोजन के प्रारूप की तुलना में और भी अधिक अनुमानित है, क्योंकि यह प्रत्येक शेल में इलेक्ट्रॉनों को गैर-इंटरेक्टिंग के रूप में मानता है।परन्तु इलेक्ट्रॉनों के प्रतिकर्षण को परिरक्षण प्रभाव की घटना से कुछ हद तक ध्यान में रखा जाता है।बाहरी कक्षाओं में इलेक्ट्रॉन न केवल नाभिक की परिक्रमा करते हैं, बल्कि वे आंतरिक इलेक्ट्रॉनों के चारों ओर भी घूमते हैं, इसलिए प्रभावी आवेशित z जो उन्हें लगता है कि आंतरिक कक्षा में इलेक्ट्रॉनों की संख्या से कम हो जाता है।
उदाहरण के लिए, लिथियम परमाणु में सबसे कम 1s कक्षा में दो इलेक्ट्रॉन होते हैं, और ये ऑर्बिट z & nbsp; = & nbsp; 2 पर होते हैं।प्रत्येक एक z & nbsp; = & nbsp; 3 के परमाणु आवेश को दूसरे की स्क्रीनिंग प्रभाव को देखता है, जो 1 यूनिट द्वारा परमाणु आवेश को कम कर देता है।इसका मतलब यह है कि अंतरतम इलेक्ट्रॉनों की कक्षा लगभग 1/2 बोहर त्रिज्या है।लिथियम में सबसे बाहरी इलेक्ट्रॉन मोटे तौर पर बोहर त्रिज्या पर कक्षाओं में, क्योंकि दो आंतरिक इलेक्ट्रॉन परमाणु आवेश को कम करते हैं। यह बाहरी इलेक्ट्रॉन नाभिक से लगभग एक बोहर त्रिज्या पर होना चाहिए।क्योंकि इलेक्ट्रॉन एक दूसरे को दृढ़ता से पीछे छोड़ते हैं, प्रभावी आवेशित विवरण बहुत अनुमानित है;प्रभावी आवेशित z सामान्यतः पर एक पूर्णांक नहीं होता है।परन्तु मोसले का कानून प्रयोगात्मक रूप से इलेक्ट्रॉनों की अंतरतम जोड़ी की जांच करता है, और यह दर्शाता है कि वे लगभग z & nbsp; - & nbsp; 1 का एक परमाणु आवेश देखते हैं, जबकि एक परमाणु या आयन में सबसे बाहरी इलेक्ट्रॉन सबसे बाहरी शेल में केवल एक इलेक्ट्रॉन के साथ एक कोर के साथ एक कोर है।प्रभावी आवेशित z & nbsp; - & nbsp; k जहां k आंतरिक गोले में इलेक्ट्रॉनों की कुल संख्या है।
शेल प्रारूप परमाणुओं के कई रहस्यमय गुणों को गुणात्मक रूप से समझाने में सक्षम था जो 19 वीं शताब्दी के अंत में तत्वों की आवर्त सारणी में संहिताबद्ध हो गए थे।एक संपत्ति परमाणुओं का आकार था, जो गैसों की चिपचिपाहट और शुद्ध क्रिस्टलीय ठोस पदार्थों के घनत्व को मापकर लगभग निर्धारित किया जा सकता है।परमाणु आवर्त सारणी में दाईं ओर छोटे हो जाते हैं, और तालिका की अगली पंक्ति में बहुत बड़े हो जाते हैं।मेज के दाईं ओर परमाणु इलेक्ट्रॉनों को प्राप्त करते हैं, जबकि बाईं ओर परमाणु उन्हें खो देते हैं।तालिका के अंतिम स्तंभ पर प्रत्येक तत्व रासायनिक रूप से अक्रिय (नोबल गैस) है।
शेल प्रारूप में, इस घटना को शेल-फिलिंग द्वारा समझाया गया है।क्रमिक परमाणु छोटे हो जाते हैं क्योंकि वे एक ही आकार की कक्षाओं को भर रहे हैं, जब तक कि कक्षा भरी नहीं होती है, जिस बिंदु पर मेज में अगले परमाणु में एक शिथिल रूप से बाध्य बाहरी इलेक्ट्रॉन होता है, जिससे इसका विस्तार होता है।पहली बोह्र ऑर्बिट तब भरी जाती है जब उसके पास दो इलेक्ट्रॉन होते हैं, जो बताता है कि हीलियम क्यों निष्क्रिय है।दूसरी कक्षा आठ इलेक्ट्रॉनों की अनुमति देती है, और जब यह पूर्ण होता है तो परमाणु नीयन होता है, फिर से अक्रिय होता है।तीसरे कक्षीय में आठ फिर से होते हैं, सिवाय इसके कि अधिक सही सोमरफेल्ड उपचार (आधुनिक क्वांटम यांत्रिकी में पुन: प्रस्तुत) में अतिरिक्त डी इलेक्ट्रॉन होते हैं।तीसरी कक्षा में अतिरिक्त 10 डी इलेक्ट्रॉन हो सकते हैं, परन्तु ये पद तब तक नहीं भरे जाते हैं जब तक कि अगले स्तर से कुछ और ऑर्बिटल्स भरे जाते हैं (n = 3 डी ऑर्बिटल्स को भरने से 10 संक्रमण तत्व पैदा होते हैं)।अनियमित भरने का पैटर्न इलेक्ट्रॉनों के बीच बातचीत का एक प्रभाव है, जिसे बोह्र या सोमरफेल्ड प्रारूप में ध्यान में नहीं रखा जाता है और जो आधुनिक उपचार में भी गणना करना मुश्किल है।
मोसले का नियम और गणना (के-अल्फा एक्स-रे उत्सर्जन लाइनें)
नील्स बोहर ने 1962 में कहा: आप देखते हैं कि वास्तव में रदरफोर्ड का काम गंभीरता से नहीं लिया गया था।हम आज नहीं समझ सकते, परन्तु इसे गंभीरता से नहीं लिया गया।इसका कोई उल्लेख नहीं था।महान बदलाव मोसले से आया था।[37] 1913 में, हेनरी मोसले ने इलेक्ट्रॉन बमबारी (तब कश्मीर अल्फा लाइन के रूप में जाना जाता है) के तहत परमाणुओं द्वारा उत्सर्जित सबसे मजबूत एक्स-रे लाइन के बीच एक अनुभवजन्य संबंध पाया, और उनके परमाणु संख्या Z।मोसले के अनुभवजन्य सूत्र को रिडबर्ग के फॉर्मूला से व्युत्पन्न पाया गया था और बाद में बोह्र का फॉर्मूला (मोसले वास्तव में केवल अर्नेस्ट रदरफोर्ड और एंटोनियस वैन डेन ब्रोके का उल्लेख करता है, जो प्रारूप के संदर्भ में ही प्रकाशित हो गया था क्योंकि मोसले के काम से पहले प्रकाशित किया गया था और मोसले के 1913 पेपर को उसी महीने प्रकाशित किया गया था जैसे किपहला बोहर प्रारूप पेपर)।[38] दो अतिरिक्त धारणाएं कि [1] यह एक्स-रे लाइन क्वांटम संख्या 1 और 2, और [2] के साथ ऊर्जा स्तरों के बीच एक संक्रमण से आई थी, कि परमाणु संख्या Z जब हाइड्रोजन की तुलना में भारी परमाणुओं के लिए सूत्र में उपयोग किया जाता है, तो 1 से कम हो जाना चाहिए (Z − 1)2।
मोसले ने बोह्र को लिखा, अपने परिणामों के बारे में हैरान, परन्तु बोहर मदद करने में सक्षम नहीं था।उस समय, उन्होंने सोचा था कि इलेक्ट्रॉनों के पोस्ट किए गए अंतरतम K शेल में कम से कम चार इलेक्ट्रॉन होने चाहिए, न कि दो जो बड़े करीने से परिणाम के बारे में बताएंगे।इसलिए मोसले ने एक सैद्धांतिक स्पष्टीकरण के बिना अपने परिणाम प्रकाशित किए।
यह 1914 में वाल्थर कोसेल था और 1916 में जिन्होंने समझाया कि आवर्त सारणी में नए तत्व बनाए जाएंगे क्योंकि इलेक्ट्रॉनों को बाहरी शेल में जोड़ा गया था।कोसेल के पेपर में, वह लिखते हैं: "यह इस निष्कर्ष की ओर जाता है कि इलेक्ट्रॉनों, जो आगे जोड़े जाते हैं, को गाढ़ा छल्ले या गोले में डाल दिया जाना चाहिए, जिनमें से प्रत्येक पर ... केवल एक निश्चित संख्याकेस- की व्यवस्था की जानी चाहिए।जैसे ही एक रिंग या शेल पूरा हो जाता है, अगले तत्व के लिए एक नया शुरू करना पड़ता है;इलेक्ट्रॉनों की संख्या, जो सबसे आसानी से सुलभ हैं, और सबसे बाहरी परिधि में झूठ बोलती हैं, तत्व से तत्व तक फिर से बढ़ जाती हैं और इसलिए, प्रत्येक नए शेल के गठन में रासायनिक आवधिकता को दोहराया जाता है। "[34][35]बाद में, केमिस्ट लैंगमुइर ने महसूस किया कि प्रभाव आवेशित स्क्रीनिंग के कारण हुआ था, जिसमें एक आंतरिक शेल था जिसमें केवल 2 इलेक्ट्रॉनों थे।अपने 1919 के पेपर में, इरविंग लैंगमुइर ने कोशिकाओं के अस्तित्व को पोस्ट किया, जिसमें प्रत्येक में केवल दो इलेक्ट्रॉन हो सकते हैं, और इन्हें समतुल्य परतों में व्यवस्थित किया गया था ”।
मोसले प्रयोग में, परमाणु में अंतरतम इलेक्ट्रॉनों में से एक को खटखटाया जाता है, जो सबसे कम बोहर कक्षा में एक रिक्ति को छोड़ देता है, जिसमें एक शेष इलेक्ट्रॉन होता है।यह रिक्ति तब अगली कक्षा से एक इलेक्ट्रॉन द्वारा भरी जाती है, जिसमें n = 2 होता है।परन्तु n = 2 इलेक्ट्रॉन z & nbsp; - & nbsp; 1 का एक प्रभावी आवेश देखते हैं, जो कि नाभिक के आवेश के लिए उपयुक्त मान है, जब एक एकल इलेक्ट्रॉन परमाणु आवेशित +Z, और निचले स्थान पर रहने के लिए सबसे कम बोह्र ऑर्बिट में रहता है, और कम है।यह (1 द्वारा (परमाणु सकारात्मक आवेशित की स्क्रीनिंग इलेक्ट्रॉन के नकारात्मक आवेशित के कारण)।दूसरे शेल से पहले एक इलेक्ट्रॉन द्वारा प्राप्त की गई ऊर्जा ने के-अल्फा लाइनों के लिए मोसले के नियम को दिया,
या
यहाँ, r v= आर E/H '3.28 x 10 के बराबर आवृत्ति के संदर्भ में, Rydberg स्थिरांक है15 हर्ट्ज।11 और 31 के बीच z के मूल्यों के लिए यह बाद के संबंध को मोसले द्वारा अनुभवजन्य रूप से प्राप्त किया गया था, परमाणु संख्या के खिलाफ एक्स-रे आवृत्ति के वर्गमूल के एक सरल (रैखिक) भूखंड में (यद्यपि, चांदी के लिए, z = 47 के लिए, प्रयोगात्मक रूप से प्राप्त किया गयास्क्रीनिंग टर्म को 0.4 से बदल दिया जाना चाहिए)।इसके प्रतिबंधित वैधता के बावजूद,[39] मोसले के नियम ने न केवल परमाणु संख्या के उद्देश्य अर्थ को स्थापित किया, बल्कि जैसा कि बोहर ने उल्लेख किया है, इसने रदरफोर्ड/वैन डेन ब्रोके/बोहर परमाणु प्रारूप की वैधता को स्थापित करने के लिए रिडबर्ग व्युत्पत्ति से अधिक किया, परमाणु संख्या के साथ (स्थान (जगह पर जगह)आवर्त सारणी) परमाणु आवेशित की पूरी इकाइयों के लिए खड़ी है।वैन डेन ब्रोके ने जनवरी 1913 में अपना प्रारूप प्रकाशित किया था, जिसमें दिखाया गया था कि आवर्त सारणी को आवेशित के अनुसार व्यवस्थित किया गया था, जबकि बोहर का परमाणु प्रारूप जुलाई 1913 तक प्रकाशित नहीं हुआ था।[40] मोसले के समय की के-अल्फा लाइन को अब करीबी लाइनों की एक जोड़ी के रूप में जाना जाता है, जिसे (kα (kα1और Kα2) Siegbahn संकेतन में।
कमियां
बोहर प्रारूप एक गलत मूल्य देता है L=ħ ग्राउंड स्टेट ऑर्बिटल एंगुलर मोमेंटम के लिए: ट्रू ग्राउंड स्टेट में कोणीय गति को प्रयोग से शून्य माना जाता है।[41] यद्यपि मानसिक चित्र कुछ हद तक पैमाने के इन स्तरों पर विफल होते हैं, बिना किसी कक्षीय गति के सबसे कम आधुनिक कक्षीय में एक इलेक्ट्रॉन, माना जा सकता है कि नाभिक के चारों ओर घूमने के लिए नहीं, बल्कि केवल शून्य क्षेत्र के साथ एक दीर्घवृत्त में कसकर जाने के लिए(यह नाभिक के साथ हड़ताली या बातचीत के बिना आगे और पीछे के रूप में चित्रित किया जा सकता है)।यह केवल सोमरफेल्ड जैसे अधिक परिष्कृत अर्धविराम उपचार में पुन: प्रस्तुत किया जाता है।फिर भी, यहां तक कि सबसे परिष्कृत अर्धविराम प्रारूप इस तथ्य को समझाने में विफल रहता है कि सबसे कम ऊर्जा राज्य गोलाकार रूप से सममित है - यह किसी विशेष दिशा में इंगित नहीं करता है।
फिर भी, आधुनिक चरण अंतरिक्ष सूत्रीकरण में, अर्ध-पारम्परिक परिणाम के उचित विरूपण (सावधान पूर्ण विस्तार) को कोणीय गति मूल्य को सही प्रभावी करने के लिए समायोजित करता है।[42] परिणामस्वरूप, भौतिक जमीनी राज्य अभिव्यक्ति को लुप्त होती क्वांटम कोणीय गति अभिव्यक्ति की एक पारी के माध्यम से प्राप्त किया जाता है, जो गोलाकार समरूपता से मेल खाती है।
आधुनिक क्वांटम यांत्रिकी में, हाइड्रोजन में इलेक्ट्रॉन एक इलेक्ट्रॉन बादल है जो नाभिक के पास सघनता को बढ़ाता है।हाइड्रोजन में संभाव्यता-क्षय की दर-निरंतर बोहर त्रिज्या के व्युत्क्रम के बराबर है, परन्तु चूंकि बोहर ने गोलाकार कक्षाओं के साथ काम किया था, न कि शून्य क्षेत्र दीर्घवृत्त, यह तथ्य कि ये दो संख्याएं वास्तव में सहमत हैं, एक संयोग माना जाता है।(यद्यपि, इस तरह के कई संयोग समझौते परमाणु के अर्धविराम बनाम पूर्ण क्वांटम यांत्रिक उपचार के बीच पाए जाते हैं; इनमें हाइड्रोजन परमाणु में समान ऊर्जा स्तर और एक ठीक-संरचना स्थिरांक की व्युत्पत्ति शामिल है, जो कि सापेक्ष बोहर-सॉमरफेल्ड प्रारूप से उत्पन्न होती है(नीचे देखें) और जो पूर्ण आधुनिक क्वांटम यांत्रिकी में एक पूरी तरह से अलग अवधारणा के बराबर होता है)।
बोहर प्रारूप को भी कठिनाई होती है, या फिर समझाने में विफल रहता है:
- बड़े परमाणुओं के अधिकांश स्पेक्ट्रा।सबसे अच्छा, यह के-अल्फा और कुछ एल-अल्फा एक्स-रे उत्सर्जन स्पेक्ट्रा के बारे में बड़े परमाणुओं के लिए भविष्यवाणियां कर सकता है, अगर दो अतिरिक्त तदर्थ धारणाएं बनाई जाती हैं।एक एकल बाहरी-शेल इलेक्ट्रॉन (लिथियम समूह में परमाणुओं) के साथ परमाणुओं के लिए उत्सर्जन स्पेक्ट्रा भी लगभग भविष्यवाणी की जा सकती है।इसके अतिरिक्त, यदि कई परमाणुओं के लिए अनुभवजन्य इलेक्ट्रॉन -परमाणु स्क्रीनिंग कारक ज्ञात हैं, तो कई अन्य वर्णक्रमीय रेखाओं को जानकारी से अलग किया जा सकता है, अलग -अलग तत्वों के समान परमाणुओं में, रिट्ज -राईडबर्ग संयोजन सिद्धांतों के माध्यम से (Rydberg फॉर्मूला देखें)।ये सभी तकनीकें अनिवार्य रूप से बोह्र की न्यूटोनियन ऊर्जा-संभावित तस्वीर परमाणु का उपयोग करती हैं।
- वर्णक्रमीय रेखाओं की सापेक्ष तीव्रता;यद्यपि कुछ सरल मामलों में, बोह्र के सूत्र या इसके संशोधन, उचित अनुमान प्रदान करने में सक्षम थे (उदाहरण के लिए, स्टार्क प्रभाव के लिए क्रेमर द्वारा गणना)।
- वर्णक्रमीय लाइनों में ठीक संरचना और हाइपरफाइन संरचना का अस्तित्व, जो विभिन्न प्रकार के सापेक्ष और सूक्ष्म प्रभावों के साथ -साथ इलेक्ट्रॉन स्पिन से जटिलताओं के कारण जाना जाता है।
- Zeeman प्रभाव - बाहरी चुंबकीय क्षेत्रों के कारण वर्णक्रमीय रेखाओं में परिवर्तन;ये इलेक्ट्रॉन स्पिन और कक्षीय चुंबकीय क्षेत्रों के साथ बातचीत करने वाले अधिक जटिल क्वांटम सिद्धांतों के कारण भी हैं।
- प्रारूप अनिश्चितता के सिद्धांत का भी उल्लंघन करता है कि यह इलेक्ट्रॉनों को ज्ञात कक्षाओं और स्थानों पर मानता है, दो चीजें जिन्हें एक साथ मापा नहीं जा सकता है।
- कुछ परमाणुओं के स्पेक्ट्रा में डबल और ट्रिपललेट्स दिखाई देते हैं, जो लाइनों के बहुत करीबी जोड़े के रूप में होते हैं।बोहर का प्रारूप यह नहीं कह सकता है कि कुछ ऊर्जा स्तर एक साथ बहुत करीब क्यों होना चाहिए।
- मल्टी-इलेक्ट्रॉन परमाणुओं में प्रारूप द्वारा भविष्यवाणी की गई ऊर्जा का स्तर नहीं है।यह (तटस्थ) हीलियम के लिए काम नहीं करता है।
शोधन
बोहर प्रारूप के लिए कई संवर्द्धन प्रस्तावित किए गए थे, विशेष रूप से पुराने क्वांटम सिद्धांत | सोमरफेल्ड या बोह्र -सेमरफेल्ड प्रारूप, जो सुझाव देते थे कि इलेक्ट्रॉन बोह्र प्रारूप के गोलाकार कक्षाओं के बजाय एक नाभिक के आसपास अण्डाकार कक्षाओं में यात्रा करते हैं।[1]इस प्रारूप ने एक अतिरिक्त रेडियल परिमाणीकरण स्थिति, विलियम विल्सन (अंग्रेजी अकादमिक) -Arnold सोमेरफेल्ड परिमाणीकरण स्थिति के साथ बोहर प्रारूप की मात्राबद्ध कोणीय गति की स्थिति को पूरक किया।[43][44]
जहां पीrरेडियल मोमेंटम कैनोनिक रूप से समन्वित क्यू के लिए संयुग्म है, जो रेडियल स्थिति है, और टी एक पूर्ण कक्षीय अवधि है।अभिन्न एक्शन-कोण निर्देशांक की कार्रवाई (भौतिकी) है।पत्राचार सिद्धांत द्वारा सुझाई गई यह स्थिति, केवल एक ही संभव है, क्योंकि क्वांटम संख्या अडियाबेटिक अपरिवर्तनीय ्स हैं।
बोह्र -सेमेरफेल्ड प्रारूप मौलिक रूप से असंगत था और कई विरोधाभासों का नेतृत्व किया।चुंबकीय क्वांटम संख्या ने XY & nbsp; विमान के सापेक्ष कक्षीय विमान के झुकाव को मापा, और यह केवल कुछ असतत मान ले सकता है।इसने स्पष्ट तथ्य का खंडन किया कि एक परमाणु को इस तरह से बदल दिया जा सकता है और बिना किसी प्रतिबंध के निर्देशांक के सापेक्ष।सोमरफेल्ड परिमाणीकरण को अलग -अलग विहित निर्देशांक में किया जा सकता है और कभी -कभी अलग -अलग उत्तर देता है।विकिरण सुधारों का समावेश मुश्किल था, क्योंकि इसे संयुक्त विकिरण/परमाणु प्रणाली के लिए एक्शन-एंगल निर्देशांक खोजने की आवश्यकता थी, जो कि विकिरण को भागने की अनुमति होने पर मुश्किल है।पूरे सिद्धांत ने गैर-एकीकृत गतियों तक विस्तार नहीं किया, जिसका मतलब था कि कई प्रणालियों का सिद्धांत रूप में भी इलाज नहीं किया जा सकता है।अंत में, प्रारूप को हाइड्रोजन परमाणु के आधुनिक क्वांटम-मैकेनिकल उपचार द्वारा प्रतिस्थापित किया गया था, जिसे पहली बार 1925 में वोल्फगैंग पाउली ने हाइजेनबर्ग के मैट्रिक्स यांत्रिकी का उपयोग करते हुए दिया था।हाइड्रोजन परमाणु की वर्तमान तस्वीर श्रोडिंगर समीकरण के परमाणु ऑर्बिटल्स पर आधारित है, जिसे इरविन श्रोडिंगर ने 1926 में विकसित किया था।
यद्यपि, यह कहना नहीं है कि बोह्र -सैमेरफेल्ड प्रारूप इसकी सफलताओं के बिना था।बोहर -SOMMERFELD प्रारूप पर आधारित गणना कई अधिक जटिल परमाणु वर्णक्रमीय प्रभावों को सटीक रूप से समझाने में सक्षम थी।उदाहरण के लिए, प्रथम-क्रम गड़बड़ी सिद्धांत तक, बोह्र प्रारूप और क्वांटम यांत्रिकी स्टार्क प्रभाव में वर्णक्रमीय रेखा के लिए समान भविष्यवाणियां करते हैं।उच्च-क्रम गड़बड़ी पर, यद्यपि, बोहर प्रारूप और क्वांटम यांत्रिकी भिन्न होते हैं, और उच्च क्षेत्र की ताकत के तहत स्टार्क प्रभाव के माप ने बोहर प्रारूप पर क्वांटम यांत्रिकी की शुद्धता की पुष्टि करने में मदद की।इस अंतर के पीछे प्रचलित सिद्धांत इलेक्ट्रॉनों के ऑर्बिटल्स के आकार में स्थित है, जो इलेक्ट्रॉन की ऊर्जा स्थिति के अनुसार भिन्न होता है।
बोह्र -सेमेरफेल्ड क्वांटाइजेशन की स्थिति आधुनिक गणित में सवालों का नेतृत्व करती है।सुसंगत अर्धविराम परिमाणीकरण की स्थिति को चरण स्थान पर एक निश्चित प्रकार की संरचना की आवश्यकता होती है, जो सहानुभूति के प्रकारों पर टोपोलॉजिकल सीमाएं रखती है, जिन्हें मात्राबद्ध किया जा सकता है।विशेष रूप से, सहानुभूति का रूप एक चार्ल्स हरमाइट लाइन बंडल के कनेक्शन (गणित) का वक्रता रूप होना चाहिए, जिसे ज्यामितीय परिमाणीकरण कहा जाता है।
बोह्र ने 1922 में अपने प्रारूप को भी अपडेट किया, यह मानते हुए कि कुछ संख्या में इलेक्ट्रॉनों (उदाहरण के लिए, 2, 8, और 18) स्थिर इलेक्ट्रॉन कॉन्फ़िगरेशन के अनुरूप हैं।[45]
रासायनिक बंधन का प्रारूप
नील्स बोहर ने रासायनिक बंधन के परमाणु और बोहर प्रारूप का एक प्रारूप प्रस्तावित किया।एक डायटोमिक अणु के लिए उनके प्रारूप के अनुसार, अणु के परमाणुओं के इलेक्ट्रॉन एक घूर्णन अंगूठी बनाते हैं, जिसका विमान अणु के अक्ष के लंबवत होता है और परमाणु नाभिक से समान होता है।आणविक प्रणाली के गतिशील संतुलन को नाभिक के आकर्षण के बलों के बीच बलों के संतुलन के माध्यम से इलेक्ट्रॉनों के रिंग के विमान और नाभिक के पारस्परिक प्रतिकर्षण के बलों के बीच प्राप्त किया जाता है।रासायनिक बॉन्ड के बोहर प्रारूप ने कूलम्ब प्रतिकर्षण को ध्यान में रखा - रिंग में इलेक्ट्रॉन एक दूसरे से अधिकतम दूरी पर हैं।[46][47]
यह भी देखें
- 1913 विज्ञान में
- बाल्मर की निरंतरता
- Bohr -Somemerfeld मॉडल
- फ्रेंक -हर्ट्ज़ प्रयोग ने बोह्र मॉडल के लिए शुरुआती समर्थन प्रदान किया।
- फ्री-फॉल परमाणु मॉडल
- अक्रिय जोड़ी प्रभाव को बोह्र मॉडल के माध्यम से पर्याप्त रूप से समझाया गया है।
- क्वांटम यांत्रिकी का परिचय
- श्रोडिंगर समीकरण के लिए सैद्धांतिक और प्रयोगात्मक औचित्य
संदर्भ
फुटनोट्स
- ↑ 1.0 1.1 Lakhtakia, Akhlesh; Salpeter, Edwin E. (1996). "Models and Modelers of Hydrogen". American Journal of Physics. 65 (9): 933. Bibcode:1997AmJPh..65..933L. doi:10.1119/1.18691.
- ↑ Perrin, Jean (1901). "Les Hypothèses moléculaires". La Revue scientifique: 463.
- ↑ 3.0 3.1 de Broglie et al. 1912, pp. 122–123.
- ↑ 4.0 4.1 4.2 4.3 Kragh, Helge (1 January 1979). "Niels Bohr's Second Atomic Theory". Historical Studies in the Physical Sciences. 10: 123–186. doi:10.2307/27757389. JSTOR 27757389.
- ↑ 5.0 5.1 5.2 Bohr, N. (July 1913). "I. On the constitution of atoms and molecules". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 26 (151): 1–25. doi:10.1080/14786441308634955.
- ↑ Olsen, James D.; McDonald, Kirk T. (2005). "Classical lifetime of a bohr atom" (PDF). Archived (PDF) from the original on 2022-10-09.[self-published source?]
- ↑ "CK12 – Chemistry Flexbook Second Edition – The Bohr Model of the Atom". Retrieved 30 September 2014.
- ↑ Kragh, Helge (2012). Niels Bohr and the Quantum Atom: The Bohr Model of Atomic Structure 1913-1925. Oxford University Press. p. 18. ISBN 978-0-19-163046-0.
- ↑ Rayleigh, Lord (January 1906). "VII. On electrical vibrations and the constitution of the atom". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 11 (61): 117–123. doi:10.1080/14786440609463428.
- ↑ de Broglie et al. 1912, p. 114.
- ↑ 11.0 11.1 11.2 Heilbron, John L. (June 2013). "The path to the quantum atom". Nature. 498 (7452): 27–30. doi:10.1038/498027a. PMID 23739408. S2CID 4355108.
- ↑ de Broglie et al. 1912, p. 124.
- ↑ de Broglie et al. 1912, p. 127.
- ↑ de Broglie et al. 1912, p. 109.
- ↑ de Broglie et al. 1912, p. 447.
- ↑ 16.0 16.1 16.2 Heilbron, John L.; Kuhn, Thomas S. (1969). "The Genesis of the Bohr Atom". Historical Studies in the Physical Sciences. 1: vi–290. doi:10.2307/27757291. JSTOR 27757291.
- ↑ 17.0 17.1 17.2 Bohr, Niels (7 November 1962). "Niels Bohr - Session III" (Interview). Interviewed by Thomas S. Kuhn; Leon Rosenfeld; Aage Petersen; Erik Rudinger. American Institute of Physics.
- ↑ Bohr, Niels (1 November 1962). "Niels Bohr - Session II" (Interview). Interviewed by Thomas S. Kuhn; Leon Rosenfeld; Aage Petersen; Erik Rudinger. American Institute of Physics.
- ↑ 19.0 19.1 Nicholson, J. W. (14 June 1912). "The Constitution of the Solar Corona. IL". Monthly Notices of the Royal Astronomical Society. Oxford University Press. 72 (8): 677–693. doi:10.1093/mnras/72.8.677. ISSN 0035-8711.
- ↑ 20.0 20.1 20.2 McCormmach, Russell (1 January 1966). "The atomic theory of John William Nicholson". Archive for History of Exact Sciences. 3 (2): 160–184. doi:10.1007/BF00357268. JSTOR 41133258. S2CID 120797894.
- ↑ Hirosige, Tetu; Nisio, Sigeko (1964). "Formation of Bohr's theory of atomic constitution". Japanese Studies in the History of Science (3): 6–28. OCLC 1026682346.
- ↑ Heilbron, J. L. (1964). A History of Atomic Models from the Discovery of the Electron to the Beginnings of Quantum Mechanics (Thesis).
- ↑ Wilson, William (November 1956). "John William Nicholson, 1881-1955". Biographical Memoirs of Fellows of the Royal Society. 2: 209–214. doi:10.1098/rsbm.1956.0014.
- ↑ 24.0 24.1 Bohr, Niels; Rosenfeld, Léon Jacques Henri Constant (1963). On the Constitution of Atoms and Molecules ... Papers of 1913 reprinted from the Philosophical Magazine, with an introduction by L. Rosenfeld. Copenhagen; W.A. Benjamin: New York. OCLC 557599205.[page needed]
- ↑ Stachel, John (2009). "Bohr and the Photon". Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle. Dordrecht: Springer. p. 79.
- ↑ Gilder, Louisa (2009). "The Arguments 1909—1935". The Age of Entanglement. p. 55.
Well, yes," says Bohr. "But I can hardly imagine it will involve light quanta. Look, even if Einstein had found an unassailable proof of their existence and would want to inform me by telegram, this telegram would only reach me because of the existence and reality of radio waves.
- ↑ "Revealing the hidden connection between pi and Bohr's hydrogen model". Physics World. November 17, 2015.
- ↑ Müller, U.; de Reus, T.; Reinhardt, J.; Müller, B.; Greiner, W. (1988-03-01). "Positron production in crossed beams of bare uranium nuclei". Physical Review A. 37 (5): 1449–1455. Bibcode:1988PhRvA..37.1449M. doi:10.1103/PhysRevA.37.1449. PMID 9899816. S2CID 35364965.
- ↑ Bohr, N. (1913). "On the Constitution of Atoms and Molecules, Part II. Systems containing only a Single Nucleus". Philosophical Magazine. 26: 476–502.
- ↑ Kragh, Helge (1 January 1979). "Niels Bohr's Second Atomic Theory". Historical Studies in the Physical Sciences. University of California Press. 10: 123–186. ISSN 0073-2672. JSTOR 27757389.
- ↑ Bohr, N. (1 November 1913). "LXXIII. On the constitution of atoms and molecules". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 26 (155): 857–875. doi:10.1080/14786441308635031.
- ↑ Nicholson, J. W. (May 1914). "The Constitution of Atoms and Molecules". Nature. 93 (2324): 268–269. Bibcode:1914Natur..93..268N. doi:10.1038/093268a0. S2CID 3977652.
- ↑ Bury, Charles R. (July 1921). "Langmuir's Theory of the Arrangement of Electrons in Atoms and Molecules". Journal of the American Chemical Society. 43 (7): 1602–1609. doi:10.1021/ja01440a023.
- ↑ 34.0 34.1 Kossel, W. (1916). "Über Molekülbildung als Frage des Atombaus" [On molecular formation as a question of atomic structure]. Annalen der Physik (in Deutsch). 354 (3): 229–362. Bibcode:1916AnP...354..229K. doi:10.1002/andp.19163540302.
- ↑ 35.0 35.1 Kragh, Helge (2012). "Lars Vegard, atomic structure, and the periodic system" (PDF). Bulletin for the History of Chemistry. 37 (1): 42–49. OCLC 797965772. S2CID 53520045. Archived (PDF) from the original on 2022-10-09.
- ↑ Langmuir, Irving (June 1919). "The Arrangement of Electrons in Atoms and Molecules". Journal of the American Chemical Society. 41 (6): 868–934. doi:10.1021/ja02227a002.
- ↑ Bohr, Niels (31 October 1962). "Niels Bohr - Session I" (Interview). Interviewed by Thomas S. Kuhn; Leon Rosenfeld; Aage Petersen; Erik Rudinger. American Institute of Physics.
- ↑ Moseley, H.G.J. (1913). "The high-frequency spectra of the elements". Philosophical Magazine. 6th series. 26: 1024–1034.
- ↑ M.A.B. Whitaker (1999). "The Bohr–Moseley synthesis and a simple model for atomic x-ray energies". European Journal of Physics. 20 (3): 213–220. Bibcode:1999EJPh...20..213W. doi:10.1088/0143-0807/20/3/312. S2CID 250901403.
- ↑ van den Broek, Antonius (January 1913). "Die Radioelemente, das periodische System und die Konstitution der. Atome". Physikalische Zeitschrift (in Deutsch). 14: 32–41.
- ↑ Smith, Brian. ""Quantum Ideas: Week 2" Lecture Notes" (PDF). University of Oxford. p. 17. Retrieved 23 January 2015.
- ↑ Dahl, Jens Peder; Springborg, Michael (10 December 1982). "Wigner's phase space function and atomic structure: I. The hydrogen atom ground state". Molecular Physics. 47 (5): 1001–1019. doi:10.1080/00268978200100752. S2CID 9628509.
- ↑ A. Sommerfeld (1916). "Zur Quantentheorie der Spektrallinien". Annalen der Physik (in Deutsch). 51 (17): 1–94. Bibcode:1916AnP...356....1S. doi:10.1002/andp.19163561702.
- ↑ W. Wilson (1915). "The quantum theory of radiation and line spectra". Philosophical Magazine. 29 (174): 795–802. doi:10.1080/14786440608635362.
- ↑ Shaviv, Glora (2010). The Life of Stars: The Controversial Inception and Emergence of the Theory of Stellar Structure. Springer. p. 203. ISBN 978-3642020872.
- ↑ Бор Н. (1970). Избранные научные труды (статьи 1909–1925). Vol. 1. М.: «Наука». p. 133.
- ↑ Svidzinsky, Anatoly A.; Scully, Marlan O.; Herschbach, Dudley R. (23 August 2005). "Bohr's 1913 molecular model revisited". Proceedings of the National Academy of Sciences of the United States of America. 102 (34): 11985–11988. arXiv:physics/0508161. Bibcode:2005PNAS..10211985S. doi:10.1073/pnas.0505778102. PMC 1186029. PMID 16103360.
प्राथमिक स्रोत
- Bohr, N. (July 1913). "I. परमाणुओं और अणुओं के संविधान पर". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 26 (151): 1–25. doi:10.1080/14786441308634955.
- Bohr, N. (September 1913). "XXXVII।परमाणुओं और अणुओं के संविधान पर". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 26 (153): 476–502. Bibcode:1913PMag...26..476B. doi:10.1080/14786441308634993.
- Bohr, N. (1 November 1913). "Lxxiii।परमाणुओं और अणुओं के संविधान पर". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 26 (155): 857–875. doi:10.1080/14786441308635031.
- Bohr, N. (October 1913). "हीलियम और हाइड्रोजन का स्पेक्ट्रा". Nature. 92 (2295): 231–232. Bibcode:1913Natur..92..231B. doi:10.1038/092231d0. S2CID 11988018.
- Bohr, N. (March 1921). "परमाण्विक संरचना". Nature. 107 (2682): 104–107. Bibcode:1921Natur.107..104B. doi:10.1038/107104a0. S2CID 4035652.
- A. Einstein (1917). "सोमरफेल्ड और एपस्टीन के क्वांटम सेट के लिए". Verhandlungen der Deutschen Physikalischen Gesellschaft. 19: 82–92. अल्बर्ट आइंस्टीन, ए। एंगेल अनुवादक, (1997) प्रिंसटन यूनिवर्सिटी प्रेस, प्रिंसटन के एकत्रित पत्रों में पुनर्मुद्रित।'6' पी। & nbsp; 434।(बोहर-SOMMERFELD परिमाणीकरण की स्थिति का एक सुरुचिपूर्ण सुधार प्रदान करता है, साथ ही गैर-एकीकृत (अराजक) गतिशील प्रणालियों के परिमाणीकरण में एक महत्वपूर्ण अंतर्दृष्टि भी प्रदान करता है।)
- de Broglie, Maurice; Langevin, Paul; Solvay, Ernest; Einstein, Albert (1912). द थ्योरी ऑफ़ इफ्लूड एंड द क्वांटा: ब्रसेल्स में आयोजित बैठक की रिपोर्ट और चर्चा, 30 अक्टूबर से 3 नवंबर, 1911 तक, एम.ई. सोलवे के तत्वावधान में (in French). Gauthier-Villars. OCLC 1048217622.
{{cite book}}: CS1 maint: unrecognized language (link)
अग्रिम पठन
- Linus Carl Pauling (1970). "Chapter 5-1". General Chemistry (3rd ed.). San Francisco: W.H. Freeman & Co.
- Reprint: Linus Pauling (1988). General Chemistry. New York: Dover Publications. ISBN 0-486-65622-5.
- George Gamow (1985). "Chapter 2". Thirty Years That Shook Physics. Dover Publications.
- Walter J. Lehmann (1972). "Chapter 18". Atomic and Molecular Structure: the development of our concepts. John Wiley and Sons. ISBN 0-471-52440-9.
- Paul Tipler and Ralph Llewellyn (2002). Modern Physics (4th ed.). W. H. Freeman. ISBN 0-7167-4345-0.
- Klaus Hentschel: Elektronenbahnen, Quantensprünge und Spektren, in: Charlotte Bigg & Jochen Hennig (eds.) Atombilder. Ikonografien des Atoms in Wissenschaft und Öffentlichkeit des 20. Jahrhunderts, Göttingen: Wallstein-Verlag 2009, pp. 51–61
- Steven and Susan Zumdahl (2010). "Chapter 7.4". Chemistry (8th ed.). Brooks/Cole. ISBN 978-0-495-82992-8.
- Kragh, Helge (November 2011). "Conceptual objections to the Bohr atomic theory — do electrons have a 'free will'?". The European Physical Journal H. 36 (3): 327–352. Bibcode:2011EPJH...36..327K. doi:10.1140/epjh/e2011-20031-x. S2CID 120859582.
बाहरी संबंध
- Standing waves in बोहर’s atomic model An interactive simulation to intuitively explain the quantization condition of standing waves in बोहर's atomic mode