जैविक झिल्ली

From Vigyanwiki
Revision as of 18:06, 3 November 2022 by alpha>Indicwiki (Created page with "{{short description|Enclosing or separating membrane in organisms acting as selective semi-permeable barrier}} {{About|various membranes in organisms|the membranes surrounding...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
एक जलीय घोल में फॉस्फोलिपिड्स द्वारा बनाई जा सकने वाली संरचनाओं का क्रॉस-सेक्शनल दृश्य

एक जैविक झिल्ली , बायोमेम्ब्रेन या कोशिका झिल्ली एक अर्धपारगम्य झिल्ली झिल्ली है जो एक कोशिका (जीव विज्ञान) के आंतरिक भाग को बाह्य वातावरण से अलग करती है या कोशिका के एक भाग और दूसरे के बीच की सीमा के रूप में सेवा करके इंट्रासेल्युलर डिब्बों का निर्माण करती है। यूकेरियोट कोशिका झिल्लियों के रूप में जैविक झिल्लियों में एक फॉस्फोलिपिड बाइलेयर होता है जिसमें एम्बेडेड, [[ इंटीग्रल मेम्ब्रेन प्रोटीन ]] और परिधीय झिल्ली प्रोटीन होता है जिसका उपयोग रसायनों और आयन ों के संचार और परिवहन में किया जाता है। कोशिका झिल्ली में अधिकांश लिपिड प्रोटीन को घूमने के लिए एक द्रव मैट्रिक्स प्रदान करते हैं और बाद में शारीरिक कामकाज के लिए फैलते हैं। प्रोटीन एक कुंडलाकार लिपिड शेल की उपस्थिति के साथ लिपिड बिलेयर के उच्च झिल्ली तरलता वातावरण के लिए अनुकूलित होते हैं, जिसमें लिपिड अणु होते हैं जो अभिन्न झिल्ली प्रोटीन की सतह से कसकर बंधे होते हैं। कोशिका झिल्ली कोशिकाओं की परतों, जैसे श्लेष्मा झिल्ली , तहखाने की झिल्लियों और सीरस झिल्लियों द्वारा निर्मित पृथक ऊतक (जीव विज्ञान) से भिन्न होती है।

रचना


विषमता

फॉस्फोलिपिड बाइलेयर का एक द्रव झिल्ली मॉडल।

लिपिड बाईलेयर में दो परतें होती हैं- एक बाहरी पत्रक और एक आंतरिक पत्रक।[1] बाहरी और आंतरिक सतहों के बीच विषमता पैदा करने के लिए दो सतहों के बीच बिलयर्स के घटकों को असमान रूप से वितरित किया जाता है।[2] यह असममित संगठन सेल सिग्नलिंग जैसे सेल कार्यों के लिए महत्वपूर्ण है। रेफरी>Chong, Zhi-Soon; Woo, Wei-Fen; Chng, Shu-Sin (2015-12-01). "एस्चेरिचिया कोलाई में बाहरी झिल्ली लिपिड विषमता को बनाए रखने के लिए ओस्मोपोरिन ओएमपीसी एमएलए के साथ एक जटिल बनाता है". Molecular Microbiology. 98 (6): 1133–1146. doi:10.1111/mmi.13202. PMID 26314242.</ref> जैविक झिल्ली की विषमता झिल्ली के दो पत्रक के विभिन्न कार्यों को दर्शाती है।[3] जैसा कि फॉस्फोलिपिड बाइलेयर के द्रव झिल्ली मॉडल में देखा गया है, झिल्ली के बाहरी पत्रक और आंतरिक पत्रक उनकी संरचना में विषम हैं। कुछ प्रोटीन और लिपिड केवल झिल्ली की एक सतह पर आराम करते हैं और दूसरी नहीं।

• प्लाज्मा झिल्ली और आंतरिक झिल्ली दोनों में साइटोसोलिक और एक्सोप्लाज्मिक चेहरे होते हैं • झिल्ली तस्करी के दौरान यह अभिविन्यास बनाए रखा जाता है - ईआर के लुमेन का सामना करने वाले प्रोटीन, लिपिड, ग्लाइकोकोनजुगेट्स और गोल्गी प्लाज्मा झिल्ली के बाह्य पक्ष पर व्यक्त होते हैं। यूकेरियोटिक कोशिकाओं में, नए फॉस्फोलिपिड्स एन्डोप्लाज्मिक रेटिकुलम झिल्ली के उस हिस्से से बंधे एंजाइमों द्वारा निर्मित होते हैं जो साइटोसोल का सामना करते हैं।[4]ये एंजाइम, जो मुक्त फैटी एसिड को सब्सट्रेट (रसायन विज्ञान) के रूप में उपयोग करते हैं, सभी नए बने फॉस्फोलिपिड्स को बाइलेयर के साइटोसोलिक आधे में जमा करते हैं। झिल्ली को समग्र रूप से समान रूप से विकसित करने में सक्षम बनाने के लिए, नए फॉस्फोलिपिड अणुओं में से आधे को फिर विपरीत मोनोलेयर में स्थानांतरित करना होगा। यह स्थानांतरण फ़्लिपेज़ नामक एंजाइम द्वारा उत्प्रेरित होता है। प्लाज्मा झिल्ली में, फ़्लिपेज़ विशिष्ट फ़ॉस्फ़ोलिपिड्स को चुनिंदा रूप से स्थानांतरित करते हैं, जिससे कि प्रत्येक मोनोलेयर में विभिन्न प्रकार केंद्रित हो जाते हैं।[4]

हालांकि, लिपिड बाईलेयर्स में विषमता उत्पन्न करने का एकमात्र तरीका चयनात्मक फ़्लिपेज़ का उपयोग नहीं है। विशेष रूप से, ग्लाइकोलिपिड्स के लिए एक अलग तंत्र संचालित होता है - लिपिड जो पशु कोशिकाओं में सबसे हड़ताली और सुसंगत असममित वितरण दिखाते हैं।[4]


लिपिड

जैविक झिल्ली हाइड्रोफोबिक पूंछ और हाइड्रोफिलिक सिर वाले लिपिड से बनी होती है।[5] हाइड्रोफोबिक टेल हाइड्रोकार्बन टेल होते हैं जिनकी लंबाई और संतृप्ति कोशिका को चिह्नित करने में महत्वपूर्ण होती है।[6] लिपिड राफ्ट तब होते हैं जब लिपिड प्रजातियां और प्रोटीन झिल्ली में डोमेन में एकत्रित होते हैं। ये झिल्ली घटकों को स्थानीयकृत क्षेत्रों में व्यवस्थित करने में मदद करते हैं जो विशिष्ट प्रक्रियाओं में शामिल होते हैं, जैसे सिग्नल ट्रांसडक्शन।

लाल रक्त कोशिकाओं, या एरिथ्रोसाइट्स में एक अद्वितीय लिपिड संरचना होती है। लाल रक्त कोशिकाओं का बाइलेयर वजन के बराबर अनुपात में कोलेस्ट्रॉल और फॉस्फोलिपिड से बना होता है।[6]एरिथ्रोसाइट झिल्ली रक्त के थक्के जमने में महत्वपूर्ण भूमिका निभाती है। लाल रक्त कोशिकाओं के बाइलेयर में फॉस्फेटिडिलसेरिन होता है।[7] यह आमतौर पर झिल्ली के साइटोप्लाज्मिक पक्ष में होता है। हालांकि, इसे रक्त के थक्के के दौरान उपयोग किए जाने के लिए बाहरी झिल्ली पर फ़्लिप किया जाता है।[7]


प्रोटीन

Phospholipid bilayers में विभिन्न प्रोटीन होते हैं। इन झिल्ली प्रोटीन ों के विभिन्न कार्य और विशेषताएं होती हैं और विभिन्न रासायनिक प्रतिक्रियाओं को उत्प्रेरित करती हैं। इंटीग्रल प्रोटीन झिल्ली को दोनों तरफ अलग-अलग डोमेन के साथ फैलाते हैं।[5]इंटीग्रल प्रोटीन लिपिड बाईलेयर के साथ मजबूत जुड़ाव रखते हैं और आसानी से अलग नहीं हो सकते।[8]वे केवल रासायनिक उपचार से अलग हो जाएंगे जो झिल्ली को तोड़ता है। परिधीय प्रोटीन अभिन्न प्रोटीन के विपरीत होते हैं, जिसमें वे बाईलेयर की सतह के साथ कमजोर अंतःक्रिया करते हैं और आसानी से झिल्ली से अलग हो सकते हैं।[5]परिधीय प्रोटीन एक झिल्ली के केवल एक चेहरे पर स्थित होते हैं और झिल्ली की विषमता पैदा करते हैं।

SOME EXAMPLES OF PLASMA MEMBRANE PROTEINS AND THEIR FUNCTIONS
FUNCTIONAL CLASS PROTEIN EXAMPLE SPECIFIC FUNCTION
Transporters Na+ Pump actively pumps Na+ out of cells and K+ in
Anchors integrins link intracellular actin filaments to extracellular matrix proteins
Receptors platelet-derived growth factor receptor binds extracellular PDGF and, as a consequence, generates intracellular signals that cause the cell to grow and divide
Enzymes adenylyl cyclase catalyzes the production of intracellular signaling molecule cyclic AMP in response to extracellular signals


oligosaccharide ्स

ओलिगोसेकेराइड चीनी युक्त पॉलिमर हैं। झिल्ली में, वे ग्लाइकोलिपिड बनाने के लिए सहसंयोजक रूप से लिपिड से बंधे हो सकते हैं या ग्लाइकोप्रोटीन बनाने के लिए सहसंयोजक रूप से प्रोटीन से बंधे हो सकते हैं। झिल्ली में शर्करा युक्त लिपिड अणु होते हैं जिन्हें ग्लाइकोलिपिड्स कहा जाता है। बाइलेयर में, ग्लाइकोलिपिड्स के शर्करा समूह कोशिका की सतह पर उजागर होते हैं, जहां वे हाइड्रोजन बांड बना सकते हैं।[8] ग्लाइकोलिपिड्स लिपिड बाईलेयर में विषमता का सबसे चरम उदाहरण प्रदान करते हैं।[9]ग्लाइकोलिपिड्स जैविक झिल्ली में बड़ी संख्या में कार्य करते हैं जो मुख्य रूप से संचारी होते हैं, जिसमें कोशिका पहचान और कोशिका-कोशिका आसंजन शामिल हैं। ग्लाइकोप्रोटीन अभिन्न प्रोटीन हैं।[2]वे प्रतिरक्षा प्रतिक्रिया और सुरक्षा में महत्वपूर्ण भूमिका निभाते हैं।[10]


गठन

फॉस्फोलिपिड बाइलेयर जलीय घोल में झिल्लीदार लिपिड के एकत्रीकरण के कारण बनता है।[3]एकत्रीकरण हाइड्रोफोबिक प्रभाव के कारण होता है, जहां हाइड्रोफोबिक सिरे एक दूसरे के संपर्क में आते हैं और पानी से अलग हो जाते हैं।[5]हाइड्रोफोबिक पूंछ और पानी के बीच प्रतिकूल संपर्क को कम करते हुए यह व्यवस्था हाइड्रोफिलिक सिर और पानी के बीच हाइड्रोजन बंधन को अधिकतम करती है।[9]उपलब्ध हाइड्रोजन बॉन्डिंग में वृद्धि से सिस्टम की एन्ट्रापी बढ़ जाती है, जिससे एक स्वतःस्फूर्त प्रक्रिया का निर्माण होता है।

फंक्शन

जैविक अणु एम्फीफिलिक या एम्फीपैथिक होते हैं, यानी एक साथ हाइड्रोफोबिक और हाइड्रोफिलिक होते हैं।[5]फॉस्फोलिपिड बाइलेयर में आवेशित हाइड्रोफिलिक हेडग्रुप होते हैं, जो पानी के ध्रुवीय गुणों के साथ परस्पर क्रिया करते हैं। परतों में जल विरोधी पूंछ भी होती है, जो पूरक परत के हाइड्रोफोबिक पूंछ से मिलती है। हाइड्रोफोबिक पूंछ आमतौर पर फैटी एसिड होते हैं जो लंबाई में भिन्न होते हैं।[9] लिपिड की अंतर-आणविक शक्ति, विशेष रूप से हाइड्रोफोबिक पूंछ, तरलता जैसे लिपिड बिलीयर चरण व्यवहार को निर्धारित करती है।

कोशिकाओं में झिल्ली आमतौर पर संलग्न रिक्त स्थान या डिब्बों को परिभाषित करते हैं जिसमें कोशिकाएं एक रासायनिक या जैव रासायनिक वातावरण बनाए रख सकती हैं जो बाहर से भिन्न होती है। उदाहरण के लिए, पेरॉक्सिसोम के चारों ओर की झिल्ली शेष कोशिका को पेरोक्साइड से बचाती है, रसायन जो कोशिका के लिए विषाक्त हो सकते हैं, और कोशिका झिल्ली एक कोशिका को उसके आसपास के माध्यम से अलग करती है। पेरोक्सिसोम कोशिका में पाए जाने वाले रिक्तिका का एक रूप है जिसमें कोशिका के भीतर रासायनिक प्रतिक्रियाओं के उप-उत्पाद होते हैं। अधिकांश अंगक ऐसी झिल्लियों द्वारा परिभाषित होते हैं, और इन्हें झिल्ली-बद्ध अंगक कहा जाता है।

चयनात्मक पारगम्यता

संभवतः एक बायोमेम्ब्रेन की सबसे महत्वपूर्ण विशेषता यह है कि यह एक चुनिंदा पारगम्य संरचना है। इसका मतलब यह है कि परमाणुओं और अणुओं के आकार, चार्ज और अन्य रासायनिक गुण इसे पार करने का प्रयास करेंगे, यह निर्धारित करेगा कि वे ऐसा करने में सफल होते हैं या नहीं। सेल या ऑर्गेनेल को उसके आसपास से प्रभावी ढंग से अलग करने के लिए चयनात्मक पारगम्यता आवश्यक है। जैविक झिल्लियों में कुछ यांत्रिक या लोचदार गुण भी होते हैं जो उन्हें आकार बदलने और आवश्यकतानुसार स्थानांतरित करने की अनुमति देते हैं।

आम तौर पर, छोटे हाइड्रोफोबिक अणु सरल प्रसार द्वारा फॉस्फोलिपिड बिलयर्स को आसानी से पार कर सकते हैं।[11] कण जो कोशिकीय कार्य के लिए आवश्यक होते हैं, लेकिन एक झिल्ली में स्वतंत्र रूप से फैलने में असमर्थ होते हैं, एक झिल्ली परिवहन प्रोटीन के माध्यम से प्रवेश करते हैं या एंडोसाइटोसिस के माध्यम से प्रवेश करते हैं, जहां झिल्ली एक रिक्तिका को इसमें शामिल होने और इसकी सामग्री को कोशिका में धकेलने की अनुमति देता है। कई प्रकार के विशेष प्लाज्मा झिल्ली कोशिका को बाहरी वातावरण से अलग कर सकते हैं: एपिकल, बेसोलेटरल, प्रीसानेप्टिक और पोस्टसिनेप्टिक वाले, फ्लैगेला, सिलिया, माइक्रोविलस , filopodia और लैमेलिपोडिया की झिल्ली, मांसपेशियों की कोशिकाओं के सरकोलेम्मा , साथ ही विशेष माइलिन और डेंड्राइटिक रीढ़ की झिल्ली। न्यूरॉन्स। प्लाज्मा झिल्ली विभिन्न प्रकार की सुपरमैम्ब्रेन संरचनाएं भी बना सकती हैं जैसे कि केवोले, पोस्टसिनेप्टिक घनत्व, पोडोसोम , इनवाडोपोडियम , डेसमोसोम, हेमीडेस्मोसोम , फोकल आसंजन और सेल जंक्शन। इस प्रकार की झिल्ली लिपिड और प्रोटीन संरचना में भिन्न होती है।

विशिष्ट प्रकार की झिल्लियां इंट्रासेल्युलर ऑर्गेनेल भी बनाती हैं: एंडोसोम; चिकनी और खुरदरी एंडोप्लाज्मिक रेटिकुलम; sarcoplasmic जालिका; गॉल्जीकाय; लाइसोसोम; माइटोकॉन्ड्रियन (आंतरिक और बाहरी झिल्ली); नाभिक (आंतरिक और बाहरी झिल्ली); पेरोक्सीसोम; रिक्तिका; साइटोप्लाज्मिक ग्रैन्यूल; सेल वेसिकल्स (फागोसोम, ऑटोफैगोसोम , क्लैथ्रिन -कोटेड वेसिकल्स, सीओपीआई-कोटेड और सीओपीआईआई-कोटेड वेसिकल्स) और सेक्रेटरी वेसिकल्स (सिनैप्टोसोम , अग्रपिण्डक , मेलेनोसोम और क्रोमैफिन ग्रेन्यूल्स सहित)। विभिन्न प्रकार की जैविक झिल्लियों में विविध लिपिड और प्रोटीन संरचनाएँ होती हैं। झिल्ली की सामग्री उनके भौतिक और जैविक गुणों को परिभाषित करती है। झिल्लियों के कुछ घटक दवा में महत्वपूर्ण भूमिका निभाते हैं, जैसे इफ्लक्स पंप जो दवाओं को एक कोशिका से बाहर पंप करते हैं।

तरलता

फॉस्फोलिपिड बाईलेयर का हाइड्रोफोबिक कोर लिपिड पूंछ के बंधों के चारों ओर घूमने के कारण लगातार गति में रहता है।[12] बाइलेयर की हाइड्रोफोबिक पूंछ एक साथ झुकती और लॉक होती है। हालांकि, पानी के साथ हाइड्रोजन बॉन्डिंग के कारण, हाइड्रोफिलिक हेड ग्रुप कम गति प्रदर्शित करते हैं क्योंकि उनका रोटेशन और गतिशीलता बाधित होती है।[12]इसके परिणामस्वरूप हाइड्रोफिलिक सिरों के करीब लिपिड बाइलेयर की चिपचिपाहट बढ़ जाती है।[5]

एक संक्रमण तापमान के नीचे, एक लिपिड बाईलेयर तरलता खो देता है जब अत्यधिक मोबाइल लिपिड जेल की तरह ठोस बनने के लिए कम गति प्रदर्शित करते हैं।[13] संक्रमण तापमान लिपिड बाईलेयर के ऐसे घटकों पर निर्भर करता है जैसे हाइड्रोकार्बन श्रृंखला की लंबाई और इसके फैटी एसिड की संतृप्ति। तापमान-निर्भरता तरलता बैक्टीरिया और ठंडे खून वाले जीवों के लिए एक महत्वपूर्ण शारीरिक विशेषता है। ये जीव विभिन्न तापमानों के अनुसार झिल्लीदार लिपिड फैटी एसिड संरचना को संशोधित करके निरंतर तरलता बनाए रखते हैं।[5]

पशु कोशिकाओं में, स्टेरोल कोलेस्ट्रॉल को शामिल करके झिल्ली की तरलता को नियंत्रित किया जाता है। यह अणु प्लाज्मा झिल्ली में विशेष रूप से बड़ी मात्रा में मौजूद होता है, जहां यह झिल्ली में वजन के हिसाब से लगभग 20% लिपिड का गठन करता है। क्योंकि कोलेस्ट्रॉल के अणु छोटे और कठोर होते हैं, वे अपने असंतृप्त हाइड्रोकार्बन पूंछ में किंक द्वारा छोड़े गए पड़ोसी फॉस्फोलिपिड अणुओं के बीच की जगह को भर देते हैं। इस तरह, कोलेस्ट्रॉल बाइलेयर को सख्त कर देता है, जिससे यह अधिक कठोर और कम पारगम्य हो जाता है।[4]

सभी कोशिकाओं के लिए, झिल्ली की तरलता कई कारणों से महत्वपूर्ण है। यह झिल्ली प्रोटीन को बिलीयर के तल में तेजी से फैलने और एक दूसरे के साथ बातचीत करने में सक्षम बनाता है, जैसा कि महत्वपूर्ण है, उदाहरण के लिए, सेल सिग्नलिंग में। यह झिल्ली लिपिड और प्रोटीन को उन साइटों से फैलने की अनुमति देता है जहां उन्हें कोशिका के अन्य क्षेत्रों में संश्लेषण के बाद बिलीयर में डाला जाता है। यह झिल्लियों को एक दूसरे के साथ फ्यूज करने और उनके अणुओं को मिलाने की अनुमति देता है, और यह सुनिश्चित करता है कि जब कोशिका विभाजित होती है तो झिल्ली के अणु बेटी कोशिकाओं के बीच समान रूप से वितरित होते हैं। यदि जैविक झिल्ली तरल नहीं होती, तो यह कल्पना करना कठिन है कि कोशिकाएं कैसे जीवित रह सकती हैं, विकसित हो सकती हैं और प्रजनन कर सकती हैं।[4]


यह भी देखें

संदर्भ

  1. Murate, Motohide; Kobayashi, Toshihide (2016). "प्लाज़्मा झिल्ली में लिपिड के ट्रांसबिलेयर वितरण पर दोबारा गौर करना". Chemistry and Physics of Lipids. 194: 58–71. doi:10.1016/j.chemphyslip.2015.08.009. PMID 26319805.
  2. 2.0 2.1 Nickels, Jonathan D.; Smith, Jeremy C.; Cheng, Xiaolin (2015). "पार्श्व संगठन, द्विपरत विषमता, और जैविक झिल्लियों का अंतर-पत्रक युग्मन". Chemistry and Physics of Lipids. 192: 87–99. doi:10.1016/j.chemphyslip.2015.07.012. PMID 26232661.
  3. 3.0 3.1 Forrest, Lucy R. (2015-01-01). "झिल्ली प्रोटीन में संरचनात्मक समरूपता". Annual Review of Biophysics. 44 (1): 311–337. doi:10.1146/annurev-biophys-051013-023008. PMC 5500171. PMID 26098517.
  4. 4.0 4.1 4.2 4.3 4.4 Alberts, Bray, Hopkin, Johnson, Lewis, Raff, Roberts, Walter, Bruce, Dennis, Karen, Alexander, Julian, Martin, Keith, Peter (2010). एसेंशियल सेल बायोलॉजी तीसरा संस्करण. New York: Garland Science, Taylor & Francis Group, LLC, an informa business. p. 370. ISBN 978-0815341291.{{cite book}}: CS1 maint: multiple names: authors list (link)
  5. 5.0 5.1 5.2 5.3 5.4 5.5 5.6 Voet, Donald (2012). बायोकैमिस्ट्री के फंडामेंटल्स: लाइफ एट द मॉलिक्यूलर लेवल (4 संस्करण). Wiley. ISBN 978-1118129180.
  6. 6.0 6.1 Dougherty, R. M.; Galli, C.; Ferro-Luzzi, A.; Iacono, J. M. (1987). "प्लाज्मा, लाल रक्त कोशिकाओं और प्लेटलेट्स की लिपिड और फॉस्फोलिपिड फैटी एसिड संरचना और वे आहार लिपिड से कैसे प्रभावित होते हैं: इटली, फिनलैंड और संयुक्त राज्य अमेरिका से सामान्य विषयों का एक अध्ययन". The American Journal of Clinical Nutrition. 45 (2): 443–455. doi:10.1093/ajcn/45.2.443. PMID 3812343. S2CID 4436467.
  7. 7.0 7.1 Lentz, Barry R. (2003). "प्लेटलेट झिल्ली का एक्सपोजर फॉस्फेटिडिलसेरिन रक्त जमावट को नियंत्रित करता है". Progress in Lipid Research. 42 (5): 423–438. doi:10.1016/s0163-7827(03)00025-0. PMID 12814644.
  8. 8.0 8.1 Lein, Max; deRonde, Brittany M.; Sgolastra, Federica; Tew, Gregory N.; Holden, Matthew A. (2015-11-01). "झिल्लियों में प्रोटीन परिवहन: लाइसिन और गनीडिनियम युक्त वाहकों के बीच तुलना". Biochimica et Biophysica Acta (BBA) - Biomembranes. 1848 (11, Part A): 2980–2984. doi:10.1016/j.bbamem.2015.09.004. PMC 4704449. PMID 26342679.
  9. 9.0 9.1 9.2 Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walter, Peter (2002-01-01). "लिपिड बिलेयर". {{cite journal}}: Cite journal requires |journal= (help)
  10. Daubenspeck, James M.; Jordan, David S.; Simmons, Warren; Renfrow, Matthew B.; Dybvig, Kevin (2015-11-23). "माइकोप्लाज्मा में लिपोप्रोटीन के सामान्य एन-और ओ-लिंक्ड ग्लाइकोसिलेशन और एक्सोजेनस ओलिगोसेकेराइड की भूमिका". PLOS ONE. 10 (11): e0143362. Bibcode:2015PLoSO..1043362D. doi:10.1371/journal.pone.0143362. PMC 4657876. PMID 26599081.
  11. Brown, Bernard (1996). जैविक झिल्ली (PDF). London, U.K.: The Biochemical Society. p. 21. ISBN 978-0904498325. Archived from the original (PDF) on 2015-11-06. Retrieved 2014-05-01.
  12. 12.0 12.1 Vitrac, Heidi; MacLean, David M.; Jayaraman, Vasanthi; Bogdanov, Mikhail; Dowhan, William (2015-11-10). "फॉस्फोलिपिड वातावरण में परिवर्तन पर गतिशील झिल्ली प्रोटीन टोपोलॉजिकल स्विचिंग". Proceedings of the National Academy of Sciences. 112 (45): 13874–13879. Bibcode:2015PNAS..11213874V. doi:10.1073/pnas.1512994112. PMC 4653158. PMID 26512118.
  13. Rojko, Nejc; Anderluh, Gregor (2015-12-07). "लिपिड मेम्ब्रेन ताकना बनाने वाली टॉक्सिन गतिविधि को कैसे प्रभावित करते हैं". Accounts of Chemical Research. 48 (12): 3073–3079. doi:10.1021/acs.accounts.5b00403. PMID 26641659.


इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची

  • कोशिकी
  • तरल झिल्ली
  • कोशिका विज्ञान)
  • तहखाना झिल्ली
  • कुंडलाकार लिपिड खोल
  • फ़ॉस्फ़ोलिपिड बाइलेयर
  • पशु कोशिकाएं
  • झिल्ली लिपिड
  • जल के गुण
  • अंतर-आणविक बल
  • झिल्ली से बंधा हुआ अंगक
  • गुफा
  • लड़के
  • कॉपी
  • वृक्ष के समान रीढ़
  • असमस

बाहरी संबंध