पॉलीटॉप
प्राथमिक ज्यामिति में, एक पॉलीटोप फ्लैट (ज्यामिति) पक्षों (चेहरा (ज्यामिति) ) के साथ एक ज्यामितीय वस्तु है। पॉलीटोप्स किसी भी संख्या में आयामों के लिए त्रि-आयामी बहुतल का सामान्यीकरण हैं। पॉलीटोप्स किसी भी सामान्य संख्या में आयामों में मौजूद हो सकते हैं n एक के रूप में n-आयामी पॉलीटॉप याn-पॉलीटोप। उदाहरण के लिए, एक द्वि-आयामी बहुभुज 2-पॉलीटॉप है और त्रि-आयामी पॉलीहेड्रॉन 3-पॉलीटॉप है। इस संदर्भ में, समतल भुजाओं का अर्थ है कि a . की भुजाएँ (k + 1)-पॉलीटोप से मिलकर बनता है k-पॉलीटोप्स जो हो सकते हैं (k – 1)- सामान्य रूप से पॉलीटोप्स।
कुछ सिद्धांत आगे चलकर इस तरह की वस्तुओं को शामिल करने के विचार को सामान्यीकृत करते हैं जैसे कि अनबाउंड एपिरोटोप्स और चौकोर , डीकंपोजीशन या घुमावदार विविध की टाइलिंग जिसमें गोलाकार पॉलीहेड्रा , और सेट-सैद्धांतिक सार पॉलीटोप्स शामिल हैं।
1853 से पहले लुडविग श्लाफली द्वारा तीन से अधिक आयामों के पॉलीटॉप्स की खोज की गई थी, जिन्होंने इस तरह के एक आंकड़े को एक बहुविकल्पी कहा था।[1] जर्मन भाषा का शब्द पॉलीटॉप गणितज्ञ रेनहोल्ड हॉपी द्वारा गढ़ा गया था, और एलिसिया बोले स्टॉट द्वारा अंग्रेजी गणितज्ञों को पॉलीटॉप के रूप में पेश किया गया था।
परिभाषा के दृष्टिकोण
आजकल, पॉलीटॉप शब्द एक व्यापक शब्द है जिसमें वस्तुओं की एक विस्तृत श्रेणी शामिल है, और गणितीय साहित्य में विभिन्न परिभाषाएँ दिखाई देती हैं। इनमें से कई परिभाषाएँ एक-दूसरे के समतुल्य नहीं हैं, जिसके परिणामस्वरूप वस्तुओं के अलग-अलग अतिव्यापी सेटों को पॉलीटॉप्स कहा जाता है। वे समान गुणों वाली अन्य वस्तुओं को शामिल करने के लिए उत्तल पॉलीटोप्स को सामान्य बनाने के लिए विभिन्न दृष्टिकोणों का प्रतिनिधित्व करते हैं।
मूल दृष्टिकोण मोटे तौर पर लुडविग श्लाफली, थोरोल्ड गोसेट और अन्य द्वारा पीछा किया जाता है, क्रमशः दो और तीन आयामों में बहुभुज और पॉलीहेड्रॉन के विचार के चार या अधिक आयामों में सादृश्य द्वारा विस्तार के साथ शुरू होता है।[2] पॉलीहेड्रा की यूलर विशेषता को उच्च-आयामी पॉलीटोप्स के सामान्यीकरण के प्रयासों ने टोपोलॉजी के विकास और एक अपघटन या स.ग.-जटिल के उपचार को एक पॉलीटॉप के अनुरूप बनाया।[3] इस दृष्टिकोण में, एक पॉलीटॉप को कुछ दिए गए कई गुना के टेस्सेलेशन या अपघटन के रूप में माना जा सकता है। इस दृष्टिकोण का एक उदाहरण एक पॉलीटॉप को उन बिंदुओं के एक सेट के रूप में परिभाषित करता है जो एक साधारण परिसर को स्वीकार करते हैं। इस परिभाषा में, एक पॉलीटॉप, अतिरिक्त संपत्ति के साथ, बहुत से सरल ताओं का संघ है, जो कि किसी भी दो सरलताओं के लिए, जिनके पास एक गैर-रिक्त चौराहा है, उनका चौराहा दो का एक शीर्ष, किनारा या उच्च आयामी चेहरा है।[4] हालांकि यह परिभाषा आंतरिक संरचनाओं के साथ स्टार पॉलीटोप ्स की अनुमति नहीं देती है, और इसलिए गणित के कुछ क्षेत्रों तक ही सीमित है।
स्टार पॉलीहेड्रॉन और अन्य असामान्य निर्माणों की खोज ने पॉलीहेड्रॉन को एक बाउंडिंग सतह के रूप में देखा, इसके इंटीरियर को अनदेखा कर दिया। रेफरी> क्रॉमवेल, पी।; पॉलीहेड्रा, सीयूपी (पीपीबीके 1999) पीपी 205 एफएफ।</ref> इस प्रकाश में पी-स्पेस में उत्तल पॉलीटॉप गोलाकार टाइलिंग के बराबर होते हैं। , समतल या टॉरॉयडल (p−1)-सतह - अण्डाकार टाइलिंग और टॉरॉयडल पॉलीहेड्रॉन देखें। एक पॉलीहेड्रॉन को एक सतह के रूप में समझा जाता है जिसका चेहरा (ज्यामिति) बहुभुज होते हैं, एक 4-पॉलीटॉप एक हाइपरसर्फेस के रूप में होता है जिसके पहलू (फेस (ज्यामिति)) पॉलीहेड्रा होते हैं, और आगे।
निचले आयाम वाले लोगों से एक उच्च पॉलीटोप का निर्माण करने का विचार भी कभी-कभी आयाम में नीचे की ओर बढ़ाया जाता है, एक (एज (ज्यामिति) ) को एक बिंदु जोड़ी से बंधे 1-पॉलीटोप के रूप में देखा जाता है, और एक बिंदु या वर्टेक्स (ज्यामिति) के रूप में देखा जाता है। 0-पॉलीटोप। इस दृष्टिकोण का उपयोग उदाहरण के लिए अमूर्त पॉलीटोप्स के सिद्धांत में किया जाता है।
गणित के कुछ क्षेत्रों में, पॉलीटोप और पॉलीहेड्रॉन शब्द एक अलग अर्थ में उपयोग किए जाते हैं: एक पॉलीहेड्रॉन किसी भी आयाम में सामान्य वस्तु है (इस आलेख में पॉलीटोप के रूप में संदर्भित) और पॉलीटोप का अर्थ है एक घिरा हुआ सेट पॉलीहेड्रॉन। रेफ> नेमहौसर और वोल्सी, इंटीजर और कॉम्बिनेटोरियल ऑप्टिमाइजेशन, 1999, ISBN 978-0471359432, परिभाषा 2.2। </ रेफ> यह शब्दावली आमतौर पर पॉलीटोप्स और पॉलीहेड्रा तक ही सीमित है जो उत्तल शरीर हैं। इस शब्दावली के साथ, एक उत्तल पॉलीहेड्रॉन अर्ध-अंतरिक्ष (ज्यामिति) की एक परिमित संख्या का प्रतिच्छेदन है और इसके पक्षों द्वारा परिभाषित किया गया है जबकि एक उत्तल पॉलीटॉप बिंदुओं की एक परिमित संख्या का उत्तल पतवार है और इसके कोने से परिभाषित किया गया है।
आयामों की कम संख्या वाले पॉलीटोप्स के मानक नाम हैं:
| Dimension of polytope |
Description[5] |
|---|---|
| −1 | Nullitope |
| 0 | Monon |
| 1 | Dion |
| 2 | Polygon |
| 3 | Polyhedron |
| 4 | Polychoron |
तत्व
एक पॉलीटोप में विभिन्न आयामों के तत्व शामिल होते हैं जैसे कोने, किनारे, चेहरे, कोशिकाएं आदि। इनके लिए शब्दावली विभिन्न लेखकों के बीच पूरी तरह से संगत नहीं है। उदाहरण के लिए, कुछ लेखक एक (n − 1)-आयामी तत्व को संदर्भित करने के लिए चेहरे का उपयोग करते हैं जबकि अन्य विशेष रूप से 2-चेहरे को निरूपित करने के लिए चेहरे का उपयोग करते हैं। जे आयामों के एक तत्व को इंगित करने के लिए लेखक जे-फेस या जे-फेस का उपयोग कर सकते हैं। कुछ एक रिज को संदर्भित करने के लिए किनारे का उपयोग करते हैं, जबकि एच.एस.एम. कॉक्सेटर सेल का उपयोग एक (एन − 1)-आयामी तत्व को इंगित करने के लिए करता है।[6][citation needed] इस लेख में अपनाई गई शर्तें नीचे दी गई तालिका में दी गई हैं:
| Dimension of element |
Term (in an n-polytope) |
|---|---|
| −1 | Nullity (necessary in abstract theory)[5] |
| 0 | Vertex |
| 1 | Edge |
| 2 | Face |
| 3 | Cell |
| j | j-face – element of rank j = −1, 0, 1, 2, 3, ..., n |
| n − 3 | Peak – (n − 3)-face |
| n − 2 | Ridge or subfacet – (n − 2)-face |
| n − 1 | Facet – (n − 1)-face |
| n | The polytope itself |
एक n-आयामी पॉलीटोप कई (n − 1)-आयामी पहलू (गणित) से घिरा होता है। ये पहलू स्वयं पॉलीटोप हैं, जिनके पहलू मूल पॉलीटोप के (n -2) -आयामी रिज (ज्यामिति) हैं। प्रत्येक रिज दो पहलुओं के प्रतिच्छेदन के रूप में उत्पन्न होता है (लेकिन दो पहलुओं का प्रतिच्छेदन एक रिज नहीं होना चाहिए)। रिज एक बार फिर से पॉलीटोप हैं जिनके पहलू (n - 3) को जन्म देते हैं - मूल पॉलीटोप की आयामी सीमाएं, और इसी तरह। इन बाउंडिंग सब-पॉलीटॉप्स को फेस (ज्यामिति), या विशेष रूप से जे-डायमेंशनल फेस या जे-फेस के रूप में संदर्भित किया जा सकता है। 0-आयामी चेहरे को एक शीर्ष कहा जाता है, और इसमें एक बिंदु होता है। 1-आयामी चेहरे को किनारा कहा जाता है, और इसमें एक रेखा खंड होता है। एक 2-आयामी चेहरे में एक बहुभुज होता है, और एक 3-आयामी चेहरा, जिसे कभी-कभी एक सेल (गणित) कहा जाता है, में एक पॉलीहेड्रॉन होता है।
बहुभुजों के महत्वपूर्ण वर्ग
उत्तल पॉलीटोप्स
एक पॉलीटॉप उत्तल हो सकता है। उत्तल पॉलीटोप्स सबसे सरल प्रकार के पॉलीटोप्स हैं, और पॉलीटोप्स की अवधारणा के कई अलग-अलग सामान्यीकरणों के लिए आधार बनाते हैं। एक उत्तल पॉलीटॉप को कभी-कभी आधा-स्थान (ज्यामिति) के एक सेट के चौराहे के रूप में परिभाषित किया जाता है। यह परिभाषा एक पॉलीटॉप को न तो बाध्य और न ही परिमित होने की अनुमति देती है। पॉलीटोप्स को इस तरह से परिभाषित किया जाता है, उदाहरण के लिए, रैखिक प्रोग्रामिंग में। एक पॉलीटोप को बांधा जाता है यदि परिमित त्रिज्या की एक गेंद होती है जिसमें यह होता है। एक पॉलीटॉप को नुकीला कहा जाता है यदि इसमें कम से कम एक शीर्ष होता है। हर घिरा हुआ गैर-खाली पॉलीटॉप नुकीला होता है। एक गैर-नुकीले पॉलीटॉप का एक उदाहरण सेट है . एक पॉलीटॉप परिमित होता है यदि इसे सीमित संख्या में वस्तुओं के रूप में परिभाषित किया जाता है, उदाहरण के लिए, आधे विमानों की एक सीमित संख्या के चौराहे के रूप में। यह एक अभिन्न पॉलीटोप है यदि इसके सभी शीर्षों में पूर्णांक निर्देशांक हैं।
उत्तल पॉलीटोप्स का एक निश्चित वर्ग रिफ्लेक्सिव पॉलीटोप्स है। एक अभिन्न -polytope कुछ पूर्णांक मैट्रिक्स के लिए रिफ्लेक्सिव है , , कहाँ पे सभी के एक सदिश को दर्शाता है, और असमानता घटक-वार है। यह इस परिभाषा से इस प्रकार है रिफ्लेक्टिव है अगर और केवल अगर सभी के लिए . दूसरे शब्दों में, ए -dilate का पूर्णांक जालक बिंदुओं के संदर्भ में, a . से भिन्न होता है -dilate का केवल सीमा पर प्राप्त जाली बिंदुओं से। समान रूप से, रिफ्लेक्सिव है अगर और केवल अगर यह दोहरी पॉलीहेड्रॉन है एक अभिन्न पॉलीटोप है।[7]
नियमित पॉलीटोप्स
नियमित पॉलीटोप ्स में सभी पॉलीटोप्स की समरूपता की उच्चतम डिग्री होती है। एक नियमित पॉलीटोप का समरूपता समूह अपने ध्वज (ज्यामिति) पर संक्रमणीय रूप से कार्य करता है; इसलिए, एक नियमित पॉलीटोप का दोहरा पॉलीटोप भी नियमित होता है।
नियमित पॉलीटोप के तीन मुख्य वर्ग हैं जो किसी भी आयाम में होते हैं:
- सिंप्लेक्स , समबाहु त्रिभुज और नियमित चतुष्फलक सहित।
- वर्ग और घन सहित अतिविम या पॉलीटोप्स को मापें।
- वर्गाकार और नियमित अष्टफलक सहित ऑर्थोप्लेक्स या क्रॉस पॉलीटोप।
आयाम दो, तीन और चार में नियमित आंकड़े शामिल होते हैं जिनमें पांच गुना समरूपताएं होती हैं और जिनमें से कुछ गैर-उत्तल सितारे होते हैं, और दो आयामों में उत्तल और (एन ≥ 5 के लिए) स्टार दोनों, एन-फोल्ड समरूपता के अनंत रूप से कई नियमित बहुभुज होते हैं। लेकिन उच्च आयामों में कोई अन्य नियमित पॉलीटॉप नहीं हैं।[2]
तीन आयामों में उत्तल प्लेटोनिक ठोस में पांच गुना-सममित द्वादशफ़लक और विंशतिफलक शामिल हैं, और पांच गुना समरूपता के साथ चार सितारा केप्लर-पॉइन्सॉट पॉलीहेड्रा भी हैं, जो कुल नौ नियमित पॉलीहेड्रा लाते हैं।
चार आयामों में नियमित 4-पॉलीटॉप में चार गुना समरूपता के साथ एक अतिरिक्त उत्तल ठोस और दो पांच गुना समरूपता शामिल हैं। दस सितारा श्लाफली-हेस 4-पॉलीटॉप हैं, सभी पांच गुना समरूपता के साथ, सभी सोलह नियमित 4-पॉलीटॉप में दे रहे हैं।
स्टार पॉलीटोप्स
एक गैर-उत्तल पॉलीटोप स्वयं-प्रतिच्छेदन हो सकता है; पॉलीटोप्स के इस वर्ग में स्टार पॉलीटोप्स शामिल हैं। कुछ नियमित पॉलीटॉप सितारे हैं।[2]
गुण
यूलर विशेषता
चूँकि a (भरा हुआ) उत्तल पॉलीटोप P in आयाम एक बिंदु के लिए सिकुड़ा हुआ स्थान है, यूलर विशेषता इसकी सीमा का ∂P वैकल्पिक योग द्वारा दिया गया है:
- , कहाँ पे की संख्या है -आयामी चेहरे।
यह पॉलीहेड्रा के लिए यूलर के सूत्र को सामान्यीकृत करता है।[8]
आंतरिक कोण
ग्राम-यूलर प्रमेय इसी तरह आंतरिक और बाहरी कोण ों के वैकल्पिक योग को सामान्य करता है उत्तल पॉलीहेड्रा के लिए उच्च-आयामी पॉलीटोप्स के लिए:[8]
एक पॉलीटोप के सामान्यीकरण
अनंत पॉलीटोप्स
सभी गुण परिमित नहीं होते। जहां एक पॉलीटॉप को टाइलिंग या मैनिफोल्ड के अपघटन के रूप में समझा जाता है, इस विचार को अनंत मैनिफोल्ड तक बढ़ाया जा सकता है। टेसलेशन, स्पेस-फिलिंग (हनीकॉम्ब (ज्यामिति)) और अतिशयोक्तिपूर्ण टाइलिंग इस अर्थ में पॉलीटोप्स हैं, और कभी-कभी इन्हें एपिरोटोप्स कहा जाता है क्योंकि उनमें असीम रूप से कई कोशिकाएं होती हैं।
इनमें नियमित तिरछा पॉलीहेड्रॉन और नियमित एपिरोगोन, स्क्वायर टाइलिंग, क्यूबिक मधुकोश, और इतने पर प्रतिनिधित्व करने वाली टाइलिंग की अनंत श्रृंखला सहित नियमित रूप हैं।
सार पॉलीटोप्स
अमूर्त पॉलीटोप्स का सिद्धांत उनके विशुद्ध रूप से संयोजक गुणों पर विचार करते हुए, पॉलीटोप्स को उनके युक्त स्थान से अलग करने का प्रयास करता है। यह उन वस्तुओं को शामिल करने के लिए शब्द की परिभाषा को विस्तारित करने की अनुमति देता है जिनके लिए एक सहज अंतर्निहित स्थान को परिभाषित करना मुश्किल है, जैसे कि 11-कोशिका ।
एक अमूर्त पॉलीटॉप तत्वों या सदस्यों का आंशिक रूप से आदेशित सेट है, जो कुछ नियमों का पालन करता है। यह एक विशुद्ध रूप से बीजगणितीय संरचना है, और सिद्धांत को कुछ मुद्दों से बचने के लिए विकसित किया गया था, जिससे एक सुसंगत गणितीय ढांचे के भीतर विभिन्न ज्यामितीय वर्गों को समेटना मुश्किल हो जाता है। एक ज्यामितीय पॉलीटोप को संबंधित अमूर्त पॉलीटोप के कुछ वास्तविक स्थान में एक बोध कहा जाता है।[9]
जटिल पॉलीटोप्स
जटिल हिल्बर्ट रिक्त स्थान में पॉलीटोप्स के समान संरचनाएं मौजूद हैं जहाँ n वास्तविक विमाओं के साथ n काल्पनिक संख्या एँ होती हैं। नियमित जटिल पॉलीटोप ्स को अधिक उचित रूप से विन्यास (पॉलीटोप) पॉलीटॉप) के रूप में माना जाता है।[10]
द्वैत
प्रत्येक n-पॉलीटोप में एक दोहरी संरचना होती है, जो पहलुओं के लिए इसके शीर्षों को बदलकर, लकीरों के लिए किनारों को बदलकर प्राप्त की जाती है, और आम तौर पर इसके (j − 1)-आयामी तत्वों को (n − j)-आयामी तत्वों (j = 1 से n − 1), तत्वों के बीच कनेक्टिविटी या घटना को बनाए रखते हुए।
एक अमूर्त पॉलीटॉप के लिए, यह सेट के क्रम को उलट देता है। यह उत्क्रमण नियमित पॉलीटोप्स के लिए श्लाफली प्रतीकों में देखा जाता है, जहां दोहरे पॉलीटॉप के लिए प्रतीक मूल के विपरीत है। उदाहरण के लिए, {4, 3, 3} {3, 3, 4} का दोहरा है।
एक ज्यामितीय पॉलीटॉप के मामले में, दोहरीकरण के लिए कुछ ज्यामितीय नियम आवश्यक हैं, उदाहरण के लिए दोहरे पॉलीहेड्रा के लिए वर्णित नियम देखें। परिस्थिति के आधार पर, दोहरी आकृति एक और ज्यामितीय पॉलीटॉप हो सकती है या नहीं भी हो सकती है।[11] यदि द्वैत को उलट दिया जाता है, तो मूल पॉलीटोप को पुनः प्राप्त कर लिया जाता है। इस प्रकार, पॉलीटोप्स दोहरे जोड़े में मौजूद हैं।
स्व-दोहरी पॉलीटोप्स
यदि एक पॉलीटॉप में किनारों की संख्या समान है, किनारों की लकीरें हैं, और इसी तरह आगे, और समान कनेक्टिविटी हैं, तो दोहरी आकृति मूल के समान होगी और पॉलीटॉप स्व-दोहरी है।
कुछ सामान्य स्व-दोहरी पॉलीटोप्स में शामिल हैं:
- प्रत्येक नियमित एन-सिम्प्लेक्स, किसी भी संख्या में आयामों में, श्लाफली प्रतीक {3 के साथएन}. इनमें समबाहु त्रिभुज {3}, नियमित चतुष्फलक {3,3}, और 5-कोशिका {3,3,3} शामिल हैं।
- हर हाइपरक्यूबिक मधुकोश , किसी भी आयाम में। इनमें एपिरोगोन {∞}, चौकोर खपरैल {4,4} और घन मधुकोश {4,3,4} शामिल हैं।
- कई कॉम्पैक्ट, पैराकॉम्पैक्ट और नॉनकॉम्पैक्ट हाइपरबोलिक टाइलिंग, जैसे कि इकोसाहेड्रल मधुकोश {3,5,3}, और आदेश-5 पंचकोणीय टाइलिंग {5,5}।
- 2 आयामों में, सभी नियमित बहुभुज (नियमित 2-पॉलीटॉप)
- 3 आयामों में, विहित रूप बहुभुज पिरामिड और लम्बी पिरामिड , और चतुष्फलकीय रूप से कम डोडेकाहेड्रोन।
- 4 आयामों में, 24-सेल , Schläfli प्रतीक {3,4,3} के साथ। इसके अलावा महान 120-सेल {5,5/2,5} और भव्य तारकीय 120-सेल {5/2,5,5/2}।
इतिहास
बहुभुज और बहुफलक प्राचीन काल से जाने जाते हैं।
उच्च आयामों का एक प्रारंभिक संकेत 1827 में आया जब अगस्त फर्डिनेंड मोबियस ने पाया कि दो दर्पण-छवि वाले ठोस को चौथे गणितीय आयाम के माध्यम से उनमें से एक को घुमाकर आरोपित किया जा सकता है। 1850 के दशक तक, मुट्ठी भर अन्य गणितज्ञों जैसे आर्थर केली और हरमन ग्रासमैन ने भी उच्च आयामों पर विचार किया था।
लुडविग श्लाफली इन उच्च स्थानों में बहुभुज और पॉलीहेड्रा के अनुरूपों पर विचार करने वाले पहले व्यक्ति थे। उन्होंने 1852 में छह उत्तल नियमित 4-पॉलीटोप्स का वर्णन किया लेकिन उनकी मृत्यु के छह साल बाद 1901 तक उनका काम प्रकाशित नहीं हुआ। 1854 तक, बर्नहार्ड रीमैन की आवास थीसिस ने उच्च आयामों की ज्यामिति को दृढ़ता से स्थापित किया था, और इस प्रकार एन-आयामी पॉलीटोप्स की अवधारणा को स्वीकार्य बना दिया गया था। श्लाफली के पॉलीटॉप्स को उनके जीवनकाल में भी, बाद के दशकों में कई बार फिर से खोजा गया।
1882 में जर्मन में लिखते हुए रीनहोल्ड होप ने बहुभुज और पॉलीहेड्रा की इस अधिक सामान्य अवधारणा को संदर्भित करने के लिए :de:Polytop (ज्यामिति) शब्द गढ़ा। नियत समय में तर्कशास्त्री जॉर्ज बूले की बेटी एलिसिया बूल स्टॉट ने अंग्रेजी भाषा में अंग्रेजी भाषा में पॉलीटॉप पेश किया।[2]: vi 1895 में, थोरोल्ड गॉसेट ने न केवल श्लाफली के नियमित पॉलीटोप्स को फिर से खोजा, बल्कि उच्च आयामों में अर्धनियमित पॉलीटोप और स्पेस-फिलिंग टेस्सेलेशन के विचारों की भी जांच की। पॉलीटोप्स का अध्ययन गैर-यूक्लिडियन स्थानों जैसे हाइपरबोलिक स्पेस में भी किया जाने लगा।
1948 में हेरोल्ड स्कॉट मैकडोनाल्ड कॉक्सेटर | एच। एस एम कॉक्सेटर की किताब नियमित पॉलीटोप्स (पुस्तक) पुस्तक), आज तक के काम को सारांशित करते हुए और अपने स्वयं के नए निष्कर्षों को जोड़ते हुए।
इस बीच, फ्रांसीसी गणितज्ञ हेनरी पोंकारे ने एक पॉलीटोप के टोपोलॉजी विचार को कई गुना (टोपोलॉजी) के टुकड़े-टुकड़े अपघटन (जैसे सीडब्ल्यू-कॉम्प्लेक्स) के रूप में विकसित किया था। ब्रैंको ग्रुनबाम ने 1967 में उत्तल पॉलीटोप्स पर अपना प्रभावशाली काम प्रकाशित किया।
1952 में जेफ्री कॉलिन शेफर्ड ने इस विचार को जटिल अंतरिक्ष में जटिल पॉलीटोप ्स के रूप में सामान्यीकृत किया, जहां प्रत्येक वास्तविक आयाम के साथ एक काल्पनिक जुड़ा होता है। कॉक्सेटर ने सिद्धांत को और विकसित किया।
जटिल पॉलीटोप्स, गैर-उत्तलता, द्वैत और अन्य घटनाओं द्वारा उठाए गए वैचारिक मुद्दों ने ग्रुनबाम और अन्य को शिखर, किनारों, चेहरों आदि से संबंधित अमूर्त संयोजन गुणों के अधिक सामान्य अध्ययन के लिए प्रेरित किया। एक संबंधित विचार घटना परिसरों का था, जो एक दूसरे के साथ विभिन्न तत्वों की घटनाओं या कनेक्शन का अध्ययन करता था। इन विकासों ने अंततः ऐसे तत्वों के आंशिक रूप से आदेशित सेट, या पॉसेट के रूप में अमूर्त पॉलीटोप्स के सिद्धांत का नेतृत्व किया। पीटर मैकमुलेन और एगॉन शुल्ते ने 2002 में अपनी पुस्तक एब्सट्रैक्ट रेगुलर पॉलीटोप्स प्रकाशित की।
चार या अधिक आयामों में एक समान पॉलीटॉप , उत्तल और गैर-उत्तल की गणना करना एक उत्कृष्ट समस्या बनी हुई है। जॉन कॉनवे और माइकल गाइ द्वारा 1965 में कंप्यूटर का उपयोग करते हुए उत्तल वर्दी 4-पॉलीटॉप्स की पूरी तरह से गणना की गई थी;[12][13] उच्च आयामों में यह समस्या अभी भी 1997 तक खुली थी।[14] 2008 के रूप में गैर-उत्तल समान पॉलीटोप्स के लिए पूर्ण गणना चार और उच्चतर आयामों में ज्ञात नहीं है।[15] आधुनिक समय में, पॉलीटॉप्स और संबंधित अवधारणाओं ने कंप्यूटर ग्राफिक्स , अनुकूलन (गणित) , खोज इंजन (कंप्यूटिंग) , ब्रह्मांड विज्ञान, क्वांटम यांत्रिकी और कई अन्य क्षेत्रों के रूप में विविध क्षेत्रों में कई महत्वपूर्ण अनुप्रयोग पाए हैं। 2013 में सैद्धांतिक भौतिकी की कुछ गणनाओं में एम्प्लिट्यूहेड्रोन को सरलीकृत निर्माण के रूप में खोजा गया था।
आवेदन
अनुकूलन (गणित) के क्षेत्र में, रैखिक प्रोग्रामिंग रैखिक कार्यों के अधिकतम और न्यूनतम का अध्ययन करती है; ये मैक्सिमा और मिनिमा एक एन-डायमेंशनल पॉलीटॉप की सीमा (टोपोलॉजी) पर होते हैं। रैखिक प्रोग्रामिंग में, सामान्यीकृत बैरीसेंट्रिक निर्देशांक और सुस्त चर के उपयोग में पॉलीटॉप होते हैं।
ट्विस्टर सिद्धांत में, सैद्धांतिक भौतिकी की एक शाखा, एम्प्लिटुहेड्रोन नामक एक पॉलीटॉप का उपयोग उप-परमाणु कणों के प्रकीर्णन आयामों की गणना करने के लिए किया जाता है जब वे टकराते हैं। निर्माण विशुद्ध रूप से सैद्धांतिक है जिसमें कोई ज्ञात भौतिक अभिव्यक्ति नहीं है, लेकिन कुछ गणनाओं को सरल बनाने के लिए कहा जाता है।[16]
यह भी देखें
- नियमित पॉलीटोप्स की सूची
- बाउंडिंग वॉल्यूम -असतत उन्मुख पॉलीटॉप
- एक रेखा के साथ बहुफलक का प्रतिच्छेदन
- बहुफलक का विस्तार
- पॉलीटोप डी मॉन्ट्रियल
- मधुकोश (ज्यामिति)
- ओपेटोप
संदर्भ
उद्धरण
- ↑ Coxeter 1973, pp. 141–144, §7-x. Historical remarks.
- ↑ 2.0 2.1 2.2 2.3 Coxeter (1973)
- ↑ Richeson, D. (2008). यूलर का रत्न: पॉलीहेड्रॉन फॉर्मूला और टोपोलॉजी का जन्म. Princeton University Press.
- ↑ Grunbaum (2003)
- ↑ 5.0 5.1 Johnson, Norman W.; Geometries and Transformations, Cambridge University Press, 2018, p.224.
- ↑ Regular polytopes, p. 127 The part of the polytope that lies in one of the hyperplanes is called a cell
- ↑ Beck, Matthias; Robins, Sinai (2007), Computing the Continuous Discretely: Integer-point enumeration in polyhedra, Undergraduate Texts in Mathematics, New York: Springer-Verlag, ISBN 978-0-387-29139-0, MR 2271992
- ↑ 8.0 8.1 M. A. Perles and G. C. Shephard. 1967. "Angle sums of convex polytopes". Math. Scandinavica, Vol 21, No 2. March 1967. pp. 199–218.
- ↑ McMullen, Peter; Schulte, Egon (December 2002), Abstract Regular Polytopes (1st ed.), Cambridge University Press, ISBN 0-521-81496-0
- ↑ Coxeter, H.S.M.; Regular Complex Polytopes, 1974
- ↑ Wenninger, M.; Dual Models, CUP (1983).
- ↑ John Horton Conway: Mathematical Magus - Richard K. Guy
- ↑ Curtis, Robert Turner (June 2022). "जॉन हॉर्टन कॉनवे। 26 दिसंबर 1937—11 अप्रैल 2020". Biographical Memoirs of Fellows of the Royal Society. 72: 117–138. doi:10.1098/rsbm.2021.0034.
- ↑ Symmetry of Polytopes and Polyhedra, Egon Schulte. p. 12: "However, there are many more uniform polytopes but a complete list is known only for d = 4 [Joh]."
- ↑ John Horton Conway, Heidi Burgiel, and Chaim Goodman-Strauss: The Symmetries of Things, p. 408. "There are also starry analogs of the Archimedean polyhedra...So far as we know, nobody has yet enumerated the analogs in four or higher dimensions."
- ↑ Arkani-Hamed, Nima; Trnka, Jaroslav (2013). "एम्प्लिट्यूहेड्रोन". Journal of High Energy Physics. 2014. arXiv:1312.2007. Bibcode:2014JHEP...10..030A. doi:10.1007/JHEP10(2014)030.
ग्रन्थसूची
- Coxeter, Harold Scott MacDonald (1973), Regular Polytopes, New York: Dover Publications, ISBN 978-0-486-61480-9.
- Grünbaum, Branko (2003), Kaibel, Volker; Klee, Victor; Ziegler, Günter M. (eds.), Convex polytopes (2nd ed.), New York & London: Springer-Verlag, ISBN 0-387-00424-6.
- Ziegler, Günter M. (1995), Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152, Berlin, New York: Springer-Verlag.
इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची
- अनंतता
- सार पॉलीटॉप
- उत्तल पॉलीटॉप
- सरल परिसर
- अण्डाकार स्थान
- toroid
- आधा स्थान (ज्यामिति)
- इंटीग्रल पॉलीटोप
- दोहरी पॉलीटॉप
- नियमित टेट्राहेड्रॉन
- झंडा (ज्यामिति)
- घनक्षेत्र
- समभुज त्रिकोण
- नियमित 4-पॉलीटोप
- अनंतता
- मधुकोश (ज्यामिति)
- हिल्बर्ट अंतरिक्ष
- दोहरी पॉलीहेड्रा
- कानूनी फॉर्म
- चतुष्फलकीय ह्रासित डोडेकाहेड्रोन
- ग्रैंड स्टेलेटेड 120-सेल
- उत्तल नियमित 4-पॉलीटॉप
- ब्रह्माण्ड विज्ञान
- ट्विस्टर थ्योरी
- एक बहुफलक का विस्तार
बाहरी संबंध
- Weisstein, Eric W. "Polytope". MathWorld.
- "Math will rock your world" – application of polytopes to a database of articles used to support custom news feeds via the Internet – (Business Week Online)
- Regular and semi-regular convex polytopes a short historical overview: