उत्तल संयुग्म

From Vigyanwiki
Revision as of 16:12, 28 November 2023 by alpha>Saumitratiwari

गणित और गणितीय अनुकूलन में, किसी फलन का उत्तल संयुग्म लीजेंड्रे रूपांतरण का एक सामान्यीकरण है जो गैर-उत्तल कार्यों पर लागू होता है। इसे लेजेंड्रे–फेंचेल रूपांतरण, फेनचेल रूपांतरण, या फेनचेल संयुग्मन (एड्रियन-मैरी लीजेंड्रे और वर्नर फेनेल के बाद) के रूप में भी जाना जाता है। यह विशेष रूप से लैग्रेंजियन द्वैत के दूरगामी सामान्यीकरण की अनुमति देता है।

परिभाषा

मान लीजिये एक वास्तविक संख्या सांस्थितिक सदिश समष्टि है और मान लीजिये करने के लिए द्वैतसमष्‍टि हो। जिसे विहित द्वैध युग्मन रूप में दर्शाया जा सकता है

जिसे द्वारा परिभाषित किया गया है

एक समारोह के लिए विस्तारित वास्तविक संख्या रेखा पर मान लेते हुए, यहconvex conjugate फलन है

जिसका मूल्य पर सर्वोच्च के रूप में परिभाषित किया गया है:

या, समकक्ष, न्यूनतम के संदर्भ में:

इस परिभाषा की व्याख्या इसके सहायक हाइपरप्लेन के संदर्भ में फलन के एपिग्राफ (गणित) के उत्तल पतवार के एन्कोडिंग के रूप में की जा सकती है।[1]


उदाहरण

अधिक उदाहरणों के लिए देखें § Table of selected convex conjugates.

  • एक एफ़िन फलन का उत्तल संयुग्म है
  • किसी शक्ति फलन का उत्तल संयुग्म है
  • निरपेक्ष मान फलन का उत्तल संयुग्म है
  • घातीय फलन का उत्तल संयुग्म है

घातीय फलन के उत्तल संयुग्म और लीजेंड्रे ट्रांसफॉर्म सहमत हैं, सिवाय इसके कि उत्तल संयुग्म के फलन का डोमेन सख्ती से बड़ा है क्योंकि लीजेंड्रे ट्रांसफॉर्म केवल सकारात्मक वास्तविक संख्याओं के लिए परिभाषित किया गया है।

अपेक्षित कमी के साथ संबंध (जोखिम पर औसत मूल्य)

उदाहरण के लिए यह लेख देखें।

मान लीजिए F एक यादृच्छिक चर X के संचयी वितरण फलन को दर्शाता है। फिर (भागों द्वारा एकीकृत),

उत्तल संयुग्म है


ऑर्डर करना

एक विशेष व्याख्या में रूपांतरण होता है

चूँकि यह प्रारंभिक फलन f की गैर-घटती पुनर्व्यवस्था है; विशेष रूप से, एफ गैर-घटने के लिए।

गुण

एक बंद उत्तल फलन का उत्तल संयुग्म फिर से एक बंद उत्तल फलन है। एक बहुफलकीय उत्तल कार्य का उत्तल संयुग्म (बहुतल एपिग्राफ (गणित) के साथ एक उत्तल फलन) फिर से एक पॉलीहेड्रल उत्तल फलन है।

आदेश उलटना

इसकी घोषणा करें अगर और केवल अगर सभी के लिए फिर उत्तल-संयुग्मन ऑर्डर सिद्धांत | ऑर्डर-रिवर्सिंग है, जिसकी परिभाषा का अर्थ है कि यदि तब कार्यों के एक परिवार के लिए यह इस तथ्य से निकलता है कि सर्वोच्चों को आपस में बदला जा सकता है

और अधिकतम-न्यूनतम असमानता से


उभयलिंगी

किसी फलन का उत्तल संयुग्म हमेशा निचला अर्ध-निरंतर होता है। उभयलिंगी (उत्तल संयुग्म का उत्तल संयुग्म) बंद उत्तल पतवार भी है, यानी सबसे बड़ा निचला अर्ध-निरंतर उत्तल कार्य उचित उत्तल कार्य के लिए  : अगर और केवल अगर फ़ेंशेल-मोरो प्रमेय द्वारा उत्तल और निचला अर्ध-निरंतर है।

फ़ेंशेल की असमानता

किसी भी समारोह के लिए f और इसका उत्तल संयुग्म f *, फ़ेंचेल की असमानता (जिसे फ़ेंचेल-यंग असमानता के रूप में भी जाना जाता है) प्रत्येक के लिए लागू होती है और :

इसके अलावा, समानता तभी कायम रहती है जब . प्रमाण उत्तल संयुग्म की परिभाषा से मिलता है:


उत्तलता

दो कार्यों के लिए और और एक संख्या उत्तलता संबंध

धारण करता है. h> ऑपरेशन स्वयं उत्तल मानचित्रण है।

अनंत कनवल्शन

दो कार्यों का अनंत कनवल्शन (या एपि-सम)। और परिभाषित किया जाता है

मान लीजिये उचित उत्तल कार्य, उत्तल और अर्ध-निरंतरता कार्य पर होना फिर अनंत कनवल्शन उत्तल और निचला अर्धविराम है (लेकिन जरूरी नहीं कि उचित हो),[2] और संतुष्ट करता है

दो कार्यों के अनंत कनवल्शन की एक ज्यामितीय व्याख्या होती है: दो कार्यों के अनंत कनवल्शन का (सख्त) एपिग्राफ (गणित) उन कार्यों के (सख्त) एपिग्राफ का मिन्कोव्स्की योग है।[3]


तर्क को अधिकतम करना

यदि फलन अवकलनीय है, तो इसका व्युत्पन्न उत्तल संयुग्म की गणना में अधिकतम तर्क है:

और

इस तरह

और इसके अलावा


स्केलिंग गुण

अगर कुछ के लिए , तब


रैखिक परिवर्तनों के तहत व्यवहार

मान लीजिये एक परिबद्ध रैखिक संचालिका बनें। किसी भी उत्तल फलन के लिए पर  : कहाँ

की पूर्व छवि है इसके संबंध में और का सहायक संचालक है [4] एक बंद उत्तल फलन किसी दिए गए सेट के संबंध में सममित है ऑर्थोगोनल मैट्रिक्स का,

सभी के लिए और सभी

यदि और केवल यदि यह उत्तल संयुग्म है के संबंध में सममित है


चयनित उत्तल संयुग्मों की तालिका

निम्न तालिका कई सामान्य कार्यों के साथ-साथ कुछ उपयोगी गुणों के लिए लीजेंड्रे रूपांतरण प्रदान करती है।[5]

(where )
(where )
(where ) (where )
(where ) (where )


यह भी देखें

  • द्वैध समस्या
  • फ़ेंशेल का द्वैत प्रमेय
  • पौराणिक रूपांतरण
  • उत्पादों के लिए यंग की असमानता

संदर्भ

  1. "लीजेंड्रे ट्रांसफॉर्म". Retrieved April 14, 2019.
  2. Phelps, Robert (1993). उत्तल कार्य, मोनोटोन संचालक और भिन्नता (2 ed.). Springer. p. 42. ISBN 0-387-56715-1.
  3. Bauschke, Heinz H.; Goebel, Rafal; Lucet, Yves; Wang, Xianfu (2008). "The Proximal Average: Basic Theory". SIAM Journal on Optimization. 19 (2): 766. CiteSeerX 10.1.1.546.4270. doi:10.1137/070687542.
  4. Ioffe, A.D. and Tichomirov, V.M. (1979), Theorie der Extremalaufgaben. Deutscher Verlag der Wissenschaften. Satz 3.4.3
  5. Borwein, Jonathan; Lewis, Adrian (2006). Convex Analysis and Nonlinear Optimization: Theory and Examples (2 ed.). Springer. pp. 50–51. ISBN 978-0-387-29570-1.


अग्रिम पठन