गणित में, विशेषकर गणितीय विश्लेषण में, कॉची गुणनफल दो अनंत श्रृंखलाओं का असतत सवलन है। इसका नाम फ्रांसीसी गणितज्ञ ऑगस्टिन-लुई कॉची के नाम पर रखा गया है।
कॉची गुणनफल अनंत श्रृंखला [1][2][3][4][5][6][7][8][9][10][11] या पावर श्रृंखला पर लागू हो सकता है।[12][13] जब लोग इसे परिमित अनुक्रमों[14] या परिमित श्रृंखला पर लागू करते हैं, तो इसे केवल गैर-शून्य गुणांकों की एक सीमित संख्या के साथ श्रृंखला के गुणनफल के एक विशेष मामले के रूप में देखा जा सकता है (अलग-अलग सवलन देखें)।
अभिसरण विषयों पर अगले भाग में चर्चा की गई है।
दो अपरिमित श्रृंखलाओं का कॉची गुणनफल
मान लीजिये और जटिल पदों वाली दो अनंत श्रृंखलाएँ हों। इन दो अनंत श्रृंखलाओं के कॉची गुणनफल को असतत सवलन द्वारा निम्नानुसार परिभाषित किया गया है:
कहाँ .
द्वि घात श्रेणी का कॉची गुणनफल
निम्नलिखित द्वि घात श्रेणियों पर विचार करें
और
जटिल गुणांकों के साथ और . इन द्वि घात श्रेणियों के कॉची गुणनफल को असतत सवलन द्वारा निम्नानुसार परिभाषित किया गया है:
कहाँ .
अभिसरण और मर्टेंस प्रमेय
Not to be confused with Mertens' theorems concerning distribution of prime numbers.
होने देना (an)n≥0 और (bn)n≥0 वास्तविक या जटिल अनुक्रम हों। यह फ्रांज मर्टेंस द्वारा सिद्ध किया गया था कि, यदि श्रृंखला अभिसरण श्रृंखला को A और में एकत्रित हो जाता है B, और उनमें से कम से कम एक पूर्ण अभिसरण, फिर उनका कॉची गुणनफल अभिसरण होता है AB.[15] प्रमेय अभी भी बानाच बीजगणित में मान्य है (निम्नलिखित प्रमाण की पहली पंक्ति देखें)।
दोनों श्रृंखलाओं का अभिसरण होना पर्याप्त नहीं है; यदि दोनों अनुक्रम सशर्त अभिसरण हैं, तो कॉची गुणनफल को दो श्रृंखलाओं के गुणनफल की ओर अभिसरण नहीं करना पड़ता है, जैसा कि निम्नलिखित उदाहरण से पता चलता है:
प्रत्येक पूर्णांक के लिए n ≥ 0. चूंकि प्रत्येक के लिए k ∈ {0, 1, ..., n} हमारे पास असमानताएं हैं k + 1 ≤ n + 1 और n – k + 1 ≤ n + 1, यह हर में वर्गमूल के लिए अनुसरण करता है √(k + 1)(n − k + 1) ≤ n +1, इसलिए, क्योंकि हैं n + 1 सारांश,
प्रत्येक पूर्णांक के लिए n ≥ 0. इसलिए, cn शून्य पर अभिसरित नहीं होता है n → ∞, इसलिए की श्रृंखला (cn)n≥0 परीक्षण शब्द से भिन्न होता है।
मर्टेंस प्रमेय का प्रमाण
सरलता के लिए, हम इसे सम्मिश्र संख्याओं के लिए सिद्ध करेंगे। हालाँकि, जो प्रमाण हम देने जा रहे हैं वह औपचारिक रूप से एक मनमाना बनच बीजगणित के लिए समान है (यहां तक कि कम्यूटेटिविटी या एसोसिएटिविटी की भी आवश्यकता नहीं है)।
व्यापकता की हानि के बिना मान लें कि श्रृंखला बिल्कुल एकाग्र हो जाता है।
आंशिक योग परिभाषित करें
साथ
तब
पुनर्व्यवस्था द्वारा, इसलिए
(1)
हल करना ε > 0. तब से पूर्ण अभिसरण द्वारा, और तब से Bn में एकत्रित हो जाता है B जैसा n → ∞, एक पूर्णांक मौजूद है N ऐसा कि, सभी पूर्णांकों के लिए n ≥ N,
(2)
(यह एकमात्र स्थान है जहां पूर्ण अभिसरण का उपयोग किया जाता है)। की श्रृंखला के बाद से (an)n≥0 अभिसरण, व्यक्ति an शब्द परीक्षण द्वारा 0 पर अभिसरण होना चाहिए। अतः एक पूर्णांक मौजूद है M ऐसा कि, सभी पूर्णांकों के लिए n ≥ M,
(3)
इसके अलावा, तब से An में एकत्रित हो जाता है A जैसा n → ∞, एक पूर्णांक मौजूद है L ऐसा कि, सभी पूर्णांकों के लिए n ≥ L,
(4)
फिर, सभी पूर्णांकों के लिए n ≥ max{L, M + N}, प्रतिनिधित्व का उपयोग करें (1) के लिए Cn, योग को दो भागों में विभाजित करें, निरपेक्ष मान के लिए त्रिभुज असमानता का उपयोग करें, और अंत में तीन अनुमानों का उपयोग करें (2), (3) और (4) उसे दिखाने के लिए
ऐसे मामलों में जहां दो अनुक्रम अभिसरण हैं लेकिन पूरी तरह से अभिसरण नहीं हैं, कॉची गुणनफल अभी भी सिजेरो योग है। विशेष रूप से:
अगर , के साथ वास्तविक अनुक्रम हैं और तब
इसे उस मामले में सामान्यीकृत किया जा सकता है जहां दो अनुक्रम अभिसरण नहीं हैं बल्कि सिजेरो सारांश योग्य हैं:
प्रमेय
के लिए और , मान लीजिए अनुक्रम है योग ए और के साथ योगयोग्य है योग बी के साथ योगयोग्य। फिर उनका कॉची गुणनफल है योग AB के साथ योगयोग्य।
उदाहरण
कुछ के लिए , होने देना और . तब
परिभाषा और द्विपद सूत्र के अनुसार। चूंकि, औपचारिक श्रृंखला, और , हमने वो करके दिखाया है . चूँकि दो निरपेक्ष अभिसरण श्रृंखलाओं के कॉची गुणनफल की सीमा उन श्रृंखलाओं की सीमाओं के गुणनफल के बराबर है, हमने सूत्र को सिद्ध कर दिया है सभी के लिए .
दूसरे उदाहरण के तौर पर, आइए सभी के लिए . तब सभी के लिए तो कॉची गुणनफल
एकत्रित नहीं होता.
सामान्यीकरण
उपरोक्त सभी अनुक्रमों पर लागू होते हैं (जटिल आंकड़े)। कॉची गुणनफल को श्रृंखला के लिए परिभाषित किया जा सकता है रिक्त स्थान (यूक्लिडियन स्थान स्थान) जहां गुणन आंतरिक गुणनफल है। इस मामले में, हमारे पास यह परिणाम है कि यदि दो श्रृंखलाएं पूरी तरह से अभिसरण करती हैं तो उनका कॉची गुणनफल पूरी तरह से सीमाओं के आंतरिक गुणनफल में परिवर्तित हो जाता है।
अनंत अनेक अनंत श्रृंखलाओं के गुणनफल
होने देना ऐसा है कि (वास्तव में निम्नलिखित भी सत्य है लेकिन उस स्थिति में कथन तुच्छ हो जाता है) और चलो जटिल गुणांकों वाली अनंत श्रृंखला हो, जिसमें से को छोड़कर सभी एक बिल्कुल अभिसरण करता है, और वें एक जुटता है. फिर तो हद हो गयी
मौजूद है और हमारे पास है:
प्रमाण
क्योंकि
कथन को प्रेरण द्वारा सिद्ध किया जा सकता है : के लिए मामला कॉची गुणनफल के बारे में दावे के समान है। यह हमारा इंडक्शन बेस है.
प्रेरण चरण इस प्रकार है: दावे को सत्य होने दें ऐसा है कि , और जाने जटिल गुणांकों वाली अनंत श्रृंखला हो, जिसमें से को छोड़कर सभी एक बिल्कुल अभिसरण करता है, और -वह एकाग्र होता है। हम पहले श्रृंखला में प्रेरण परिकल्पना को लागू करते हैं . हमें वह श्रृंखला प्राप्त होती है
अभिसरण, और इसलिए, त्रिकोण असमानता और सैंडविच मानदंड, श्रृंखला द्वारा
अभिसरण, और इसलिए श्रृंखला
बिल्कुल एकाग्र हो जाता है। इसलिए, प्रेरण परिकल्पना द्वारा, मर्टेंस ने जो साबित किया, और चर के नाम बदलकर, हमारे पास है:
इसलिए, सूत्र भी लागू होता है .
फ़ंक्शंस के सवलन से संबंध
एक परिमित अनुक्रम को एक अनंत अनुक्रम के रूप में देखा जा सकता है जिसमें केवल बहुत से गैर-शून्य पद होते हैं, या दूसरे शब्दों में एक फ़ंक्शन के रूप में देखा जा सकता है सीमित समर्थन के साथ. किसी भी जटिल-मूल्यवान फ़ंक्शन के लिए f, g on सीमित समर्थन के साथ, कोई अपना सवलन (गणित) ले सकता है:
तब के कॉची गुणनफल के समान ही है और .
अधिक सामान्यतः, एक मोनॉयड एस दिए जाने पर, कोई अर्धसमूह बीजगणित बना सकता है एस का, सवलन द्वारा दिए गए गुणन के साथ। यदि कोई लेता है, उदाहरण के लिए, , फिर गुणा पर उच्च आयाम के लिए कॉची गुणनफल का सामान्यीकरण है।