सामान्य (गणित)

From Vigyanwiki
Revision as of 22:08, 27 December 2022 by alpha>Indicwiki (Created page with "{{short description|Length in a vector space}} {{about|norms of normed vector spaces|field theory|Field norm|ideals|Ideal norm|group theory|Norm (group)|norms in descripti...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, एक मानक एक वास्तविक संख्या या जटिल संख्या सदिश स्थान से गैर-ऋणात्मक वास्तविक संख्याओं तक एक फ़ंक्शन (गणित) है जो उत्पत्ति (गणित) से दूरी जैसे कुछ तरीकों से व्यवहार करता है: यह स्केलिंग के साथ समतुल्य मानचित्र, एक का पालन करता है त्रिभुज असमानता का रूप, और केवल मूल बिंदु पर शून्य है। विशेष रूप से, मूल से एक वेक्टर की यूक्लिडियन दूरी एक मानदंड है, जिसे #यूक्लिडियन मानदंड या #p-norm|2-norm कहा जाता है, जिसे स्वयं के साथ एक सदिश स्थल आंतरिक उत्पाद के वर्गमूल के रूप में भी परिभाषित किया जा सकता है। .

एक सेमिनोर्म मानक के पहले दो गुणों को संतुष्ट करता है, लेकिन मूल के अलावा अन्य वैक्टरों के लिए शून्य हो सकता है।[1] एक विशिष्ट मानदंड के साथ एक सदिश स्थान को एक आदर्श सदिश स्थान कहा जाता है। इसी तरह से, सेमिनॉर्म वाली सदिश समष्टि को सेमिनोर्म सदिश समष्टि कहते हैं।

'स्यूडोनॉर्म' शब्द का प्रयोग कई संबंधित अर्थों के लिए किया गया है। यह सेमिनॉर्म का पर्यायवाची हो सकता है।[1] एक असमानता द्वारा प्रतिस्थापित समानता के साथ, एक छद्म मानदंड समान स्वयंसिद्धों को एक मानक के रूप में संतुष्ट कर सकता हैएकरूपता स्वयंसिद्ध में।[2] यह एक मानदंड का भी उल्लेख कर सकता है जो अनंत मान ले सकता है,[3] या निर्देशित सेट द्वारा पैरामीट्रिज्ड कुछ कार्यों के लिए।[4]


परिभाषा

एक सदिश स्थान दिया गया है फील्ड एक्सटेंशन पर जटिल संख्याओं का एक मानदंड चालू एक वास्तविक मूल्यवान कार्य है निम्नलिखित गुणों के साथ, कहाँ एक अदिश के सामान्य निरपेक्ष मान को दर्शाता है :[5]

  1. उप-योगात्मक कार्य / त्रिभुज असमानता: सबके लिए
  2. सजातीय कार्य : सबके लिए और सभी स्केलर्स
  3. सकारात्मक निश्चितता /Point-separating: सबके लिए यदि तब
    • क्योंकि गुण (2.) का तात्पर्य है कुछ लेखक गुण (3.) को समतुल्य स्थिति से प्रतिस्थापित करते हैं: प्रत्येक के लिए अगर और केवल अगर

एक सेमिनार चालू एक कार्य है जिसमें गुण हैं (1.) और (2.)[6] ताकि विशेष रूप से, प्रत्येक मानदंड भी एक सेमिनोर्म (और इस प्रकार एक सबलाइनियर कार्यात्मक) भी हो। हालाँकि, ऐसे सेमिनोर्म मौजूद हैं जो मानदंड नहीं हैं। गुण (1.) और (2.) का अर्थ है कि यदि एक मानक (या अधिक आम तौर पर, एक सेमिनोर्म) है और कि निम्नलिखित संपत्ति भी है:

  1. नकारात्मक|गैर-नकारात्मकता: सबके लिए </ली>

कुछ लेखकों ने मानक की परिभाषा के भाग के रूप में गैर-नकारात्मकता को शामिल किया है, हालांकि यह आवश्यक नहीं है।

समतुल्य मानदंड

लगता है कि और सदिश स्थान पर दो मानदंड (या सेमिनोर्म) हैं फिर और समतुल्य कहलाते हैं, यदि दो सकारात्मक वास्तविक स्थिरांक मौजूद हों और साथ ऐसा है कि हर वेक्टर के लिए

रिश्ता के बराबर है स्वतुल्य संबंध है, सममित संबंध ( तात्पर्य ), और सकर्मक संबंध और इस प्रकार सभी मानदंडों के सेट पर एक समानता संबंध को परिभाषित करता है मानदंड और समतुल्य हैं यदि और केवल यदि वे समान टोपोलॉजी को प्रेरित करते हैं [7] परिमित-आयामी स्थान पर कोई भी दो मानदंड समतुल्य हैं लेकिन यह अनंत-आयामी स्थानों तक विस्तृत नहीं है।[7]


अंकन

यदि एक मानदंड एक सदिश स्थान पर दिया गया है फिर एक वेक्टर का मानदंड आमतौर पर इसे डबल वर्टिकल लाइनों के भीतर संलग्न करके दर्शाया जाता है: इस तरह के अंकन का उपयोग कभी-कभी किया जाता है केवल एक सेमिनोर्म है। यूक्लिडियन अंतरिक्ष में एक वेक्टर की लंबाई के लिए (जो एक आदर्श का एक उदाहरण है, #यूक्लिडियन मानदंड के रूप में), अंकन एकल लंबवत रेखाओं के साथ भी व्यापक है।

उदाहरण

प्रत्येक (वास्तविक या जटिल) सदिश स्थान एक नियम को स्वीकार करता है: यदि सदिश समष्टि के लिए हामेल आधार है फिर वास्तविक-मूल्यवान मानचित्र जो भेजता है (जहां सभी लेकिन निश्चित रूप से कई स्केलर हैं हैं ) को पर एक आदर्श है [8] बड़ी संख्या में मानदंड भी हैं जो अतिरिक्त गुण प्रदर्शित करते हैं जो उन्हें विशिष्ट समस्याओं के लिए उपयोगी बनाते हैं।

निरपेक्ष-मूल्य मानदंड

निरपेक्ष मूल्य

आयाम (वेक्टर स्पेस) पर एक मानदंड है | वास्तविक संख्या या जटिल संख्याओं द्वारा गठित एक-आयामी वेक्टर रिक्त स्थान।

कोई मानदंड एक आयामी वेक्टर अंतरिक्ष पर निरपेक्ष मान मानदंड के समतुल्य (स्केलिंग तक) है, जिसका अर्थ है कि वेक्टर रिक्त स्थान का एक मानक-संरक्षण समरूपता है कहां भी है या और मानदंड-संरक्षण का अर्थ है यह समरूपता भेजकर दी जाती है मानक के एक वेक्टर के लिए जो अस्तित्व में है क्योंकि इस तरह के एक वेक्टर को किसी गैर-शून्य वेक्टर को उसके मानदंड के व्युत्क्रम से गुणा करके प्राप्त किया जाता है।

यूक्लिडियन मानदंड

पर -आयामी यूक्लिडियन अंतरिक्ष वेक्टर की लंबाई की सहज धारणा सूत्र द्वारा ग्रहण किया गया है[9]

यह यूक्लिडियन मानदंड है, जो पाइथागोरस प्रमेय का एक परिणाम - मूल से बिंदु X तक सामान्य दूरी देता है। इस ऑपरेशन को SRSS के रूप में भी संदर्भित किया जा सकता है, जो वर्गों के योग के वर्गमूल के लिए एक संक्षिप्त नाम है।[10] यूक्लिडियन मानदंड अब तक का सबसे अधिक इस्तेमाल किया जाने वाला मानदंड है [9]लेकिन इस सदिश स्थान पर अन्य मानदंड हैं जैसा कि नीचे दिखाया जाएगा। हालाँकि, ये सभी मानदंड इस मायने में समान हैं कि ये सभी एक ही टोपोलॉजी को परिभाषित करते हैं।

यूक्लिडियन सदिश स्थान के दो सदिशों का आंतरिक उत्पाद एक ऑर्थोनॉर्मल आधार पर उनके समन्वय सदिशों का डॉट उत्पाद है। इसलिए, यूक्लिडियन मानदंड को एक समन्वय-मुक्त तरीके से लिखा जा सकता है

यूक्लिडियन मानदंड को भी कहा जाता है मानदंड,[11] मानदंड, 2-मानक, या वर्ग मानदंड; एलपी स्पेस देखें | अंतरिक्ष। यह यूक्लिडियन लंबाई नामक एक दूरी समारोह को परिभाषित करता है, दूरी, या दूरी।

में वैक्टर का सेट जिसका यूक्लिडियन मानदंड एक दिया हुआ धनात्मक स्थिरांक है जो एक n-sphere| बनाता है-वृत्त।

जटिल संख्याओं का यूक्लिडियन मानदंड

किसी सम्मिश्र संख्या का यूक्लिडियन मानदण्ड उसका निरपेक्ष मान#जटिल संख्याएँ (जिसे मापांक भी कहा जाता है) होता है, यदि जटिल तल की पहचान यूक्लिडियन विमान से की जाती है जटिल संख्या की यह पहचान यूक्लिडियन विमान में एक सदिश के रूप में, मात्रा बनाता है (जैसा कि पहले यूलर द्वारा सुझाया गया था) सम्मिश्र संख्या से जुड़ा यूक्लिडियन मानदंड।

चतुष्कोण और अष्टक

वास्तविक संख्याओं के ऊपर ठीक चार हर्विट्ज़ प्रमेय (रचना बीजगणित) हैं। ये हैं असली नंबर जटिल संख्याएँ चतुष्कोण और अंत में ऑक्टोनियन जहां वास्तविक संख्याओं पर इन रिक्त स्थानों के आयाम हैं क्रमश। विहित मानदंड और उनके पूर्ण मूल्य कार्य हैं, जैसा कि पहले चर्चा की गई थी।

विहित मानदंड पर चतुष्कोणों द्वारा परिभाषित किया गया है

हर चतुष्कोण के लिए में यह यूक्लिडियन मानदंड के समान है वेक्टर स्पेस के रूप में माना जाता है इसी तरह, ऑक्टोनियंस पर विहित मानदंड सिर्फ यूक्लिडियन मानदंड है


परिमित-आयामी जटिल मानक स्थान

एक पर -डायमेंशनल कॉम्प्लेक्स अंतरिक्ष का समन्वय करता है सबसे सामान्य मानदंड है

इस मामले में, मानदंड को वेक्टर और स्वयं के आंतरिक उत्पाद के वर्गमूल के रूप में व्यक्त किया जा सकता है:
कहां कॉलम वेक्टर के रूप में दर्शाया गया है और इसके संयुग्म संक्रमण को दर्शाता है।

यह सूत्र किसी भी आंतरिक उत्पाद स्थान के लिए मान्य है, जिसमें यूक्लिडियन और जटिल स्थान शामिल हैं। जटिल रिक्त स्थान के लिए, आंतरिक उत्पाद जटिल डॉट उत्पाद के बराबर होता है। इसलिए इस मामले में सूत्र को निम्नलिखित अंकन का उपयोग करके भी लिखा जा सकता है:


टैक्सीकैब मानदंड या मैनहट्टन मानदंड

यह नाम उस दूरी से संबंधित है जो मूल से बिंदु तक जाने के लिए एक टैक्सी को एक आयताकार स्ट्रीट ग्रिड (मैनहट्टन न्यूयॉर्क शहर बोरो की तरह) में चलानी पड़ती है। सदिशों का सेट जिसका 1-मानदंड दिया गया स्थिरांक है, मानदंड शून्य से 1 के बराबर आयाम के एक क्रॉस पॉलीटॉप की सतह बनाता है। टैक्सीकैब मानदंड को भी कहा जाता है मानदंड। इस मानदंड से प्राप्त दूरी को मैनहट्टन दूरी या कहा जाता है दूरी।

1-मानक केवल स्तंभों के निरपेक्ष मानों का योग है।

इसके विपरीत,

यह मानक नहीं है क्योंकि इसके नकारात्मक परिणाम हो सकते हैं।

पी-मानक

होने देना वास्तविक संख्या हो। वें>-नॉर्म (जिसे भी कहा जाता है -norm) वेक्टर का है[9]

के लिए हम #Taxicab मानदंड या मैनहट्टन मानदंड प्राप्त करते हैं हमें #यूक्लिडियन मानदंड मिलता है, और जैसा दृष्टिकोण -मानक समान मानदंड या #अधिकतम_मानदंड_.28विशेष_मामले का:_अनंत_मानक.2C_समान_मानक.2C_या_सुप्रीमम_मानक.29:

वें>-मानदंड सामान्यीकृत माध्य  या शक्ति माध्य से संबंधित है।

के लिए -मानदंड भी एक विहित आंतरिक उत्पाद से प्रेरित है जिसका अर्थ है कि सभी वैक्टर के लिए यह आंतरिक उत्पाद ध्रुवीकरण पहचान का उपयोग करके मानदंड के रूप में व्यक्त किया जा सकता है। पर यह आंतरिक उत्पाद हैEuclidean inner productद्वारा परिभाषित

जबकि अंतरिक्ष के लिए एक माप (गणित) के साथ संबद्ध जिसमें सभी वर्ग-अभिन्न कार्य होते हैं, यह आंतरिक उत्पाद है

यह परिभाषा अभी भी कुछ दिलचस्पी की है लेकिन परिणामी कार्य एक आदर्श को परिभाषित नहीं करता है,[12] क्योंकि यह त्रिभुज असमानता का उल्लंघन करता है। इस मामले में क्या सच है मापने योग्य एनालॉग में भी, वह संगत है क्लास एक वेक्टर स्पेस है, और यह भी सच है कि function

(के बग़ैर जड़) एक दूरी को परिभाषित करता है जो बनाता है एक पूर्ण मीट्रिक टोपोलॉजिकल वेक्टर स्पेस में। कार्यात्मक विश्लेषण , संभाव्यता सिद्धांत और हार्मोनिक विश्लेषण में ये रिक्त स्थान बहुत रुचि रखते हैं। हालांकि, तुच्छ मामलों के अलावा, यह टोपोलॉजिकल वेक्टर स्पेस स्थानीय रूप से उत्तल नहीं है, और इसका कोई निरंतर गैर-शून्य रैखिक रूप नहीं है। इस प्रकार टोपोलॉजिकल डुअल स्पेस में केवल शून्य कार्यात्मक होता है।

का आंशिक व्युत्पन्न -नॉर्म द्वारा दिया गया है

के संबंध में व्युत्पन्न इसलिए, है
कहां हैडमार्ड उत्पाद (मैट्रिसेस) को दर्शाता है और वेक्टर के प्रत्येक घटक के निरपेक्ष मान के लिए उपयोग किया जाता है।

के विशेष मामले के लिए यह बन जाता है

या


अधिकतम मानदंड (विशेष मामला: अनंत मानदंड, समान मानदंड, या सर्वोच्च मानदंड)

यदि कुछ वेक्टर ऐसा है तब:

सदिशों का समुच्चय जिसका अनंत मानदंड एक नियतांक है, किनारे की लंबाई के साथ अतिविम की सतह बनाता है


शून्य मानदंड

संभाव्यता और कार्यात्मक विश्लेषण में, शून्य मानदंड मापने योग्य कार्यों के स्थान के लिए और एफ-मानदंड के साथ अनुक्रमों के एफ-स्थान के लिए एक पूर्ण मीट्रिक टोपोलॉजी को प्रेरित करता है। [13] यहां हमारा मतलब एफ-नॉर्म से कुछ वास्तविक-मूल्यवान फ़ंक्शन है दूरी के साथ एफ-स्पेस पर ऐसा है कि ऊपर वर्णित एफ-मानदंड सामान्य अर्थों में एक आदर्श नहीं है क्योंकि इसमें आवश्यक एकरूपता गुण का अभाव है।

शून्य से वेक्टर की हैमिंग दूरी

मीट्रिक ज्यामिति में, असतत मीट्रिक अलग-अलग बिंदुओं के लिए एक मान लेता है और अन्यथा शून्य। जब सदिश स्थान के तत्वों के लिए समन्वय-वार लागू किया जाता है, तो असतत दूरी हैमिंग दूरी को परिभाषित करती है, जो कोडिंग सिद्धांत और सूचना सिद्धांत में महत्वपूर्ण है। वास्तविक या जटिल संख्याओं के क्षेत्र में, असतत मीट्रिक की शून्य से दूरी गैर-शून्य बिंदु में सजातीय नहीं है; वास्तव में, शून्य से दूरी एक बनी रहती है क्योंकि इसका गैर-शून्य तर्क शून्य तक पहुंचता है। हालांकि, शून्य से किसी संख्या की असतत दूरी मानदंड के अन्य गुणों, अर्थात् त्रिकोण असमानता और सकारात्मक निश्चितता को संतुष्ट करती है। जब सदिशों पर घटक-वार लागू किया जाता है, तो शून्य से असतत दूरी एक गैर-सजातीय मानदंड की तरह व्यवहार करती है, जो इसके सदिश तर्क में गैर-शून्य घटकों की संख्या की गणना करता है; फिर से, यह गैर-सजातीय मानदंड विच्छिन्न है।

संकेत प्रसंस्करण और सांख्यिकी में, डेविड डोनोहो ने उद्धरण चिह्नों के साथ शून्य 'मानदंड' का उल्लेख किया। डोनोहो के अंकन के बाद, का शून्य मानदंड के गैर-शून्य निर्देशांकों की संख्या है या शून्य से सदिश की हैमिंग दूरी। जब यह मानदंड एक सीमित सेट के लिए स्थानीयकृत होता है, तो इसकी सीमा होती है -मानदंड के रूप में 0 तक पहुँचता है। बेशक, शून्य मानदंड वास्तव में एक मानक नहीं है, क्योंकि यह सजातीय कार्य नहीं है # सकारात्मक समरूपता। दरअसल, यह ऊपर वर्णित अर्थ में एक एफ-मानदंड भी नहीं है, क्योंकि यह स्केलर-वेक्टर गुणन में स्केलर तर्क के संबंध में और इसके वेक्टर तर्क के संबंध में अलग-अलग, संयुक्त रूप से और अलग-अलग है। शब्दावली का दुरुपयोग , कुछ इंजीनियर[who?] डोनोहो के उद्धरण चिह्नों को छोड़ दें और अनुपयुक्त रूप से संख्या-गैर-शून्य फ़ंक्शन को कॉल करें आदर्श, मापने योग्य कार्यों के एलपी स्थान के लिए संकेतन को प्रतिध्वनित करना।

अनंत आयाम

घटकों की अनंत संख्या के लिए उपरोक्त मानदंडों का सामान्यीकरण एलपी स्पेस की ओर जाता है और रिक्त स्थान, मानदंडों के साथ

जटिल-मूल्यवान अनुक्रमों और कार्यों के लिए क्रमशः, जिसे और अधिक सामान्यीकृत किया जा सकता है (हार उपाय देखें)।

कोई भी आंतरिक उत्पाद स्वाभाविक रूप से आदर्श को प्रेरित करता है अनंत-आयामी मानक सदिश स्थानों के अन्य उदाहरण बनच अंतरिक्ष लेख में पाए जा सकते हैं।

समग्र मानदंड

अन्य मानदंड चालू उपरोक्त को मिलाकर बनाया जा सकता है; उदाहरण के लिए

पर एक आदर्श है किसी भी मानदंड और किसी भी इंजेक्शन समारोह रैखिक परिवर्तन के लिए का एक नया मानदंड परिभाषित कर सकते हैं के बराबर
2डी में, के साथ 45 डिग्री का रोटेशन और एक उपयुक्त स्केलिंग, यह टैक्सीकेब मानदंड को अधिकतम मानदंड में बदल देता है। प्रत्येक टैक्सिकैब मानदंड पर लागू, कुल्हाड़ियों के व्युत्क्रम और इंटरचेंजिंग तक, एक अलग यूनिट बॉल देता है: एक विशेष आकार, आकार और अभिविन्यास का एक समानांतर चतुर्भुज

3डी में, यह समान है लेकिन 1-नॉर्म (अष्टफलक ) और अधिकतम नॉर्म (प्रिज्म (ज्यामिति) समांतर चतुर्भुज आधार के साथ) के लिए अलग है।

ऐसे मानदंडों के उदाहरण हैं जिन्हें प्रवेशवार सूत्रों द्वारा परिभाषित नहीं किया गया है। उदाहरण के लिए, एक केंद्रीय-सममित उत्तल पिंड का मिन्कोव्स्की कार्यात्मक (शून्य पर केंद्रित) एक मानदंड को परिभाषित करता है (देखो § Classification of seminorms: absolutely convex absorbing sets नीचे)।

उपरोक्त सभी सूत्र भी मानदंड उत्पन्न करते हैं बिना संशोधन के।

मैट्रिसेस (वास्तविक या जटिल प्रविष्टियों के साथ) के रिक्त स्थान पर भी मानदंड हैं, तथाकथित मैट्रिक्स मानदंड

अमूर्त बीजगणित में

होने देना एक क्षेत्र का परिमित विस्तार हो अविभाज्य डिग्री का और जाने बीजगणितीय बंद है यदि विशिष्ट क्षेत्र समरूपता हैं फिर एक तत्व का गैलोज़-सैद्धांतिक मानदंड मूल्य है जैसा कि कार्य एक क्षेत्र विस्तार की डिग्री डिग्री का सजातीय है, गाल्वा-सैद्धांतिक मानदंड इस लेख के अर्थ में एक आदर्श नहीं है। हालांकि मानक की -थ रूट (यह मानते हुए कि अवधारणा समझ में आता है) एक आदर्श है।[14]


रचना बीजगणित

मानदंड की अवधारणा रचना में बीजगणित करता है not मानक के सामान्य गुणों को साझा करें क्योंकि यह नकारात्मक या शून्य हो सकता है एक रचना बीजगणित एक क्षेत्र पर एक बीजगणित के होते हैं एक समावेशन (गणित) और एक द्विघात रूप एक क्षेत्र विस्तार की डिग्री |आदर्श कहा जाता है।

रचना बीजगणित की विशेषता विशेषता समरूपता की संपत्ति है : उत्पाद के लिए दो तत्वों का और रचना बीजगणित की, इसका मानदंड संतुष्ट करता है के लिए और O रचना बीजगणित मानदंड ऊपर चर्चा किए गए मानदंड का वर्ग है। उन मामलों में आदर्श एक निश्चित द्विघात रूप है। अन्य रचना बीजगणित में आदर्श एक आइसोट्रोपिक द्विघात रूप है।

गुण

किसी भी मानक के लिए एक वेक्टर स्थान पर रिवर्स त्रिकोण असमानता रखती है:

यदि मानदंड रिक्त स्थान के बीच एक निरंतर रेखीय मानचित्र है, फिर का मानदंड और के स्थानांतरण का मानदंड बराबर हैं।[15] एलपी स्पेस के लिए | मानदंड, हमारे पास होल्डर की असमानता है[16]

इसका एक विशेष मामला कॉची-श्वार्ज़ असमानता है:[16]

विभिन्न मानदंडों में इकाई हलकों के उदाहरण।

प्रत्येक मानदंड एक सेमिनॉर्म है और इस प्रकार सभी सेमिनॉर्म#बीजगणितीय_गुणों को संतुष्ट करता है। बदले में, प्रत्येक सेमिनॉर्म एक उपरेखीय कार्य है और इस प्रकार सभी Sublinear_function#Properties को संतुष्ट करता है। विशेष रूप से, प्रत्येक मानदंड एक उत्तल कार्य है।

समानता

यूनिट घेरा की अवधारणा (मानक 1 के सभी वैक्टरों का सेट) अलग-अलग मानदंडों में भिन्न है: 1-मानक के लिए, इकाई चक्र एक वर्ग (ज्यामिति) है, 2-मानक (यूक्लिडियन मानदंड) के लिए, यह है प्रसिद्ध यूनिट सर्कल, जबकि इन्फिनिटी मानदंड के लिए, यह एक अलग वर्ग है। किसी के लिए -नॉर्म, यह सर्वांगसम अक्षों के साथ एक superellipse है (साथ में चित्रण देखें)। मानदंड की परिभाषा के कारण, यूनिट सर्कल को उत्तल सेट और केंद्रीय रूप से सममित होना चाहिए (इसलिए, उदाहरण के लिए, यूनिट बॉल एक आयत हो सकती है लेकिन एक त्रिकोण नहीं हो सकती है, और के लिए -आदर्श)।

सदिश स्थान के संदर्भ में, सेमिनॉर्म अंतरिक्ष पर एक टोपोलॉजी को परिभाषित करता है, और यह हॉसडॉर्फ स्पेस टोपोलॉजी है, जब सेमिनॉर्म अलग-अलग वैक्टरों के बीच अंतर कर सकता है, जो फिर से सेमिनोर्म के एक मानक के बराबर है। इस प्रकार परिभाषित टोपोलॉजी (या तो एक मानक या एक सेमिनोर्म द्वारा) अनुक्रम या खुले सेट के संदर्भ में समझा जा सकता है। वैक्टर का एक क्रम सामान्य रूप से अभिसरण के तरीकों को कहा जाता है यदि जैसा समान रूप से, टोपोलॉजी में सभी सेट होते हैं जिन्हें ओपन बॉल (गणित) के संघ के रूप में दर्शाया जा सकता है। यदि तब एक आदर्श स्थान है[17] दो मानदंड और एक वेक्टर स्थान पर कहा जाता हैequivalentयदि वे एक ही टोपोलॉजी को प्रेरित करते हैं,[7] जो तब होता है जब सकारात्मक वास्तविक संख्याएं मौजूद होती हैं और ऐसा कि सभी के लिए

उदाहरण के लिए, अगर पर तब[18]
विशेष रूप से,
वह है,

यदि सदिश स्थान एक परिमित-आयामी वास्तविक या जटिल है, तो सभी मानदंड समान हैं। दूसरी ओर, अनंत-आयामी वेक्टर रिक्त स्थान के मामले में, सभी मानक समान नहीं होते हैं।

समतुल्य मानदंड निरंतरता और अभिसरण की समान धारणाओं को परिभाषित करते हैं और कई उद्देश्यों के लिए इन्हें अलग करने की आवश्यकता नहीं है। अधिक सटीक होने के लिए सदिश स्थान पर समतुल्य मानदंडों द्वारा परिभाषित समान संरचना समान रूप से आइसोमॉर्फिक है।

सेमीनॉर्म्स का वर्गीकरण: बिल्कुल उत्तल अवशोषक सेट

सदिश स्थान पर सभी सेमीनॉर्म्स बिल्कुल उत्तल अवशोषक सेट के रूप में वर्गीकृत किया जा सकता है का ऐसे प्रत्येक उपसमुच्चय के लिए एक सेमिनॉर्म मेल खाता है का मिन्कोवस्की कार्यात्मक कहा जाता है के रूप में परिभाषित

कहां अनंत है, संपत्ति के साथ कि
इसके विपरीत:

किसी भी स्थानीय रूप से उत्तल टोपोलॉजिकल वेक्टर स्पेस में एक स्थानीय आधार होता है जिसमें बिल्कुल उत्तल सेट होते हैं। इस तरह के आधार का निर्माण करने का एक सामान्य तरीका एक परिवार का उपयोग करना है सेमिनोर्म्स का वह अलगाव स्वयंसिद्ध: सेट के सभी परिमित चौराहों का संग्रह अंतरिक्ष को स्थानीय रूप से उत्तल टोपोलॉजिकल वेक्टर स्पेस में बदल देता है ताकि प्रत्येक पी निरंतर कार्य हो।

इस तरह की विधि का उपयोग कमजोर टोपोलॉजी | कमजोर और कमजोर * टोपोलॉजी को डिजाइन करने के लिए किया जाता है।

सामान्य मामला:

मान लीजिए कि अब एक शामिल है जबसे जुदाई स्वयंसिद्ध है, एक आदर्श है, और इसकी ओपन यूनिट बॉल है। फिर 0 का बिल्कुल उत्तल घिरा सेट पड़ोस है, और निरंतर है।
विपरीत एंड्री कोलमोगोरोव के कारण है: कोई भी स्थानीय रूप से उत्तल और स्थानीय रूप से घिरा टोपोलॉजिकल वेक्टर स्थान सामान्य है। एकदम सही:
यदि 0, गेज का बिल्कुल उत्तल परिबद्ध पड़ोस है (ताकि एक आदर्श है।

यह भी देखें


संदर्भ

  1. 1.0 1.1 Knapp, A.W. (2005). बुनियादी वास्तविक विश्लेषण. Birkhäuser. p. [1]. ISBN 978-0-817-63250-2.
  2. "छद्म मानदंड - गणित का विश्वकोश". encyclopediaofmath.org. Retrieved 2022-05-12.
  3. "स्यूडोनॉर्म". www.spektrum.de (in Deutsch). Retrieved 2022-05-12.
  4. Hyers, D. H. (1939-09-01). "छद्म-मानकित रैखिक रिक्त स्थान और एबेलियन समूह". Duke Mathematical Journal. 5 (3). doi:10.1215/s0012-7094-39-00551-x. ISSN 0012-7094.
  5. Pugh, C.C. (2015). वास्तविक गणितीय विश्लेषण. Springer. p. page 28. ISBN 978-3-319-17770-0. Prugovečki, E. (1981). Quantum Mechanics in Hilbert Space. p. page 20.
  6. Rudin, W. (1991). कार्यात्मक विश्लेषण. p. 25.
  7. 7.0 7.1 7.2 Conrad, Keith. "मानदंडों की समानता" (PDF). kconrad.math.uconn.edu. Retrieved September 7, 2020.
  8. Wilansky 2013, pp. 20–21.
  9. 9.0 9.1 9.2 Weisstein, Eric W. "वेक्टर नॉर्म". mathworld.wolfram.com (in English). Retrieved 2020-08-24.
  10. Chopra, Anil (2012). संरचनाओं की गतिशीलता, चौथा संस्करण।. Prentice-Hall. ISBN 978-0-13-285803-8.
  11. Weisstein, Eric W. "आदर्श". mathworld.wolfram.com (in English). Retrieved 2020-08-24.
  12. Except in where it coincides with the Euclidean norm, and where it is trivial.
  13. Rolewicz, Stefan (1987), Functional analysis and control theory: Linear systems, Mathematics and its Applications (East European Series), vol. 29 (Translated from the Polish by Ewa Bednarczuk ed.), Dordrecht; Warsaw: D. Reidel Publishing Co.; PWN—Polish Scientific Publishers, pp. xvi, 524, doi:10.1007/978-94-015-7758-8, ISBN 90-277-2186-6, MR 0920371, OCLC 13064804
  14. Lang, Serge (2002) [1993]. बीजगणित (Revised 3rd ed.). New York: Springer Verlag. p. 284. ISBN 0-387-95385-X.
  15. Trèves 2006, pp. 242–243.
  16. 16.0 16.1 Golub, Gene; Van Loan, Charles F. (1996). मैट्रिक्स संगणना (Third ed.). Baltimore: The Johns Hopkins University Press. p. 53. ISBN 0-8018-5413-X.
  17. Narici & Beckenstein 2011, pp. 107–113.
  18. "पी-मानदंडों के बीच संबंध". Mathematics Stack Exchange.


इस पेज में लापता आंतरिक लिंक की सूची

  • समारोह (गणित)
  • असमानित त्रिकोण
  • अंदरूनी प्रोडक्ट
  • समतुल्य नक्शा
  • अंक शास्त्र
  • नॉर्म्ड वेक्टर स्पेस
  • वास्तविक मूल्यवान समारोह
  • निरपेक्ष मूल्य
  • उपरैखिक समारोह
  • गैर नकारात्मक
  • प्रतिवर्त संबंध
  • तुल्यता संबंध
  • हेमल आधार
  • आयाम (वेक्टर स्थान)
  • समाकृतिकता
  • समन्वय वेक्टर
  • ऑर्थोनॉर्मल बेसिस
  • यूक्लिडियन वेक्टर अंतरिक्ष
  • जटिल विमान
  • चार का समुदाय
  • जटिल समन्वय स्थान
  • संयुग्मी स्थानान्तरण
  • उपाय (गणित)
  • स्क्वायर-इंटीग्रेबल फ़ंक्शन
  • सिद्धांत संभावना
  • मापने योग्य समारोह
  • एफ-स्पेस
  • आंकड़े
  • एलपी स्पेस
  • उसका नाप
  • बनच स्थान
  • फील्ड समरूपता
  • रचना बीजगणित
  • एक क्षेत्र पर बीजगणित
  • इनवोल्यूशन (गणित)
  • पक्षांतरित
  • यूनिट सर्कल
  • उत्तल समारोह
  • अभिसरण के तरीके
  • गेंद (गणित)
  • सबसे कम
  • पृथक्करण स्वयंसिद्ध
  • घिरा हुआ सेट

ग्रन्थसूची


श्रेणी: कार्यात्मक विश्लेषण श्रेणी:रैखिक बीजगणित