ऊर्जा विकास

From Vigyanwiki
Revision as of 11:30, 13 June 2023 by alpha>Arnikapal
Energy development

Schematic of the global sources of energy in 2010

Total Renewables split-up by source
   Fossil
   Renewable
   Nuclear
   Hydro
   Ethanol
   Wind
   Oceanic
Source: Renewable Energy Policy Network[1]

विश्व कुल प्राथमिक ऊर्जा उत्पादन

विश्व का कुल प्राथमिक ऊर्जा उत्पादन
  Total world primary energy production (quadrillion Btu)[2]
   China
   Russia
   Africa
   United States
   Europe
   Brazil

<अवधि शैली = फ़ॉन्ट-आकार: 0.95em; >कुल (बाएं) और क्षेत्रीय वक्रों (दाएं) के लिए अलग-अलग y-अक्ष पर ध्यान दें

2011 में यूएस एनर्जी यूज/फ्लो

2011 में अनुमानित अमेरिकी ऊर्जा उपयोग/प्रवाह। ऊर्जा प्रवाह चार्ट संयुक्त राज्य अमेरिका में प्राथमिक ऊर्जा संसाधनों और अंतिम उपयोगों के सापेक्ष आकार को दिखाते हैं, जिसमें एक सामान्य ऊर्जा इकाई के आधार पर ईंधन की तुलना की जाती है।
ऊर्जा प्रवाह चार्ट संयुक्त राज्य अमेरिका में प्राथमिक ऊर्जा संसाधनों और अंतिम उपयोगों के सापेक्ष आकार को दिखाते हैं, जिसमें एक सामान्य ऊर्जा इकाई के आधार पर ईंधन की तुलना की जाती है (2011: 97.3 :en:Quad (इकाई))।[3]
Compounds and Radiant Energy
   Solar
   Nuclear
   Hydro
   Wind
   Geothermal
   Natural gas
   Coal
   Biomass
   Petroleum
Producing Electrical Currents/Utilizing Effects Transmitted
   Electricity generation
   Residential, commercial, industrial, transportation
   Rejected energy (waste heat)
   Energy services

ऊर्जा विकास प्राकृतिक संसाधनों से ऊर्जा के स्रोत प्राप्त करने पर केंद्रित गतिविधियों का क्षेत्र है। इन गतिविधियों में ऊर्जा के नवीकरणीय, परमाणु और जीवाश्म ईंधन से प्राप्त स्रोतों का उत्पादन, और ऊर्जा की वसूली और पुन: उपयोग शामिल है जो अन्यथा बर्बाद हो जाएगी। ऊर्जा संरक्षण और दक्षता उपाय ऊर्जा विकास की मांग को कम करते हैं, और पर्यावरणीय मुद्दों में सुधार के साथ समाज को लाभ पहुंचा सकते हैं।

औद्योगिक, वाणिज्यिक और घरेलू उद्देश्यों के लिए समाज परिवहन, निर्माण, रोशनी, हीटिंग और एयर कंडीशनिंग और संचार के लिए ऊर्जा का उपयोग करते हैं। ऊर्जा संसाधनों को प्राथमिक संसाधनों के रूप में वर्गीकृत किया जा सकता है, जहां संसाधन का मूल रूप में उपयोग किया जा सकता है, या द्वितीयक संसाधनों के रूप में, जहां ऊर्जा स्रोत को अधिक सुविधाजनक उपयोग योग्य रूप में परिवर्तित किया जाना चाहिए। गैर-नवीकरणीय संसाधन मानव उपयोग से काफी कम हो जाते हैं, जबकि नवीकरणीय संसाधन निरंतर प्रक्रियाओं द्वारा उत्पादित होते हैं जो अनिश्चित मानव शोषण को बनाए रख सकते हैं।

हजारों लोग ऊर्जा उद्योग में कार्यरत हैं। पारंपरिक उद्योग में पेट्रोलियम उद्योग, प्राकृतिक गैस उद्योग, विद्युत शक्ति उद्योग और परमाणु उद्योग शामिल हैं। नए ऊर्जा उद्योगों में अक्षय ऊर्जा उद्योग शामिल है, जिसमें वैकल्पिक और टिकाऊ निर्माण, वितरण और वैकल्पिक ईंधन की बिक्री शामिल है।

संसाधनों का वर्गीकरण

ओपन सिस्टम मॉडल (मूलभूत)

ऊर्जा संसाधनों को प्राथमिक संसाधनों के रूप में वर्गीकृत किया जा सकता है, जो किसी अन्य रूप या द्वितीयक संसाधनों में रूपांतरण के बिना अंतिम उपयोग के लिए उपयुक्त होते हैं, जहां ऊर्जा के उपयोग योग्य रूप को प्राथमिक स्रोत से पर्याप्त रूपांतरण की आवश्यकता होती है। प्राथमिक ऊर्जा संसाधनों के उदाहरण पवन ऊर्जा, सौर ऊर्जा, लकड़ी का ईंधन, कोयला, तेल और प्राकृतिक गैस जैसे जीवाश्म ईंधन और यूरेनियम हैं। द्वितीयक संसाधन वे हैं जैसे बिजली, हाइड्रोजन, या अन्य सिंथेटिक ईंधन।

एक अन्य महत्वपूर्ण वर्गीकरण ऊर्जा संसाधन को पुनर्जीवित करने के लिए आवश्यक समय पर आधारित है। "नवीकरणीय" संसाधन वे हैं जो मानवीय जरूरतों के हिसाब से महत्वपूर्ण समय में अपनी क्षमता को पुनः प्राप्त करते हैं। उदाहरण पनबिजली शक्ति या पवन ऊर्जा हैं, जब प्राकृतिक घटनाएं जो ऊर्जा का प्राथमिक स्रोत हैं और मानव मांगों से कम नहीं होती हैं। गैर-नवीकरणीय संसाधन वे हैं जो मानव उपयोग से काफी कम हो गए हैं और जो मानव जीवनकाल के दौरान अपनी क्षमता को महत्वपूर्ण रूप से पुनर्प्राप्त नहीं करेंगे। एक गैर-नवीकरणीय ऊर्जा स्रोत का एक उदाहरण कोयला है, जो स्वाभाविक रूप से उस दर पर नहीं बनता है जो मानव उपयोग का समर्थन करेगा।

जीवाश्म ईंधन

कैलिफोर्निया में मॉस लैंडिंग पावर प्लांट एक जीवाश्म-ईंधन बिजली स्टेशन है जो प्राकृतिक गैस बिजली संयंत्र बिजली का उत्पादन करता है

जीवाश्म ईंधन (प्राथमिक गैर-नवीकरणीय जीवाश्म) स्रोत कोयले या हाइड्रोकार्बन ईंधन को जलाते हैं, जो पौधों और जानवरों के अपघटन के अवशेष हैं। जीवाश्म ईंधन के तीन मुख्य प्रकार हैं: कोयला, पेट्रोलियम और प्राकृतिक गैस। एक अन्य जीवाश्म ईंधन, तरलीकृत पेट्रोलियम गैस (एलपीजी), मुख्य रूप से प्राकृतिक गैस के उत्पादन से प्राप्त होता है। जीवाश्म ईंधन के जलने से प्राप्त ऊष्मा का उपयोग या तो सीधे अंतरिक्ष तापन और प्रक्रिया तापन के लिए किया जाता है, या वाहनों, औद्योगिक प्रक्रियाओं, या विद्युत ऊर्जा उत्पादन के लिए यांत्रिक ऊर्जा में परिवर्तित किया जाता है। ये जीवाश्म ईंधन कार्बन चक्र का हिस्सा हैं और ईंधन में संग्रहीत सौर ऊर्जा को मुक्त करने की अनुमति देते हैं।

18वीं और 19वीं शताब्दी में जीवाश्म ईंधन के उपयोग ने औद्योगिक क्रांति के लिए मंच तैयार किया।

जीवाश्म ईंधन दुनिया के वर्तमान प्राथमिक ऊर्जा स्रोतों का बड़ा हिस्सा बनाते हैं। 2005 में, दुनिया की 81% ऊर्जा जरूरतों को जीवाश्म स्रोतों से पूरा किया गया था।[4] जीवाश्म ईंधन के उपयोग के लिए तकनीक और बुनियादी ढांचा पहले से ही मौजूद है। पेट्रोलियम से प्राप्त तरल ईंधन वजन या मात्रा के प्रति यूनिट बहुत उपयोगी ऊर्जा प्रदान करते हैं, जो बैटरी जैसे कम ऊर्जा घनत्व स्रोतों की तुलना में फायदेमंद है। जीवाश्म ईंधन वर्तमान में विकेन्द्रीकृत ऊर्जा उपयोग के लिए किफायती हैं।

ए (क्षैतिज ड्रिलिंग) टेक्सास में प्राकृतिक गैस के लिए ड्रिलिंग रिग

आयातित जीवाश्म ईंधन पर ऊर्जा निर्भरता निर्भर देशों के लिए ऊर्जा सुरक्षा जोखिम पैदा करती है।[5][6][7][8][9] विशेष रूप से तेल पर निर्भरता ने युद्ध को जन्म दिया है,[10] कट्टरपंथियों के वित्त पोषण,[11] एकाधिकार,[12] और सामाजिक-राजनीतिक अस्थिरता को जन्म दिया है।[13]

जीवाश्म ईंधन गैर-नवीकरणीय संसाधन हैं, जो अंततः उत्पादन में गिरावट आएगी [14] और समाप्त हो जाएंगे। जबकि जीवाश्म ईंधन बनाने वाली प्रक्रियाएँ चल रही हैं, ईंधन की पुनःपूर्ति की प्राकृतिक दर की तुलना में कहीं अधिक तेज़ी से खपत होती है। ईंधन निकालना लगातार महंगा होता जा रहा है क्योंकि समाज सबसे सुलभ ईंधन भंडार का उपभोग करता है।[15] जीवाश्म ईंधन के निष्कर्षण से पर्यावरणीय क्षरण होता है, जैसे कि पट्टी खनन और कोयले के लिए पहाड़ की चोटी को हटाना।

ईंधन दक्षता तापीय दक्षता का एक रूप है, जिसका अर्थ है एक ऐसी प्रक्रिया की दक्षता जो एक वाहक ईंधन में निहित रासायनिक संभावित ऊर्जा को गतिज ऊर्जा या कार्य में परिवर्तित करती है। ईंधन अर्थव्यवस्था एक विशेष वाहन की ऊर्जा दक्षता है, खपत की गई प्रति यूनिट ईंधन की यात्रा की दूरी के अनुपात के रूप में दी जाती है। वजन-विशिष्ट दक्षता (प्रति यूनिट वजन दक्षता) माल ढुलाई के लिए और यात्री-विशिष्ट दक्षता (वाहन दक्षता) प्रति यात्री बताई जा सकती है। वाहनों, इमारतों, और बिजली संयंत्रों में जीवाश्म ईंधन का अकुशल वायुमंडलीय दहन (जलना) शहरी ताप द्वीपों में योगदान देता है।[16]

तेल का पारंपरिक उत्पादन 2007 और 2010 के बीच परंपरागत रूप से चरम पर था। 2010 में, यह अनुमान लगाया गया था कि 25 वर्षों के लिए उत्पादन के मौजूदा स्तर को बनाए रखने के लिए गैर-नवीकरणीय संसाधनों में $8 ट्रिलियन के निवेश की आवश्यकता होगी।[17] 2010 में, सरकारों ने जीवाश्म ईंधन पर प्रति वर्ष अनुमानित $500 बिलियन की सब्सिडी दी थी। [18] जीवाश्म ईंधन भी ग्रीनहाउस गैस उत्सर्जन का एक स्रोत हैं, जिससे खपत कम नहीं होने पर ग्लोबल वार्मिंग के बारे में चिंता हो सकती है।

जीवाश्म ईंधन के दहन से वातावरण में प्रदूषण की रिहाई होती है। जीवाश्म ईंधन मुख्य रूप से कार्बन यौगिक हैं। दहन के दौरान, कार्बन डाईऑक्साइड और नाइट्रोजन ऑक्साइड, कालिख और अन्य महीन कण निकलते हैं। हाल के जलवायु परिवर्तन में कार्बन डाइऑक्साइड का मुख्य योगदान है।[18] जीवाश्म ईंधन पावर स्टेशन से अन्य उत्सर्जन में सल्फर डाइऑक्साइड, कार्बन मोनोआक्साइड (CO), हाइड्रोकार्बन, वाष्पशील कार्बनिक यौगिक (VOC), पारा (तत्व), आर्सेनिक, सीसा, कैडमियम और यूरेनियम के निशान सहित अन्य भारी धातुएँ शामिल हैं।[19][20]

एक विशिष्ट कोयला संयंत्र प्रति वर्ष अरबों किलोवाट घंटे विद्युत शक्ति उत्पन्न करता है।[21]


परमाणु

विखंडन

American nuclear powered ships,(top to bottom) cruisers USS Bainbridge, the USS Long Beach and the USS Enterprise, the longest ever naval vessel, and the first nuclear-powered aircraft carrier. Picture taken in 1964 during a record setting voyage of 26,540 nmi (49,190 km) around the world in 65 days without refueling. Crew members are spelling out Einstein's mass-energy equivalence formula E = mc2 on the flight deck.
The Russian nuclear-powered icebreaker NS Yamal on a joint scientific expedition with the NSF in 1994

परमाणु ऊर्जा उपयोगी गर्मी और बिजली उत्पन्न करने के लिए परमाणु विखंडन का उपयोग है। यूरेनियम का विखंडन लगभग सभी आर्थिक रूप से महत्वपूर्ण परमाणु ऊर्जा का उत्पादन करता है। रेडियोआइसोटोप थर्मोइलेक्ट्रिक जनरेटर ऊर्जा उत्पादन का एक बहुत छोटा घटक बनाते हैं, ज्यादातर विशेष अनुप्रयोगों जैसे गहरे अंतरिक्ष वाहनों में।

2012 में, नौसैनिक रिएक्टरों को छोड़कर, परमाणु ऊर्जा संयंत्रों ने दुनिया की लगभग 5.7% ऊर्जा और दुनिया की 13% बिजली प्रदान करते हैं।[22]

2013 में, IAEA की रिपोर्ट है कि 31 देशों में 437 चालू परमाणु ऊर्जा रिएक्टर चालू हैं,[23] [24] हालांकि हर रिएक्टर बिजली का उत्पादन नहीं कर रहा है।[25] इसके अलावा, लगभग 180 रिएक्टरों द्वारा संचालित लगभग 140 नौसैनिक पोत संचालन में परमाणु प्रणोदन का उपयोग कर रहे हैं।[26][27][28] 2013 तक, सूर्य जैसे प्राकृतिक संलयन शक्ति स्रोतों को छोड़कर, निरंतर परमाणु संलयन प्रतिक्रियाओं से शुद्ध ऊर्जा लाभ प्राप्त करना, अंतर्राष्ट्रीय भौतिकी और इंजीनियरिंग अनुसंधान का एक सतत क्षेत्र बना हुआ है। पहले प्रयासों के 60 से अधिक वर्षों के बाद, 2050 से पहले व्यावसायिक संलयन बिजली उत्पादन की संभावना नहीं है।[29]

परमाणु ऊर्जा पर बहस चल रही है।[30][31][32] विश्व परमाणु संघ, IAEA और परमाणु ऊर्जा के पर्यावरणविदों जैसे समर्थकों का तर्क है कि परमाणु ऊर्जा एक सुरक्षित, स्थायी ऊर्जा स्रोत है जो कार्बन उत्सर्जन को कम करता है।[33] परमाणु-विरोधी आंदोलन का तर्क है कि परमाणु ऊर्जा पर्यावरणीय रेडियोधर्मिता के लिए कई खतरे पैदा करती है।[34][35]

परमाणु ऊर्जा संयंत्र दुर्घटनाओं में चेरनोबिल आपदा (1986), फुकुशिमा दाइची परमाणु आपदा (2011), और थ्री माइल द्वीप दुर्घटना (1979) शामिल हैं।[36] कुछ परमाणु पनडुब्बी दुर्घटनाएं भी हुई हैं।[36][37][38] उत्पादित ऊर्जा की प्रति यूनिट हानि के संदर्भ में, विश्लेषण ने निर्धारित किया है कि परमाणु ऊर्जा ने ऊर्जा उत्पादन के अन्य प्रमुख स्रोतों की तुलना में उत्पन्न ऊर्जा की प्रति यूनिट कम घातकता का कारण बना है। कोयला, पेट्रोलियम, प्राकृतिक गैस और पनबिजली से ऊर्जा उत्पादन के कारण वायु प्रदूषण और ऊर्जा दुर्घटना प्रभावों के कारण उत्पन्न ऊर्जा की प्रति यूनिट बड़ी संख्या में घातक परिणाम दिए हैं।[39][40][41][42][43] हालांकि, परमाणु ऊर्जा दुर्घटनाओं की आर्थिक लागत बहुत अधिक है, और मेल्टडाउन को साफ होने में दशकों लग सकते हैं। प्रभावित आबादी और खोई हुई आजीविका की निकासी की मानवीय लागत भी महत्वपूर्ण है।[44][45]

न्यूक्लियर की अव्यक्त कैंसर से होने वाली मौतों की तुलना, जैसे कि अन्य ऊर्जा स्रोतों के साथ कैंसर से उत्पन्न ऊर्जा की प्रति यूनिट तत्काल मृत्यु (GWeyr)। इस अध्ययन में इसके "गंभीर दुर्घटना" वर्गीकरण में जीवाश्म ईंधन से संबंधित कैंसर और जीवाश्म ईंधन की खपत के उपयोग से होने वाली अन्य अप्रत्यक्ष मौतों को शामिल नहीं किया गया है, जो 5 से अधिक मौतों के साथ एक दुर्घटना होगी।

2012 तक, IAEA के अनुसार, दुनिया भर में 15 देशों में 68 असैन्य परमाणु ऊर्जा रिएक्टर निर्माणाधीन थे,[23] जिनमें से लगभग 28 पीपुल्स रिपब्लिक ऑफ चाइना (PRC) में, सबसे हालिया परमाणु ऊर्जा रिएक्टर के रूप में, मई 2013, पीआरसी में होंग्यानहे परमाणु ऊर्जा संयंत्र में 17 फरवरी, 2013 को होने वाले विद्युत ग्रिड से जुड़ा होना।[46] संयुक्त राज्य अमेरिका में, दो नए जनरेशन III रिएक्टर वोगल में निर्माणाधीन हैं। अमेरिकी परमाणु उद्योग के अधिकारियों को उम्मीद है कि 2020 तक पांच नए रिएक्टर सेवा में प्रवेश करेंगे, सभी मौजूदा संयंत्रों में।[47] 2013 में, चार वृद्ध, अप्रतिस्पर्धी, रिएक्टरों को स्थायी रूप से बंद कर दिया गया था।[48][49]

यूरेनियम के निष्कर्षण में हाल के प्रयोग बहुलक रस्सियों का उपयोग करते हैं जो एक पदार्थ के साथ लेपित होते हैं जो समुद्री जल से यूरेनियम को चुनिंदा रूप से अवशोषित करते हैं। यह प्रक्रिया ऊर्जा उत्पादन के लिए समुद्री जल में घुले यूरेनियम की काफी मात्रा को दोहन योग्य बना सकती है। चूंकि चल रही भूगर्भिक प्रक्रियाएं इस प्रक्रिया द्वारा निकाली जाने वाली मात्रा के बराबर मात्रा में यूरेनियम को समुद्र में ले जाती हैं, एक अर्थ में समुद्र से उत्पन्न यूरेनियम एक स्थायी संसाधन बन जाता है।[50][51][relevant?]

रमाणु ऊर्जा बिजली उत्पादन की एक कम कार्बन बिजली उत्पादन विधि है, इसके कुल जीवन चक्र उत्सर्जन तीव्रता पर साहित्य के विश्लेषण के साथ यह पता चलता है कि यह उत्पन्न ऊर्जा की प्रति यूनिट ग्रीनहाउस गैस (जीएचजी) उत्सर्जन की तुलना में नवीकरणीय स्रोतों के समान है।[52][53] 1970 के दशक के बाद से, परमाणु ईंधन ने लगभग 64 गीगाटन कार्बन डाइऑक्साइड समतुल्य (GtCO2-eq) ग्रीन हाउस गैसें को विस्थापित किया है, जो अन्यथा जीवाश्म-ईंधन बिजली स्टेशनों में तेल, कोयला या प्राकृतिक गैस के जलने के परिणामस्वरूप होता है।[54]


परमाणु ऊर्जा फेज-आउट और पुल-बैक

जापान की 2011 फुकुशिमा दाइची परमाणु दुर्घटना, जो 1960 के दशक में एक रिएक्टर डिजाइन में हुई थी, जनरेशन II ने कई देशों में परमाणु सुरक्षा और परमाणु ऊर्जा नीति पर पुनर्विचार को प्रेरित किया।[55] जर्मनी ने 2022 तक अपने सभी रिएक्टरों को बंद करने का फैसला किया, और इटली ने परमाणु ऊर्जा पर प्रतिबंध लगा दिया है।[55] फुकुशिमा के बाद, 2011 में अंतर्राष्ट्रीय ऊर्जा एजेंसी ने 2035 तक निर्मित होने वाली अतिरिक्त परमाणु उत्पादन क्षमता के अपने अनुमान को आधा कर दिया है।[56][57]


फुकुशिमा

2011 फुकुशिमा दाइची परमाणु आपदा के बाद - दूसरी सबसे खराब परमाणु घटना, जिसने हवा, मिट्टी और समुद्र में रेडियोधर्मी सामग्री के रिसाव के बाद 50,000 घरों को विस्थापित कर दिया,[58] और बाद में विकिरण जांच के कारण सब्जियों और मछली के कुछ शिपमेंट पर प्रतिबंध लगा दिया गया[59] - ऊर्जा स्रोतों के लिए इप्सोस (2011) द्वारा एक वैश्विक सार्वजनिक समर्थन सर्वेक्षण प्रकाशित किया गया था और परमाणु विखंडन सबसे कम लोकप्रिय पाया गया था[60]


विखंडन अर्थशास्त्र

फुकुशिमा दाइची परमाणु आपदा
फुकुशिमा के बाद परमाणु विखंडन के लिए कम वैश्विक सार्वजनिक समर्थन (इप्सोस-सर्वेक्षण, 2011)[60]

नए परमाणु ऊर्जा संयंत्रों का अर्थशास्त्र एक विवादास्पद विषय है, क्योंकि इस विषय पर अलग-अलग विचार हैं, और अरबों डॉलर का निवेश ऊर्जा स्रोत की पसंद पर निर्भर करता है। परमाणु ऊर्जा संयंत्रों में आमतौर पर संयंत्र के निर्माण के लिए उच्च पूंजीगत लागत होती है, लेकिन कम प्रत्यक्ष ईंधन लागत होती है। हाल के वर्षों में बिजली की मांग में वृद्धि में कमी आई है और वित्तपोषण अधिक कठिन हो गया है, जो बड़ी परियोजनाओं जैसे परमाणु रिएक्टरों को प्रभावित करता है, जिसमें बहुत बड़ी अग्रिम लागत और लंबी परियोजना चक्र होते हैं जो बड़े पैमाने पर जोखिम उठाते हैं।[61] पूर्वी यूरोप में, कई लंबे समय से स्थापित परियोजनाएं वित्त खोजने के लिए संघर्ष कर रही हैं, विशेष रूप से बुल्गारिया में बेलेन और रोमानिया में सर्नावोडा में अतिरिक्त रिएक्टर, और कुछ संभावित समर्थकों ने हाथ खींच लिए हैं।[61] जहां सस्ती गैस उपलब्ध है और इसकी भविष्य की आपूर्ति अपेक्षाकृत सुरक्षित है, यह भी परमाणु परियोजनाओं के लिए एक बड़ी समस्या है।[61]

परमाणु ऊर्जा के अर्थशास्त्र के विश्लेषण में यह ध्यान रखना चाहिए कि भविष्य की अनिश्चितताओं का जोखिम कौन उठाता है। तिथि करने के लिए सभी ऑपरेटिंग परमाणु ऊर्जा संयंत्र राज्य के स्वामित्व वाली या विनियमित उपयोगिता एकाधिकार द्वारा विकसित किए गए थे[62][63] जहां निर्माण लागत, परिचालन प्रदर्शन, ईंधन की कीमत और अन्य कारकों से जुड़े कई जोखिम आपूर्तिकर्ताओं के बजाय उपभोक्ताओं द्वारा वहन किए गए थे। कई देशों ने अब बिजली बाजार को उदार बना दिया है, जहां ये जोखिम, और पूंजीगत लागत से पहले उभरते सस्ते प्रतिस्पर्धियों के जोखिम को उपभोक्ताओं के बजाय संयंत्र आपूर्तिकर्ताओं और ऑपरेटरों द्वारा वहन किया जाता है, जिससे नई परमाणु ऊर्जा के अर्थशास्त्र का काफी अलग मूल्यांकन होता है।[64]


लागत

ऑन-साइट खर्च किए गए ईंधन प्रबंधन और उन्नत डिजाइन आधारित खतरों के लिए बढ़ती आवश्यकताओं के कारण, वर्तमान में संचालित और नए परमाणु ऊर्जा संयंत्रों के लिए लागत बढ़ने की संभावना है।[65] जबकि अपनी तरह के पहले डिजाइन, जैसे कि निर्माणाधीन ईपीआर शेड्यूल और ओवर-बजट से पीछे हैं, वर्तमान में दुनिया भर में निर्माणाधीन सात दक्षिण कोरियाई एपीआर-1400 में से दो दक्षिण कोरिया में हनुल परमाणु ऊर्जा संयंत्र में हैं और चार हनुल परमाणु ऊर्जा संयंत्र में हैं। 2016 तक दुनिया में सबसे बड़ा परमाणु स्टेशन निर्माण परियोजना, संयुक्त अरब अमीरात में नियोजित बराक परमाणु ऊर्जा संयंत्र में है। पहला रिएक्टर, बरकाह-1 85% पूरा हो गया है और 2017 के दौरान ग्रिड-कनेक्शन के लिए शेड्यूल पर है।[66][67] निर्माणाधीन चार ईपीआर में से दो (फिनलैंड और फ्रांस में) समय से काफी पीछे हैं और लागत से काफी अधिक हैं।[68]


नवीकरणीय स्रोत

Renewable energy capacity additions in 2020 expanded by more than 45% from 2019, including a 90% rise in global wind capacity (green) and a 23% expansion of new solar photovoltaic installations (yellow).[69]
The countries most reliant on fossil fuels for electricity vary widely on how great a percentage of that electricity is generated from renewables, leaving wide variation in renewables' growth potential.[70]

नवीकरणीय ऊर्जा को आम तौर पर ऊर्जा के रूप में परिभाषित किया जाता है जो संसाधनों से आती है जो प्राकृतिक रूप से सूर्य के प्रकाश, हवा, बारिश, ज्वार, लहरों और भू-तापीय गर्मी जैसे मानव समय के पैमाने पर भर जाती हैं।[71] अक्षय ऊर्जा चार अलग-अलग क्षेत्रों में पारंपरिक ईंधन की जगह लेती है: बिजली उत्पादन, गर्म पानी/स्पेस हीटिंग, मोटर ईंधन, और ग्रामीण (ऑफ-ग्रिड) ऊर्जा सेवाएं। [72]

वैश्विक अंतिम ऊर्जा खपत का लगभग 16% वर्तमान में नवीकरणीय संसाधनों [विरोधाभासी] से आता है,[contradictory] [73] पारंपरिक बायोमास से सभी ऊर्जा का 10% मुख्य रूप से हीटिंग के लिए उपयोग किया जाता है, और पनबिजली से 3.4%। नए नवीनीकरण (लघु पनबिजली, आधुनिक बायोमास, पवन, सौर, भू-तापीय, और जैव ईंधन) अन्य 3% के लिए जिम्मेदार हैं और तेजी से बढ़ रहे हैं।[74] राष्ट्रीय स्तर पर, दुनिया भर में कम से कम 30 देशों में पहले से ही नवीकरणीय ऊर्जा का योगदान 20% से अधिक ऊर्जा आपूर्ति में है। आने वाले दशक और उसके बाद भी राष्ट्रीय नवीकरणीय ऊर्जा बाजारों के मजबूती से बढ़ने का अनुमान है।[75] उदाहरण के लिए, पवन ऊर्जा, 2012 के अंत में 282,482 मेगावाट (मेगावाट) की विश्वव्यापी स्थापित क्षमता के साथ सालाना 30% की दर से बढ़ रही है।

नवीकरणीय ऊर्जा संसाधन अन्य ऊर्जा स्रोतों के विपरीत व्यापक भौगोलिक क्षेत्रों में मौजूद हैं, जो सीमित संख्या में देशों में केंद्रित हैं। नवीकरणीय ऊर्जा और ऊर्जा दक्षता की तीव्र तैनाती के परिणामस्वरूप महत्वपूर्ण ऊर्जा सुरक्षा और नवीकरणीय प्रौद्योगिकी, जलवायु परिवर्तन शमन और आर्थिक लाभ होते हैं।[76] अंतर्राष्ट्रीय जनमत सर्वेक्षणों में सौर ऊर्जा और पवन ऊर्जा जैसे नवीकरणीय स्रोतों को बढ़ावा देने के लिए मजबूत समर्थन है।[77]

जबकि कई नवीकरणीय ऊर्जा परियोजनाएं बड़े पैमाने पर हैं, नवीकरणीय प्रौद्योगिकियां ग्रामीण और दूरस्थ क्षेत्रों और विकासशील देशों के लिए भी अनुकूल हैं जहां मानव विकास में ऊर्जा अक्सर महत्वपूर्ण होती है।[78] संयुक्त राष्ट्र के महासचिव बान की मून ने कहा है कि अक्षय ऊर्जा में सबसे गरीब देशों को समृद्धि के नए स्तर तक उठाने की क्षमता है।[79]


जलविद्युत

दुनिया का सबसे बड़ा हाइड्रोइलेक्ट्रिक पावर स्टेशन

जलविद्युत जलविद्युत द्वारा उत्पन्न विद्युत शक्ति है; पानी गिरने या बहने का बल। 2015 में जलविद्युत ने दुनिया की कुल बिजली का 16.6% और सभी नवीकरणीय बिजली का 70% उत्पन्न किया [80][page needed] और अगले 25 वर्षों के लिए प्रत्येक वर्ष लगभग 3.1% बढ़ने की उम्मीद थी।

जलविद्युत का उत्पादन 150 देशों में होता है, एशिया-प्रशांत क्षेत्र में 2010 में वैश्विक जलविद्युत का 32 प्रतिशत उत्पादन होता है। चीन 2010 में 721 टेरावाट घंटे के उत्पादन के साथ सबसे बड़ा जलविद्युत उत्पादक है, जो घरेलू बिजली के उपयोग के लगभग 17 प्रतिशत का प्रतिनिधित्व करता है। अब 10 GW से बड़े तीन पनबिजली संयंत्र हैं: चीन में थ्री गोरजेस डैम, ब्राज़ील/पराग्वे सीमा पर इटाइपु डैम, और वेनेजुएला में गुरी डैम[81]

पनबिजली की लागत अपेक्षाकृत कम है, जो इसे नवीकरणीय बिजली का प्रतिस्पर्धी स्रोत बनाती है। 10 मेगावाट से बड़े हाइड्रो प्लांट से बिजली की औसत लागत 3 से 5 यू.एस. सेंट प्रति किलोवाट-घंटा है।[81] हाइड्रो भी बिजली का एक लचीला स्रोत है क्योंकि बदलती ऊर्जा मांगों के अनुकूल होने के लिए पौधों को बहुत तेज़ी से ऊपर और नीचे किया जा सकता है। हालांकि, बांध बनाने से नदियों का प्रवाह बाधित होता है और स्थानीय पारिस्थितिक तंत्र को नुकसान पहुंच सकता है, और बड़े बांधों और जलाशयों के निर्माण में अक्सर लोगों और वन्यजीवों को विस्थापित करना शामिल होता है। [81] एक बार जलविद्युत परिसर का निर्माण हो जाने के बाद, परियोजना कोई प्रत्यक्ष अपशिष्ट पैदा नहीं करती है, और जीवाश्म ईंधन संचालित ऊर्जा संयंत्रों की तुलना में ग्रीनहाउस गैस कार्बन डाइऑक्साइड का उत्पादन स्तर काफी कम होता है।[82]


हवा

Burbo Bank Offshore Wind Farm in Northwest England
Global growth of wind power capacity

पवन ऊर्जा पवन टर्बाइनों के ब्लेड को आगे बढ़ाने के लिए पवन की शक्ति का उपयोग करती है। ये टर्बाइन चुम्बकों के घूमने का कारण बनते हैं, जिससे बिजली पैदा होती है। पवन टॉवर आमतौर पर पवन फार्मों पर एक साथ बनाए जाते हैं। अपतटीय और तटवर्ती पवन फार्म हैं। वैश्विक पवन ऊर्जा क्षमता जून 2014 में तेजी से 336 गीगावाट तक विस्तार हुआ है, और पवन ऊर्जा उत्पादन दुनिया भर में बिजली के कुल उपयोग का लगभग 4% था, और तेजी से बढ़ रहा है।[83]

यूरोप, एशिया और संयुक्त राज्य अमेरिका में पवन ऊर्जा का व्यापक रूप से उपयोग किया जाता है।[84] कई देशों ने पवन ऊर्जा प्रवेश के अपेक्षाकृत उच्च स्तर हासिल किए हैं, जैसे डेनमार्क में स्थिर बिजली उत्पादन का 21%,[85] पुर्तगाल में पवन ऊर्जा में 18%,[85]स्पेन में पवन ऊर्जा में 16%,[85]आयरलैंड में पवन ऊर्जा में 14%,[86] और 2010 में जर्मनी में पवन ऊर्जा में 9%।[85][87]: 11  2011 तक, जर्मनी और स्पेन में 50% से अधिक बिजली हवा और सौर ऊर्जा से आती थी। [88][89] 2011 तक, दुनिया भर के 83 देश व्यावसायिक आधार पर पवन ऊर्जा का उपयोग कर रहे हैं।[87]: 11 

दुनिया के कई सबसे बड़े तटवर्ती पवन फार्म संयुक्त राज्य अमेरिका, चीन और भारत में स्थित हैं। दुनिया के सबसे बड़े अपतटीय पवन फार्म डेनमार्क, जर्मनी और यूनाइटेड किंगडम में स्थित हैं। दो सबसे बड़े अपतटीय पवन फार्म वर्तमान में 630 मेगावाट लंदन ऐरे और ग्विन्ट वाई मोर हैं।

Large onshore wind farms
Wind farm Current
capacity
(MW)
Country Notes
Alta (Oak Creek-Mojave) 1,320  USA [90]
Jaisalmer Wind Park 1,064  India [91]
Roscoe Wind Farm 781  USA [92]
Horse Hollow Wind Energy Center 735  USA [93][94]
Capricorn Ridge Wind Farm 662  USA [93][94]
Fântânele-Cogealac Wind Farm 600  Romania [95]
Fowler Ridge Wind Farm 599  USA [96]


सौर

Page 'Solar Energy' not found

जैव ईंधन

A bus fueled by biodiesel
Information on pump regarding ethanol fuel blend up to 10%, California

एक जैव ईंधन एक ईंधन है जिसमें भूगर्भीय रूप से हाल ही में कार्बन निर्धारण से ऊर्जा होती है। ये ईंधन जीवित जीवों से उत्पन्न होते हैं। इस कार्बन निर्धारण के उदाहरण पौधों और सूक्ष्म शैवाल में पाए जाते हैं। ये ईंधन एक बायोमास रूपांतरण द्वारा बनाए जाते हैं (बायोमास हाल ही में जीवित जीवों को संदर्भित करता है, जो अक्सर पौधों या पौधों से प्राप्त सामग्री का जिक्र करते हैं)। इस बायोमास को सुविधाजनक ऊर्जा युक्त पदार्थों में तीन अलग-अलग तरीकों से परिवर्तित किया जा सकता है: थर्मल रूपांतरण, रासायनिक रूपांतरण और जैव रासायनिक रूपांतरण। इस बायोमास रूपांतरण के परिणामस्वरूप ईंधन ठोस, तरल या गैस के रूप में हो सकता है। इस नए बायोमास का उपयोग जैव ईंधन के लिए किया जा सकता है। तेल की बढ़ती कीमतों और ऊर्जा सुरक्षा की आवश्यकता के कारण जैव ईंधन की लोकप्रियता में वृद्धि हुई है।

बायोएथेनॉल किण्वन द्वारा बनाई गई शराब है, जो ज्यादातर चीनी या स्टार्च फसलों जैसे मकई या गन्ना में उत्पादित कार्बोहाइड्रेट से होती है। पेड़ों और घास जैसे गैर-खाद्य स्रोतों से प्राप्त सेल्यूलोज को भी इथेनॉल उत्पादन के लिए फीडस्टॉक के रूप में विकसित किया जा रहा है। इथेनॉल को अपने शुद्ध रूप में वाहनों के लिए ईंधन के रूप में इस्तेमाल किया जा सकता है, लेकिन आमतौर पर इसे ऑक्टेन बढ़ाने और वाहन उत्सर्जन में सुधार करने के लिए गैसोलीन योजक के रूप में उपयोग किया जाता है। संयुक्त राज्य अमेरिका और ब्राजील बायोएथेनॉल का व्यापक रूप से उपयोग किया जाता है। वर्तमान संयंत्र डिजाइन संयंत्र के कच्चे माल के लिग्निन हिस्से को किण्वन द्वारा ईंधन घटकों में परिवर्तित करने के लिए प्रदान नहीं करता है।

बायोडीजल वनस्पति तेलों और पशु वसा से बनाया जाता है। बायोडीजल का उपयोग अपने शुद्ध रूप में वाहनों के लिए ईंधन के रूप में किया जा सकता है, लेकिन आमतौर पर इसका उपयोग डीजल चालित वाहनों से कण, कार्बन मोनोऑक्साइड और हाइड्रोकार्बन के स्तर को कम करने के लिए डीजल ईंधन के रूप में इसका उपयोग किया जाता है। बायोडीजल तेल या वसा से ट्रांसएस्टरीफिकेशन का उपयोग करके उत्पादित किया जाता है और यह यूरोप में सबसे आम जैव ईंधन है। हालांकि, डीकार्बाक्सिलेशन से नवीकरणीय ईंधन के उत्पादन पर अनुसंधान चल रहा है[97]

2010 में, दुनिया भर में जैव ईंधन का उत्पादन 105 बिलियन लीटर (28 बिलियन गैलन यूएस) तक पहुंच गया, जो 2009 से 17% अधिक था,[98] और जैव ईंधन सड़क परिवहन के लिए दुनिया के ईंधन का 2.7% प्रदान किया हैं, यह योगदान मुख्य रूप से इथेनॉल और बायोडीजल से बना है।[citation needed] वैश्विक इथेनॉल ईंधन उत्पादन 2010 में 86 बिलियन लीटर तक पहुंच गया है, संयुक्त राज्य अमेरिका और ब्राजील दुनिया के शीर्ष उत्पादकों के रूप में, वैश्विक उत्पादन का 90% हिस्सा है। दुनिया का सबसे बड़ा बायोडीजल उत्पादक यूरोपीय संघ है, जो 2010 में सभी बायोडीजल उत्पादन का 53% हिस्सा था।[98] 2011 तक, राष्ट्रीय स्तर पर 31 देशों में और 29 राज्यों या प्रांतों में जैव ईंधन के सम्मिश्रण के लिए जनादेश मौजूद है। [87]: 13–14  पेट्रोलियम और कोयले पर निर्भरता को कम करने के लिए अंतर्राष्ट्रीय ऊर्जा एजेंसी का 2050 तक परिवहन ईंधन की दुनिया की एक चौथाई से अधिक मांग को पूरा करने के लिए जैव ईंधन का लक्ष्य है।[99]


भूतापीय

आइसलैंड में नेस्जावेलिर जियोथर्मल पावर स्टेशन से भाप उठ रही है

भूतापीय ऊर्जा तापीय ऊर्जा है जो पृथ्वी में उत्पन्न और संग्रहीत होती है। ऊष्मीय ऊर्जा वह ऊर्जा है जो पदार्थ के तापमान को निर्धारित करती है। पृथ्वी की पपड़ी की भूतापीय ऊर्जा ग्रह के मूल गठन (20%) और खनिजों के रेडियोधर्मी क्षय (80%) से उत्पन्न होती है।[100] भूतापीय ढाल, जो कि ग्रह के कोर और इसकी सतह के बीच तापमान में अंतर है, कोर से सतह तक गर्मी के रूप में तापीय ऊर्जा का निरंतर संचालन करता है। विशेषण भू-तापीय ग्रीक जड़ों γη (ge), जिसका अर्थ है पृथ्वी, और θερμος (थर्मस), जिसका अर्थ गर्म है, से उत्पन्न हुआ है।

पृथ्वी की आंतरिक गर्मी रेडियोधर्मी क्षय से उत्पन्न तापीय ऊर्जा है और पृथ्वी के गठन से लगातार ऊष्मा हानि होती है। कोर मेंटल सीमा पर तापमान 4000 डिग्री सेल्सियस (7,200 डिग्री फारेनहाइट) से अधिक तक पहुंच सकता है।[101] पृथ्वी के आंतरिक भाग में उच्च तापमान और दबाव के कारण कुछ चट्टानें पिघल जाती हैं और ठोस मेंटल प्लास्टिक की तरह व्यवहार करता है, जिसके परिणामस्वरूप मेंटल का हिस्सा ऊपर की ओर संवहन करता है क्योंकि यह आसपास की चट्टान से हल्का होता है। चट्टान और पानी को क्रस्ट में गर्म किया जाता है, कभी-कभी 370 °C (700 °F) तक।[102]

गर्म झरनों से, भू-तापीय ऊर्जा का उपयोग पुरापाषाण काल ​​से स्नान के लिए और प्राचीन रोमन काल से अंतरिक्ष तापन के लिए किया जाता रहा है, लेकिन यह अब बिजली उत्पादन के लिए बेहतर जाना जाता है। दुनिया भर में, 2012 में 24 देशों में 11,400 मेगावाट (मेगावाट) भू-तापीय ऊर्जा ऑनलाइन है।[103] 2010 में डिस्ट्रिक्ट हीटिंग, स्पेस हीटिंग, स्पा, औद्योगिक प्रक्रियाओं, विलवणीकरण और कृषि अनुप्रयोगों के लिए अतिरिक्त 28 गीगावाट प्रत्यक्ष भू-तापीय ताप क्षमता स्थापित की गई है।[104]

भूतापीय ऊर्जा लागत प्रभावी, विश्वसनीय, टिकाऊ और पर्यावरण के अनुकूल है,[105] लेकिन ऐतिहासिक रूप से टेक्टोनिक प्लेट सीमाओं के पास के क्षेत्रों तक सीमित रही है। हाल के तकनीकी विकास ने व्यवहार्य संसाधनों की सीमा और आकार में नाटकीय रूप से विस्तार किया है, विशेष रूप से घरेलू हीटिंग जैसे अनुप्रयोगों के लिए, व्यापक शोषण की संभावना खोली है। भू-तापीय कुएँ पृथ्वी के भीतर गहरे फंसे ग्रीनहाउस गैसों को छोड़ते हैं, लेकिन ये उत्सर्जन जीवाश्म ईंधन की तुलना में प्रति ऊर्जा इकाई बहुत कम हैं। परिणामस्वरूप, यदि जीवाश्म ईंधन के स्थान पर व्यापक रूप से उपयोग किया जाए तो भू-तापीय ऊर्जा में ग्लोबल वार्मिंग को कम करने में मदद करने की क्षमता है।

पृथ्वी के भू-तापीय संसाधन सैद्धांतिक रूप से मानवता की ऊर्जा जरूरतों को पूरा करने के लिए पर्याप्त से अधिक हैं, लेकिन केवल एक बहुत छोटा अंश ही लाभप्रद रूप से उपयोग किया जा सकता है। गहरे संसाधनों के लिए ड्रिलिंग और अन्वेषण बहुत महंगा है। भूतापीय ऊर्जा के भविष्य के लिए पूर्वानुमान प्रौद्योगिकी, ऊर्जा की कीमतों, सब्सिडी और ब्याज दरों के बारे में मान्यताओं पर निर्भर करते हैं। EWEB के ग्राहक ऑप्ट इन ग्रीन पावर प्रोग्राम [106] जैसे पायलट कार्यक्रम दिखाते हैं कि ग्राहक भू-तापीय जैसे नवीकरणीय ऊर्जा स्रोत के लिए थोड़ा अधिक भुगतान करने को तैयार होंगे। लेकिन सरकारी सहायता प्राप्त अनुसंधान और उद्योग के अनुभव के परिणामस्वरूप, पिछले दो दशकों में भू-तापीय ऊर्जा पैदा करने की लागत में 25% की कमी आई है।[107] 2001 में, भू-तापीय ऊर्जा लागत दो से दस अमेरिकी सेंट प्रति kWh के बीच थी।[108]


महासागरीय

समुद्री ऊर्जा या समुद्री शक्ति (जिसे कभी-कभी महासागर ऊर्जा, महासागर शक्ति, या समुद्री और हाइड्रोकिनेटिक ऊर्जा के रूप में भी जाना जाता है) समुद्र की लहरों, ज्वार, लवणता और समुद्र के तापमान के अंतर से होने वाली ऊर्जा को संदर्भित करता है। दुनिया के महासागरों में पानी की गति गतिज ऊर्जा, या गति में ऊर्जा का एक विशाल भंडार बनाती है। बिजली घरों, परिवहन और उद्योगों को बिजली पैदा करने के लिए इस ऊर्जा का उपयोग किया जा सकता है।

समुद्री ऊर्जा शब्द में तरंग शक्ति अर्थात सतही तरंगों से शक्ति, और ज्वारीय शक्ति अर्थात गतिमान जल के बड़े पिंडों की गतिज ऊर्जा से प्राप्त दोनों शामिल हैं। अपतटीय पवन ऊर्जा समुद्री ऊर्जा का एक रूप नहीं है, क्योंकि पवन ऊर्जा पवन से प्राप्त होती है, भले ही पवन टर्बाइनों को पानी के ऊपर रखा गया हो। महासागरों में भारी मात्रा में ऊर्जा होती है और यदि अधिकांश केंद्रित आबादी नहीं तो बहुत से लोगों के करीब हैं। महासागर ऊर्जा में दुनिया भर में पर्याप्त मात्रा में नई नवीकरणीय ऊर्जा प्रदान करने की क्षमता है।

100% नवीकरणीय ऊर्जा

बिजली, परिवहन, या विश्व स्तर पर कुल प्राथमिक ऊर्जा आपूर्ति के लिए 100% नवीकरणीय ऊर्जा का उपयोग करने का प्रोत्साहन ग्लोबल वार्मिंग और अन्य पारिस्थितिक के साथ-साथ आर्थिक चिंताओं से प्रेरित है। नवीकरणीय ऊर्जा का उपयोग किसी भी अनुमान से कहीं अधिक तेजी से बढ़ा है।[109] जलवायु परिवर्तन पर अंतर सरकारी पैनल ने कहा है कि कुल वैश्विक ऊर्जा मांग को पूरा करने के लिए नवीकरणीय ऊर्जा प्रौद्योगिकियों के एक पोर्टफोलियो को एकीकृत करने के लिए कुछ मूलभूत तकनीकी सीमाएं हैं।[110] राष्ट्रीय स्तर पर, दुनिया भर में कम से कम 30 देशों में पहले से ही नवीकरणीय ऊर्जा का योगदान 20% से अधिक ऊर्जा आपूर्ति में है। इसके अलावा, स्टीफन डब्लू. पैकाला और रॉबर्ट एच. सोकोलो ने "स्थिरीकरण वेजेज" की एक श्रृंखला विकसित की है जो हमें भयावह जलवायु परिवर्तन से बचने के दौरान हमारे जीवन की गुणवत्ता को बनाए रखने की अनुमति दे सकती है, और "नवीकरणीय ऊर्जा स्रोत," कुल मिलाकर, सबसे बड़ी संख्या का गठन करते हैं।[111]

मार्क जेड जैकबसन का कहना है कि 2030 तक पवन ऊर्जा, सौर ऊर्जा और जल विद्युत के साथ सभी नई ऊर्जा का उत्पादन संभव है और मौजूदा ऊर्जा आपूर्ति व्यवस्था को 2050 तक बदला जा सकता है। नवीकरणीय ऊर्जा योजना को लागू करने में बाधाओं को "मुख्य रूप से सामाजिक और राजनीतिक, तकनीकी या आर्थिक नहीं"। जैकबसन का कहना है कि पवन, सौर, जल प्रणाली के साथ ऊर्जा की लागत आज की ऊर्जा लागत के समान होनी चाहिए।[112]

इसी तरह, संयुक्त राज्य अमेरिका में, स्वतंत्र राष्ट्रीय अनुसंधान परिषद ने नोट किया है कि "भविष्य में बिजली उत्पादन में महत्वपूर्ण भूमिका निभाने के लिए नवीकरणीय बिजली की अनुमति देने के लिए पर्याप्त घरेलू नवीकरणीय संसाधन मौजूद हैं और इस प्रकार जलवायु परिवर्तन, ऊर्जा सुरक्षा और वृद्धि से संबंधित मुद्दों का सामना करने में मदद मिलती है।" ऊर्जा लागत का ... नवीकरणीय ऊर्जा एक आकर्षक विकल्प है क्योंकि संयुक्त राज्य अमेरिका में उपलब्ध नवीकरणीय संसाधन, सामूहिक रूप से, कुल वर्तमान या अनुमानित घरेलू मांग की तुलना में काफी बड़ी मात्रा में बिजली की आपूर्ति कर सकते हैं।"[113]

"100% नवीकरणीय ऊर्जा" दृष्टिकोण के आलोचकों में वैक्लेव स्माइल और जेम्स ई. हैनसेन शामिल हैं। स्माइल और हैनसेन सौर और पवन ऊर्जा के परिवर्तनशील उत्पादन के बारे में चिंतित हैं, लेकिन एमोरी लोविन्स का तर्क है कि बिजली ग्रिड सामना कर सकता है, ठीक उसी तरह जैसे यह नियमित रूप से काम नहीं कर रहे कोयले से चलने वाले और काम कर रहे परमाणु संयंत्रों का समर्थन करता है।[114]

Google ने अक्षय ऊर्जा विकसित करने और भयावह जलवायु परिवर्तन को रोकने के लिए अपनी "अक्षय ऊर्जा कोयले से सस्ती" परियोजना पर $30 मिलियन खर्च किए। परियोजना को यह निष्कर्ष निकालने के बाद रद्द कर दिया गया था कि अक्षय ऊर्जा में तेजी से प्रगति के लिए सबसे अच्छा परिदृश्य 2050 के लिए जीवाश्म ईंधन अनुमानों से 55 प्रतिशत कम उत्सर्जन का परिणाम हो सकता है।[115]


बढ़ी हुई ऊर्जा दक्षता

एक सर्पिल-प्रकार का एकीकृत कॉम्पैक्ट फ्लोरोसेंट लैंप, जो 1990 के दशक के मध्य में अपनी शुरुआत के बाद से उत्तरी अमेरिकी उपभोक्ताओं के बीच लोकप्रिय रहा है[116]

यद्यपि ऊर्जा के उपयोग की दक्षता में वृद्धि करना अपने आप में ऊर्जा विकास नहीं है, इसे ऊर्जा विकास के विषय के अंतर्गत माना जा सकता है क्योंकि यह कार्य करने के लिए मौजूदा ऊर्जा स्रोतों को उपलब्ध कराता है।[117]: 22 

कुशल ऊर्जा उपयोग उत्पादों और सेवाओं को प्रदान करने के लिए आवश्यक ऊर्जा की मात्रा को कम करता है। उदाहरण के लिए, बिल्डिंग इन्सुलेशन एक इमारत को आरामदायक तापमान बनाए रखने के लिए कम ताप और शीतलन ऊर्जा का उपयोग करने की अनुमति मिलती है। फ्लोरोसेंट लैंप या प्राकृतिक रोशनदान स्थापित करने से गरमागरम प्रकाश बल्बों की तुलना में रोशनी के लिए आवश्यक ऊर्जा की मात्रा कम हो जाती है। कॉम्पैक्ट फ्लोरोसेंट रोशनी दो-तिहाई कम ऊर्जा का उपयोग करती हैं और गरमागरम रोशनी की तुलना में 6 से 10 गुना अधिक समय तक चल सकती हैं। कुशल प्रौद्योगिकी या उत्पादन प्रक्रिया को अपनाकर ऊर्जा दक्षता में सुधार अक्सर प्राप्त किया जाता है।[118]

ऊर्जा उपयोग को कम करने से उपभोक्ताओं के पैसे की बचत हो सकती है, यदि ऊर्जा बचत ऊर्जा कुशल प्रौद्योगिकी की लागत को ऑफसेट करती है। ऊर्जा का उपयोग कम करने से उत्सर्जन कम होता है। अंतर्राष्ट्रीय ऊर्जा एजेंसी के अनुसार, इमारतों, औद्योगिक प्रक्रियाओं और और परिवहन में बेहतर ऊर्जा दक्षता 2050 में वैश्विक ऊर्जा मांग को आज की तुलना में लगभग 8% कम कर सकती है, लेकिन दोगुने से अधिक बड़ी अर्थव्यवस्था और लगभग 2 बिलियन से अधिक की आबादी की सेवा कर सकती है।[119]

ऊर्जा दक्षता और नवीकरणीय ऊर्जा को सतत ऊर्जा नीति के जुड़वां स्तंभ कहा जाता है।[120] कई देशों में ऊर्जा दक्षता को राष्ट्रीय सुरक्षा लाभ के रूप में भी देखा जाता है क्योंकि इसका उपयोग विदेशों से ऊर्जा आयात के स्तर को कम करने के लिए किया जा सकता है और घरेलू ऊर्जा संसाधनों की कमी की दर को धीमा कर सकता है।

यह पता चला है कि "ओईसीडी देशों के लिए, उत्पादन में ऊर्जा स्रोतों के बीच पवन, भू-तापीय, जल और परमाणु की जोखिम दर सबसे कम है।"[121]


ट्रांसमिशन

ट्रांस-अलास्का पाइपलाइन सिस्टम का एक ऊंचा खंड

जबकि ऊर्जा के नए स्रोत शायद ही कभी खोजे जाते हैं या नई तकनीक द्वारा संभव बनाए जाते हैं, वितरण तकनीक लगातार विकसित रहती है।[122] कारों में ईंधन कोशिकाओं का उपयोग, उदाहरण के लिए, एक प्रत्याशित वितरण तकनीक है।[123] यह खंड विभिन्न वितरण तकनीकों को प्रस्तुत करता है जो ऐतिहासिक ऊर्जा विकास के लिए महत्वपूर्ण रही हैं। वे सभी पिछले अनुभाग में सूचीबद्ध ऊर्जा स्रोतों पर निर्भर हैं।

शिपिंग और पाइपलाइन

कोयला, पेट्रोलियम और उनके डेरिवेटिव नाव, रेल या सड़क द्वारा वितरित किए जाते हैं। पेट्रोलियम और प्राकृतिक गैस भी पाइपलाइन द्वारा और कोयले को स्लरी पाइपलाइन के माध्यम से वितरित किया जा सकता है। गैसोलीन और एलपीजी जैसे ईंधन भी विमान के जरिए पहुंचाए जा सकते हैं। सही ढंग से काम करने के लिए प्राकृतिक गैस पाइपलाइनों को एक निश्चित न्यूनतम दबाव बनाए रखना चाहिए। इथेनॉल के परिवहन और भंडारण की उच्च लागत अक्सर निषेधात्मक होती है।[124]


वायर्ड ऊर्जा हस्तांतरण

विद्युत ग्रिड - तोरण और केबल बिजली वितरित करते हैं

विद्युत ग्रिड वो नेटवर्क हैं जिनका उपयोग उत्पादन स्रोत से अंतिम उपयोगकर्ता तक विद्युत संचारित और वितरित करने के लिए किया जाता है, जब दोनों सैकड़ों किलोमीटर दूर हो सकते हैं। स्रोतों में परमाणु रिएक्टर, कोयला जलाने वाले बिजली संयंत्र आदि जैसे विद्युत उत्पादन संयंत्र शामिल हैं। बिजली के निरंतर प्रवाह को बनाए रखने के लिए सब-स्टेशनों और ट्रांसमिशन लाइनों के संयोजन का उपयोग किया जाता है। अक्सर मौसम की क्षति के कारण ग्रिड क्षणिक ब्लैकआउट और ब्राउनआउट से पीड़ित हो सकते हैं। कुछ चरम अंतरिक्ष मौसम की घटनाओं के दौरान सौर हवा प्रसारण के साथ हस्तक्षेप कर सकती है। ग्रिड में एक पूर्वनिर्धारित वहन क्षमता या भार भी होता है जिसे सुरक्षित रूप से पार नहीं किया जा सकता है। जब बिजली की आवश्यकता उपलब्ध से अधिक हो जाती है, तो विफलता अनिवार्य होती है। समस्याओं को रोकने के लिए, बिजली की राशनिंग की जाती है।

कनाडा, अमेरिका और ऑस्ट्रेलिया जैसे औद्योगिक देश दुनिया में प्रति व्यक्ति बिजली के उच्चतम उपभोक्ताओं में से हैं, जो एक व्यापक विद्युत वितरण नेटवर्क के लिए संभव है। यूएस ग्रिड सबसे उन्नत में से एक है, हालांकि बुनियादी ढांचे का रखरखाव एक समस्या बन रहा है। CurrentEnergy कैलिफोर्निया, टेक्सास और अमेरिका के पूर्वोत्तर के लिए बिजली की आपूर्ति और मांग का वास्तविक समय अवलोकन प्रदान करता है। छोटे पैमाने पर विद्युत ग्रिड वाले अफ्रीकी देशों में बिजली का प्रति व्यक्ति उपयोग कम वार्षिक है। दुनिया के सबसे शक्तिशाली बिजली ग्रिडों में से एक ऑस्ट्रेलिया के क्वींसलैंड राज्य को बिजली की आपूर्ति करता है।

वायरलेस ऊर्जा हस्तांतरण

वायरलेस पॉवर ट्रांसफर एक ऐसी प्रक्रिया है जिसके द्वारा विद्युत ऊर्जा को एक विद्युत स्रोत से एक विद्युत भार में प्रेषित किया जाता है जिसमें एक अंतर्निहित शक्ति स्रोत नहीं होता है, बिना तारों के परस्पर उपयोग के। वर्तमान में उपलब्ध तकनीक कम दूरी और अपेक्षाकृत कम बिजली स्तर तक सीमित है।

सौर ऊर्जा संग्राहकों की परिक्रमा करने के लिए पृथ्वी पर बिजली के वायरलेस प्रसारण की आवश्यकता होगी। प्रस्तावित पद्धति में माइक्रोवेव-फ्रीक्वेंसी रेडियो तरंगों का एक बड़ा बीम बनाना शामिल है, जिसका लक्ष्य पृथ्वी पर एक कलेक्टर एंटीना साइट होगा। ऐसी योजना की सुरक्षा और लाभप्रदता सुनिश्चित करने के लिए विकट तकनीकी चुनौतियाँ मौजूद हैं।

भंडारण

वेल्स, यूनाइटेड किंगडम में Ffestiniog पावर स्टेशन। पंप-स्टोरेज पनबिजली (PSH) का उपयोग ग्रिड ऊर्जा भंडारण के लिए किया जाता है।

ऊर्जा भंडारण उपकरणों या भौतिक मीडिया द्वारा पूरा किया जाता है जो बाद में उपयोगी संचालन करने के लिए ऊर्जा को संग्रहित करता है। एक उपकरण जो ऊर्जा को संग्रहीत करता है उसे कभी-कभी संचायक कहा जाता है।

ऊर्जा के सभी रूप या तो संभावित ऊर्जा हैं (जैसे रासायनिक ऊर्जा, गुरुत्वाकर्षण, विद्युत ऊर्जा, तापमान अंतर, गुप्त ऊष्मा, आदि) या गतिज ऊर्जा (जैसे गति) है।कुछ प्रौद्योगिकियां केवल अल्पकालिक ऊर्जा भंडारण प्रदान करती हैं, और अन्य बहुत लंबी अवधि की हो सकती हैं जैसे कि हाइड्रोजन या मीथेन का उपयोग करके गैस की शक्ति और गहरे एक्वीफ़र्स या बेडरॉक में विरोधी मौसमों के बीच गर्मी या ठंड का भंडारण। एक विंड-अप क्लॉक संभावित ऊर्जा (इस मामले में मैकेनिकल, स्प्रिंग टेंशन में) को स्टोर करती है, एक बैटरी एक मोबाइल फोन को संचालित करने के लिए आसानी से परिवर्तनीय रासायनिक ऊर्जा को स्टोर करती है, और एक जलविद्युत बांध एक जलाशय में ऊर्जा को गुरुत्वाकर्षण संभावित ऊर्जा के रूप में संग्रहीत करता है। बर्फ भंडारण टैंक रात में ठंडा करने के लिए चरम मांग को पूरा करने के लिए बर्फ (अव्यक्त गर्मी के रूप में तापीय ऊर्जा) को स्टोर करते हैं। कोयले और गैसोलीन जैसे जीवाश्म ईंधन जीवों द्वारा सूर्य के प्रकाश से प्राप्त प्राचीन ऊर्जा को संग्रहीत करते हैं जो बाद में मर गए, दफन हो गए और समय के साथ इन ईंधनों में परिवर्तित हो गए। यहां तक ​​कि भोजन (जो जीवाश्म ईंधन के समान प्रक्रिया द्वारा बनाया जाता है) रासायनिक रूप में संग्रहीत ऊर्जा का एक रूप है।

इतिहास

Doel, बेल्जियम में अतीत और वर्तमान के ऊर्जा जनरेटर: 17वीं सदी की पवनचक्की Scheldemolen और 20वीं सदी का Doel परमाणु ऊर्जा केंद्र

प्रागितिहास के बाद से, जब मानवता ने भोजन को गर्म करने और भूनने के लिए आग की खोज की, मध्य युग के माध्यम से जिसमें आबादी ने गेहूं पीसने के लिए पवन चक्कियों का निर्माण किया, आधुनिक युग तक जिसमें राष्ट्र परमाणु को विभाजित करने वाली बिजली प्राप्त कर सकते हैं। मनुष्य ने ऊर्जा स्रोतों के लिए अंतहीन खोज की है।

परमाणु, भू-तापीय और ज्वारीय को छोड़कर, अन्य सभी ऊर्जा स्रोत वर्तमान सौर अलगाव से हैं या सूर्य के प्रकाश पर निर्भर पौधे और पशु जीवन के जीवाश्म अवशेषों से हैं। अंतत: सौर ऊर्जा ही सूर्य के परमाणु संलयन का परिणाम है। पृथ्वी के कोर के मैग्मा के ऊपर गर्म, कठोर चट्टान से भू-तापीय ऊर्जा पृथ्वी की पपड़ी के नीचे मौजूद रेडियोधर्मी पदार्थों के क्षय का परिणाम है, और परमाणु विखंडन पृथ्वी की पपड़ी में भारी रेडियोधर्मी तत्वों के मानव निर्मित विखंडन पर निर्भर करता है; दोनों ही मामलों में ये तत्व सौर मंडल के निर्माण से पहले सुपरनोवा विस्फोटों में उत्पन्न हुए थे।

औद्योगिक क्रांति की शुरुआत के बाद से, ऊर्जा आपूर्ति के भविष्य का सवाल रुचि का रहा है। 1865 में, विलियम स्टेनली जेवन्स ने द कोल क्वेश्चन प्रकाशित किया जिसमें उन्होंने देखा कि कोयले के भंडार समाप्त हो रहे थे और तेल एक अप्रभावी प्रतिस्थापन था। 1914 में, यू.एस. ब्यूरो ऑफ़ माइन्स ने कहा कि कुल उत्पादन 5.7 बिलियन बैरल (910,000,000 m3) था। 1956 में, भूभौतिकीविद् एम. किंग हबर्ट ने अनुमान लगाया कि 1965 और 1970 के बीच अमेरिकी तेल उत्पादन चरम पर होगा और 1956 के आंकड़ों के आधार पर तेल उत्पादन "आधी सदी के भीतर" चरम पर होगा। 1989 में, कॉलिन कैंपबेल द्वारा अनुमानित शिखर[125] 2004 में, ओपेक ने पर्याप्त निवेश के साथ अनुमान लगाया, यह 2025 तक लगभग दोगुना तेल उत्पादन होगा।[126]


स्थिरता

1989 से 1999 तक ऊर्जा की खपत

पर्यावरण आंदोलन ने ऊर्जा उपयोग और विकास की स्थिरता पर जोर दिया है।[127] अक्षय ऊर्जा इसके उत्पादन में टिकाऊ है; उपलब्ध आपूर्ति निकट भविष्य के लिए कम नहीं होगी - लाखों या अरबों वर्ष। "स्थिरता" अपशिष्ट उत्पादों, विशेष रूप से वायु प्रदूषण से निपटने के लिए पर्यावरण की क्षमता को भी संदर्भित करता है। जिन स्रोतों का कोई प्रत्यक्ष अपशिष्ट उत्पाद नहीं है (जैसे पवन, सौर और जल विद्युत) इस बिंदु पर लाए जाते हैं। ऊर्जा की बढ़ती वैश्विक मांग के साथ, विभिन्न ऊर्जा स्रोतों को अपनाने की आवश्यकता बढ़ रही है। ऊर्जा संरक्षण ऊर्जा विकास की एक वैकल्पिक या पूरक प्रक्रिया है। यह कुशलता से इसका उपयोग करके ऊर्जा की मांग को कम करता है।

लचीलापन

कुछ पर्यवेक्षकों का तर्क है कि ऊर्जा स्वतंत्रता का विचार एक अवास्तविक और अपारदर्शी अवधारणा है।[128] ऊर्जा लचीलापन का वैकल्पिक प्रस्ताव आर्थिक, सुरक्षा और ऊर्जा वास्तविकताओं के अनुरूप एक लक्ष्य है। ऊर्जा में लचीलापन की धारणा को 1982 की पुस्तक भंगुर शक्ति : एनर्जी स्ट्रैटेजी फॉर नेशनल सिक्योरिटी में विस्तृत किया गया था।[129] लेखकों ने तर्क दिया कि केवल घरेलू ऊर्जा पर स्विच करना स्वाभाविक रूप से सुरक्षित नहीं होगा क्योंकि सच्ची कमजोरी अक्सर किसी देश की अन्योन्याश्रित और कमजोर ऊर्जा अवसंरचना होती है। गैस लाइन और विद्युत पावर ग्रिड जैसे प्रमुख पहलू अक्सर केंद्रीकृत होते हैं और आसानी से व्यवधान के लिए अतिसंवेदनशील होते हैं। वे निष्कर्ष निकालते हैं कि एक लचीली ऊर्जा आपूर्ति राष्ट्रीय सुरक्षा और पर्यावरण दोनों के लिए आवश्यक है। वे विकेंद्रीकृत ऊर्जा दक्षता और नवीकरणीय ऊर्जा पर ध्यान केंद्रित करने की सलाह देते हैं।[130] 2008 में, इंटेल कॉर्पोरेशन के पूर्व अध्यक्ष और सीईओ एंड्रयू ग्रोव ने ऊर्जा लचीलापन को देखा, यह तर्क देते हुए कि ऊर्जा के लिए वैश्विक बाजार को देखते हुए पूर्ण स्वतंत्रता अक्षम्य है।[131] वह ऊर्जा की आपूर्ति में रुकावटों को समायोजित करने की क्षमता के रूप में ऊर्जा लचीलापन का वर्णन करता है। इसके लिए, उनका सुझाव है कि अमेरिका बिजली का अधिक से अधिक उपयोग करे।[132] बिजली का उत्पादन विभिन्न स्रोतों से किया जा सकता है। किसी एक स्रोत की आपूर्ति में व्यवधान से विविध ऊर्जा आपूर्ति कम प्रभावित होगी। उनका कारण है कि विद्युतीकरण की एक और विशेषता यह है कि बिजली चिपचिपी होती है - जिसका अर्थ है कि यू.एस. में उत्पादित बिजली वहीं रहना है क्योंकि इसे विदेशों में नहीं ले जाया जा सकता है। ग्रोव के अनुसार, विद्युतीकरण और ऊर्जा लचीलापन को आगे बढ़ाने का एक प्रमुख पहलू अमेरिकी ऑटोमोटिव बेड़े को गैसोलीन-संचालित से विद्युत-संचालित में परिवर्तित करना होगा। बदले में, विद्युत पावर ग्रिड के आधुनिकीकरण और विस्तार की आवश्यकता होगी। जैसा कि द रिफॉर्म इंस्टीट्यूट जैसे संगठनों ने बताया है, विकासशील स्मार्ट ग्रिड से जुड़ी प्रगति से वाहनों को अपनी बैटरी चार्ज करने के लिए बड़े पैमाने पर जोड़ने के लिए ग्रिड की क्षमता में सुविधा होगी।[133]


वर्तमान और भविष्य

आउटलुक—ईंधन द्वारा विश्व ऊर्जा खपत (2011 तक)[134]
   तरल ईंधन सहित। जैव ईंधन    कोयला    प्राकृतिक गैस
   नवीकरणीय ईंधन    परमाणु ईंधन
विकासशील देशों द्वारा ऊर्जा खपत का बढ़ता हिस्सा[135]
   औद्योगीकृत राष्ट्र
   विकासशील देश
   यूरोपीय आर्थिक समुदाय/पूर्व सोवियत संघ

वर्तमान ज्ञान से भविष्य के लिए एक्सट्रपलेशन ऊर्जा वायदा का एक विकल्प प्रदान करते हैं।[136] भविष्यवाणियां माल्थुसियन तबाही की परिकल्पना के समानांतर हैं। कई जटिल वैज्ञानिक मॉडलिंग आधारित परिदृश्य हैं जो लिमिट्स टू ग्रोथ द्वारा अग्रणी हैं। मॉडलिंग के दृष्टिकोण विविध रणनीति का विश्लेषण करने के तरीकों की पेशकश करते हैं, और उम्मीद है कि मानवता के तेजी से और सतत विकास के लिए एक रास्ता खोज लेंगे। अल्पकालिक ऊर्जा संकट भी ऊर्जा विकास की एक चिंता का विषय है। एक्सट्रपलेशन में संभाव्यता की कमी होती है, खासकर जब वे तेल की खपत में लगातार वृद्धि की भविष्यवाणी करते हैं।[citation needed]

ऊर्जा उत्पादन के लिए आमतौर पर ऊर्जा निवेश की आवश्यकता होती है। तेल के लिए ड्रिलिंग या पवन ऊर्जा संयंत्र के निर्माण के लिए ऊर्जा की आवश्यकता होती है। जो जीवाश्म ईंधन संसाधन बचे हैं, उन्हें निकालना और परिवर्तित करना अक्सर कठिन होता जा रहा है। इस प्रकार उन्हें तेजी से उच्च ऊर्जा निवेश की आवश्यकता हो सकती है। यदि निवेश संसाधन द्वारा उत्पादित ऊर्जा के मूल्य से अधिक है, तो यह एक प्रभावी ऊर्जा स्रोत नहीं रह जाता है। ये संसाधन अब एक ऊर्जा स्रोत नहीं हैं, लेकिन कच्चे माल के रूप में मूल्य के लिए इनका दोहन किया जा सकता है। नई तकनीक संसाधनों को निकालने और परिवर्तित करने के लिए आवश्यक ऊर्जा निवेश को कम कर सकती है, हालांकि अंततः बुनियादी भौतिकी ऐसी सीमाएँ निर्धारित करती है जिन्हें पार नहीं किया जा सकता है।

1950 और 1984 के बीच, हरित क्रांति ने दुनिया भर में कृषि को बदल दिया, विश्व अनाज उत्पादन में 250% की वृद्धि हुई। हरित क्रांति के लिए ऊर्जा उर्वरकों (प्राकृतिक गैस), कीटनाशकों (तेल) और हाइड्रोकार्बन ईंधन वाली सिंचाई के रूप में जीवाश्म ईंधन द्वारा प्रदान की गई थी।[137] विश्व हाइड्रोकार्बन उत्पादन (शीर्ष तेल) के चरम पर पहुंचने से महत्वपूर्ण परिवर्तन हो सकते हैं, और उत्पादन के स्थायी तरीकों की आवश्यकता होती है।[138] एक स्थायी ऊर्जा भविष्य की एक दृष्टि में पृथ्वी की सतह पर सभी मानव संरचनाएं (यानी, भवन, वाहन और सड़कें) कृत्रिम प्रकाश संश्लेषण (हाइड्रोजन के स्रोत के रूप में पानी को विभाजित करने के लिए सूर्य के प्रकाश का उपयोग करना और उर्वरक बनाने के लिए कार्बन डाइऑक्साइड को अवशोषित करना) को पौधों की तुलना में कुशलता से करना शामिल है।[139] समकालीन अंतरिक्ष उद्योग की आर्थिक गतिविधि के साथ[140][141] और संबंधित निजी अंतरिक्ष उड़ान, विनिर्माण उद्योगों के साथ, जो पृथ्वी की कक्षा में या उससे आगे जाते हैं, उन्हें उन क्षेत्रों में पहुंचाने के लिए और अधिक ऊर्जा विकास की आवश्यकता होगी।[142][143] शोधकर्ताओं ने पृथ्वी पर उपयोग के लिए सौर ऊर्जा एकत्र करने के लिए अंतरिक्ष आधारित सौर ऊर्जा पर विचार किया है। 1970 के दशक की शुरुआत से ही अंतरिक्ष आधारित सौर ऊर्जा पर शोध किया जा रहा है। अंतरिक्ष आधारित सौर ऊर्जा के लिए अंतरिक्ष में संग्राहक संरचनाओं के निर्माण की आवश्यकता होगी। भू-आधारित सौर ऊर्जा पर लाभ प्रकाश की उच्च तीव्रता है, और बिजली संग्रह को बाधित करने के लिए कोई मौसम नहीं है।

ऊर्जा प्रौद्योगिकी

ऊर्जा प्रौद्योगिकी एक अंतःविषय अभियांत्रिकी विज्ञान है जो कुशल, सुरक्षित, पर्यावरण के अनुकूल और किफायती निष्कर्षण, रूपांतरण, परिवहन, भंडारण और ऊर्जा के उपयोग से संबंधित है, जिसका लक्ष्य मनुष्यों, प्रकृति और पर्यावरण पर प्रतिकूल प्रभाव को कम करते हुए उच्च दक्षता प्राप्त करना है। पर्यावरण।

लोगों के लिए, ऊर्जा एक अत्यधिक आवश्यकता है, और एक दुर्लभ संसाधन के रूप में, यह राजनीतिक संघर्षों और युद्धों का एक अंतर्निहित कारण रहा है। ऊर्जा संसाधनों का एकत्रीकरण और उपयोग स्थानीय पारिस्थितिक तंत्र के लिए हानिकारक हो सकता है और इसके वैश्विक परिणाम हो सकते हैं।

ऊर्जा कार्य करने की क्षमता भी है। हम भोजन से ऊर्जा प्राप्त कर सकते हैं। ऊर्जा विभिन्न रूपों की हो सकती है जैसे गतिज, क्षमता, यांत्रिक, ऊष्मा, प्रकाश आदि। प्रकाश, ताप, खाना पकाने, चलाने, उद्योगों, संचालन परिवहन आदि के लिए व्यक्तियों और पूरे समाज के लिए ऊर्जा की आवश्यकता होती है। मूल रूप से दो प्रकार की ऊर्जा होती है जो स्रोत के आधार पर होती है; 1. अक्षय ऊर्जा स्रोत 2. गैर-नवीकरणीय ऊर्जा स्रोत

अंतःविषय क्षेत्र

एक अंतःविषय विज्ञान के रूप में ऊर्जा प्रौद्योगिकी विविध, अतिव्यापी तरीकों से कई अंतःविषय क्षेत्रों से जुड़ी हुई है।

  • भौतिकी, ऊष्मप्रवैगिकी और परमाणु भौतिकी के लिए
  • ईंधन, दहन, वायु प्रदूषण, ग्रिप गैस, बैटरी (बिजली) प्रौद्योगिकी और ईंधन कोशिकाओं के लिए रसायन।
  • विद्युत अभियन्त्रण
  • इंजीनियरिंग, अक्सर द्रव ऊर्जा मशीनों जैसे दहन इंजन, टर्बाइन, पंप और कंप्रेशर्स के लिए।
  • भूतापीय ऊर्जा और संसाधनों की खोज के लिए भूगोल
  • खनन, पेट्रोकेमिकल और जीवाश्म ईंधन के लिए।
  • कृषि और वानिकी, नवीकरणीय ऊर्जा के स्रोतों के लिए।
  • पवन और सौर ऊर्जा के लिए मौसम विज्ञान।
  • जल और जलमार्ग, पनबिजली के लिए।
  • अपशिष्ट प्रबंधन, पर्यावरणीय प्रभाव के लिए।
  • परिवहन, ऊर्जा की बचत परिवहन प्रणालियों के लिए।
  • पर्यावरण अध्ययन, पर्यावरण (बायोफिजिकल), प्रकृति और जलवायु परिवर्तन पर ऊर्जा के उपयोग और उत्पादन के प्रभाव का अध्ययन करने के लिए।
  • (प्रकाश प्रौद्योगिकी), आंतरिक और बाहरी प्राकृतिक के साथ-साथ कृत्रिम प्रकाश डिजाइन, प्रतिष्ठान और ऊर्जा बचत के लिए
  • (ऊर्जा लागत/लाभ विश्लेषण), ऊर्जा दक्षता/संरक्षण उपायों की सरल वापसी और जीवन चक्र लागत के लिए अनुशंसित

इलेक्ट्रिकल इंजीनियरिंग

विद्युत ऊर्जा की लंबी दूरी की ढुलाई के लिए उच्च वोल्टेज लाइनें

इलेक्ट्रिक पावर इंजीनियरिंग विद्युतीय ऊर्जा के उत्पादन और उपयोग से संबंधित है, जिसमें विद्युत जनरेटर, विद्युत मोटर ्स और ट्रांसफार्मर जैसी मशीनों का अध्ययन शामिल हो सकता है। इंफ्रास्ट्रक्चर में बिजली उपकेंद्र और ट्रांसफॉर्मर स्टेशन, पावर लाइन और पावर केबल शामिल हैं। नेटवर्क पर भार प्रबंधन और बिजली प्रबंधन का समग्र ऊर्जा दक्षता पर सार्थक प्रभाव पड़ता है। बिजली की हीटिंग का भी व्यापक रूप से उपयोग और शोध किया जाता है।

ऊष्मप्रवैगिकी

ऊष्मप्रवैगिकी ऊर्जा रूपांतरण के मूलभूत नियमों से संबंधित है और सैद्धांतिक भौतिकी से ली गई है।

तापीय और रासायनिक ऊर्जा

ए के साथ: लकड़ी की आग के लिए कब्र

थर्मल और रासायनिक ऊर्जा रसायन शास्त्र और पर्यावरण अध्ययन के साथ जुड़े हुए हैं। दहन गैस बर्नर और सभी प्रकार के रासायनिक इंजनों, ग्रेट्स और भस्मक के साथ-साथ उनकी ऊर्जा दक्षता, प्रदूषण और परिचालन सुरक्षा के साथ करना है।

निकास गैस शोधन प्रौद्योगिकी का उद्देश्य विभिन्न यांत्रिक, थर्मल और रासायनिक सफाई विधियों के माध्यम से वायु प्रदूषण को कम करना है। उत्सर्जन नियंत्रण (बहुविकल्पी) प्रौद्योगिकी प्रक्रिया इंजीनियरिंग और रासायनिक इंजीनियरिंग का एक क्षेत्र है। बायलर तकनीक लागू यांत्रिकी और सामग्री इंजीनियरिंग से तैयार भाप बॉयलरों और भाप टर्बाइनों (परमाणु ऊर्जा उत्पादन में भी उपयोग किया जाता है, नीचे देखें) के डिजाइन, निर्माण और संचालन से संबंधित है।

ऊर्जा रूपांतरण का संबंध आंतरिक दहन इंजन, टर्बाइन, पंप, पंखे आदि से है, जिनका उपयोग परिवहन, यांत्रिक ऊर्जा और बिजली उत्पादन के लिए किया जाता है। उच्च तापीय और यांत्रिक भार परिचालन संबंधी सुरक्षा संबंधी चिंताओं को लेकर आते हैं जिन्हें केमिकल इंजीनियरिंग विज्ञान की कई शाखाओं के माध्यम से निपटाया जाता है।

नाभिकीय ऊर्जा

एक भाप टरबाइन।

परमाणु प्रौद्योगिकी परमाणु रिएक्टरों से परमाणु ऊर्जा उत्पादन के साथ-साथ परमाणु ईंधन के प्रसंस्करण और रेडियोधर्मी कचरे के निपटान, लागू परमाणु भौतिकी, परमाणु रसायन विज्ञान और विकिरण विज्ञान से संबंधित है।

कई दशकों से कई देशों में परमाणु ऊर्जा उत्पादन राजनीतिक रूप से विवादास्पद रहा है लेकिन परमाणु विखंडन के माध्यम से उत्पादित विद्युत ऊर्जा का विश्वव्यापी महत्व है।[144] उच्च उम्मीदें हैं कि फ्यूजन शक्ति प्रौद्योगिकियां एक दिन अधिकांश विखंडन रिएक्टरों को बदल देंगी लेकिन यह अभी भी परमाणु भौतिकी का एक शोध क्षेत्र है।

नवीकरणीय ऊर्जा

अमेरिका में एक सैन्य अड्डे पर सौर (फोटोवोल्टिक) पैनल।

अक्षय ऊर्जा की कई शाखाएँ हैं।

पवन ऊर्जा

भीतरी मंगोलियाई चरागाह पर पवन टर्बाइन

पवन टर्बाइन एक कताई रोटर को जनरेटर से जोड़कर पवन ऊर्जा को बिजली में परिवर्तित करते हैं। पवन टर्बाइन वायुमंडलीय धाराओं से ऊर्जा खींचते हैं और मैकेनिकल और इलेक्ट्रिकल इंजीनियरिंग से लिए गए ज्ञान के साथ वायुगतिकी का उपयोग करके डिजाइन किए जाते हैं। हवा वायुगतिकीय रोटर ब्लेड से गुजरती है, उच्च दबाव का क्षेत्र और ब्लेड के दोनों ओर कम दबाव का क्षेत्र बनाती है। उत्थापन और कर्षण बल वायुदाब में अंतर के कारण बनते हैं। लिफ्ट फोर्स ड्रैग फोर्स से ज्यादा मजबूत है; इसलिए जनरेटर से जुड़ा रोटर घूमता है। ऊर्जा तब वायुगतिकीय बल से जनरेटर के घूर्णन में परिवर्तन के कारण बनाई जाती है।[145] सबसे कुशल नवीकरणीय ऊर्जा स्रोतों में से एक के रूप में पहचाने जाने के कारण, पवन ऊर्जा दुनिया में अधिक से अधिक प्रासंगिक और उपयोग की जा रही है।[146] पवन ऊर्जा ऊर्जा के उत्पादन में किसी भी पानी का उपयोग नहीं करती है, जिससे यह बिना पानी वाले क्षेत्रों के लिए ऊर्जा का एक अच्छा स्रोत बन जाता है। पवन ऊर्जा का उत्पादन तब भी किया जा सकता है, जब जलवायु वर्तमान भविष्यवाणियों के अनुरूप बदलती है, क्योंकि यह पूरी तरह से हवा पर निर्भर करती है।[147]


जियोथर्मल

पृथ्वी के भीतर गहराई में, मैग्मा नामक पिघली हुई चट्टान की अत्यधिक गर्मी पैदा करने वाली परत है।[148] मैग्मा से बहुत अधिक तापमान पास के भूजल को गर्म करता है। ऐसी कई प्रौद्योगिकियां हैं जिन्हें इस तरह की गर्मी से लाभ उठाने के लिए विकसित किया गया है, जैसे विभिन्न प्रकार के बिजली संयंत्रों (शुष्क, फ्लैश या बाइनरी), गर्मी पंप या कुओं का उपयोग करना।[149] गर्मी के उपयोग की इन प्रक्रियाओं में एक बुनियादी ढांचा शामिल होता है जिसमें एक या दूसरे रूप में एक टरबाइन होता है जो या तो गर्म पानी या उसके द्वारा उत्पादित भाप से घूमता है।[150] एक जेनरेटर से जुड़ा हुआ स्पिनिंग टर्बाइन ऊर्जा उत्पन्न करता है। एक और हालिया नवाचार में उथले बंद-लूप सिस्टम का उपयोग शामिल है जो लगभग 10 फीट गहरी मिट्टी के निरंतर तापमान का लाभ उठाकर संरचनाओं से गर्मी को पंप करता है।[151]


जलविद्युत

जर्मनी में पेल्टन टरबाइन का निर्माण।

पनबिजली नदियों, लहर बिजली संयंत्र और ज्वारीय शक्ति से यांत्रिक ऊर्जा खींचती है। असैनिक अभियंत्रण का उपयोग जल विज्ञान और भूविज्ञान के माध्यम से बांधों, सुरंगों, जलमार्गों के अध्ययन और निर्माण और तटीय संसाधनों के प्रबंधन के लिए किया जाता है। बहते पानी से घूमती एक कम गति वाली पानी की टरबाइन बिजली पैदा करने के लिए एक विद्युत जनरेटर को शक्ति प्रदान कर सकती है।

बायोएनेर्जी

बायोएनेर्जी जैविक निर्माण, कृषि और वानिकी में उगाए गए बायोमास के संग्रह, प्रसंस्करण और उपयोग से संबंधित है जिससे बिजली संयंत्र जलते हुए ईंधन को प्राप्त कर सकते हैं। ईंधन कोशिकाओं के लिए इथेनॉल, मेथनॉल (दोनों विवादास्पद) या हाइड्रोजन इन प्रौद्योगिकियों से प्राप्त किया जा सकता है और बिजली उत्पन्न करने के लिए उपयोग किया जाता है।

प्रौद्योगिकियों को सक्षम करना

ताप पंप और तापीय ऊर्जा भंडारण प्रौद्योगिकियों की श्रेणियां हैं जो नवीकरणीय ऊर्जा स्रोतों के उपयोग को सक्षम कर सकती हैं जो अन्यथा उपयोग के लिए बहुत कम तापमान या ऊर्जा उपलब्ध होने और इसकी आवश्यकता होने के बीच एक समय अंतराल के कारण पहुंच योग्य नहीं होगी। उपलब्ध नवीकरणीय तापीय ऊर्जा के तापमान को बढ़ाते समय, ऊष्मा पम्पों में निम्न गुणवत्ता वाले स्रोत (जैसे समुद्री जल, झील का पानी, जमीन, हवा, या अपशिष्ट गर्मी एक प्रक्रिया से)।

थर्मल भंडारण प्रौद्योगिकियां गर्मी या ठंड को घंटों या रात भर से लेकर मौसमी तापीय ऊर्जा भंडारण तक की अवधि के लिए संग्रहीत करने की अनुमति देती हैं, और इसमें संवेदनशील गर्मी (यानी एक माध्यम के तापमान को बदलकर) या गुप्त ऊर्जा (यानी चरण परिवर्तनों के माध्यम से) का भंडारण शामिल हो सकता है। एक माध्यम का, जैसे पानी और स्लश या बर्फ के बीच)। जिला हीटिंग या विद्युत वितरण प्रणालियों में पीक-शेविंग के लिए शॉर्ट-टर्म थर्मल स्टोरेज का उपयोग किया जा सकता है। नवीकरणीय या वैकल्पिक ऊर्जा स्रोतों के प्रकारों को सक्षम किया जा सकता है जिनमें प्राकृतिक ऊर्जा शामिल है (उदाहरण के लिए सौर-तापीय संग्राहकों के माध्यम से एकत्रित, या सर्दियों की ठंड को इकट्ठा करने के लिए उपयोग किए जाने वाले शुष्क शीतलन टावर), अपशिष्ट ऊर्जा (जैसे एचवीएसी उपकरण, औद्योगिक प्रक्रियाओं या बिजली संयंत्रों से), या अधिशेष ऊर्जा (उदाहरण के लिए जलविद्युत परियोजनाओं से मौसमी रूप से या पवन खेतों से रुक-रुक कर)। ड्रेक लैंडिंग सौर समुदाय (अल्बर्टा, कनाडा) उदाहरण है। मौसमी तापीय ऊर्जा भंडारण समुदाय को गैरेज की छतों पर सौर संग्राहकों से अपनी वर्ष भर की गर्मी का 97% प्राप्त करने की अनुमति देता है, जो गर्मियों में अधिकांश गर्मी एकत्र करता है।[152][153] समझदार ऊर्जा के लिए भंडारण के प्रकारों में इंसुलेटेड टैंक, बजरी से लेकर बेडरॉक तक के सबस्ट्रेट्स में बोरहोल क्लस्टर, गहरे जलभृत, या उथले पंक्तिबद्ध गड्ढे शामिल हैं जो शीर्ष पर इंसुलेटेड हैं। कुछ प्रकार के भंडारण गर्मी या ठंडे मौसमी तापीय ऊर्जा भंडारण (विशेष रूप से यदि बहुत बड़े हैं) को संग्रहीत करने में सक्षम हैं, और कुछ भंडारण अनुप्रयोगों में हीट पंपों को शामिल करने की आवश्यकता होती है। अव्यक्त गर्मी आमतौर पर बर्फ की टंकियों में जमा होती है या जिसे चरण-परिवर्तन सामग्री (पीसीएम) कहा जाता है।

यह भी देखें

  • ऊर्जा विकास
  • दुनिया भर में ऊर्जा आपूर्ति
  • तकनीकी
  • जल-ऊर्जा गठजोड़

नीति: ऊर्जा नीति, संयुक्त राज्य अमेरिका की ऊर्जा नीति, चीन की ऊर्जा नीति, भारत की ऊर्जा नीति, यूरोपीय संघ की ऊर्जा नीति, यूनाइटेड किंगडम की ऊर्जा नीति, रूस की ऊर्जा नीति, ब्राजील की ऊर्जा नीति, की ऊर्जा नीति कनाडा, सोवियत संघ की ऊर्जा नीति, ऊर्जा उद्योग उदारीकरण और निजीकरण (थाईलैंड)

सामान्य
मौसमी तापीय ऊर्जा भंडारण (अंतरमौसमी तापीय ऊर्जा भंडारण), भू-चुंबकीय रूप से प्रेरित वर्तमान, ऊर्जा संचयन, टिकाऊ ऊर्जा अनुसंधान की समयरेखा 2020-वर्तमान

फीडस्टॉक: कच्चा माल, बायोमटेरियल, ऊर्जा की खपत, सामग्री विज्ञान, पुनर्चक्रण, अपसाइक्लिंग, डाउनसाइक्लिंग

अन्य
थोरियम आधारित परमाणु ऊर्जा, तेल पाइपलाइनों की सूची, प्राकृतिक गैस पाइपलाइनों की सूची, महासागर तापीय ऊर्जा रूपांतरण, फोटोवोल्टिक्स का विकास

संदर्भ

  1. REN21–Renewable Energy Policy Network for the 21st Century Renewables 2012–Global Status Report, page 21. Archived December 15, 2012, at the Wayback Machine, 2012
  2. eia.gov–U.S. Energy Information Administration International Energy Statistics Archived 2013-08-22 at the Wayback Machine
  3. Lawrence Livermore National LaboratoryEnergy flow chart Archived 2013-10-01 at the Wayback Machine, 2011
  4. International Energy Agency: Key World Energy Statistics 2007. S. 6
  5. Energy Security and Climate Policy: Assessing Interactions. p125
  6. Energy Security: Economics, Politics, Strategies, and Implications. Edited by Carlos Pascual, Jonathan Elkind. p210
  7. Geothermal Energy Resources for Developing Countries. By D. Chandrasekharam, J. Bundschuh. p91
  8. Congressional Record, V. 153, PT. 2, January 18, 2007 to February 1, 2007 edited by U S Congress, Congress (U.S.). p 1618
  9. India s Energy Security. Edited by Ligia Noronha, Anant Sudarshan.
  10. National security, safety, technology, and employment implications of increasing CAFE standards : hearing before the Committee on Commerce, Science, and Transportation, United States Senate, One Hundred Seventh Congress, second session, January 24, 2002. DIANE Publishing. p10
  11. Ending our-Dependence on Oil Archived 2013-03-19 at the Wayback Machine - American Security Project. americansecurityproject.org
  12. Energy Dependency, Politics and Corruption in the Former Soviet Union. By Margarita M. Balmaceda. Psychology Press, December 6, 2007.
  13. Oil-Led Development Archived May 13, 2013, at the Wayback Machine: Social, Political, and Economic Consequences. Terry Lynn Karl. Stanford University. Stanford, California, United States.
  14. Peaking of World Oil Production: Impacts, Mitigation, and Risk Management. Was at: www.pppl.gov/polImage.cfm?doc_Id=44&size_code=Doc
  15. "बिग रिग बिल्डिंग बूम". Rigzone.com. 2006-04-13. Archived from the original on 2007-10-21. Retrieved 2008-01-18.
  16. "हीट आइलैंड ग्रुप होम पेज". Lawrence Berkeley National Laboratory. 2000-08-30. Archived from the original on January 9, 2008. Retrieved 2008-01-19.
  17. ScienceDaily.com (April 22, 2010) "Fossil-Fuel Subsidies Hurting Global Environment, Security, Study Finds" Archived 2016-04-10 at the Wayback Machine
  18. Intergovernmental Panel on Climate Change (2007): IPCC Fourth Assessment Report - Working Group I Report on "The Physical Science Basis".
  19. "Environmental impacts of coal power: air pollution". Union of Concerned Scientists. 18 August 2005. Archived from the original on 15 January 2008. Retrieved 18 January 2008.
  20. NRDC: There Is No Such Thing as "Clean Coal" Archived July 30, 2012, at the Wayback Machine
  21. How much electricity does a typical nuclear power plant generate Archived 2013-07-29 at the Wayback Machine? - FAQ - U.S. Energy Information Administration (EIA)
  22. "Key World Energy Statistics 2012" (PDF). International Energy Agency. 2012. Archived (PDF) from the original on 2012-11-18. Retrieved 2012-12-17. {{cite journal}}: Cite journal requires |journal= (help)
  23. 23.0 23.1 "मूल्य - होम". Iaea.org. Archived from the original on 2013-06-02. Retrieved 2013-06-14.
  24. "World Nuclear Power Reactors 2007-08 and Uranium Requirements". World Nuclear Association. 2008-06-09. Archived from the original on March 3, 2008. Retrieved 2008-06-21.
  25. "जापान ने दो रिएक्टर को फिर से शुरू करने की मंजूरी दी". Taipei Times. 2013-06-07. Archived from the original on 2013-09-27. Retrieved 2013-06-14.
  26. "What is Nuclear Power Plant - How Nuclear Power Plants work | What is Nuclear Power Reactor - Types of Nuclear Power Reactors". EngineersGarage. Archived from the original on 2013-10-04. Retrieved 2013-06-14.
  27. "Nuclear-Powered Ships | Nuclear Submarines". World-nuclear.org. Archived from the original on 2013-06-12. Retrieved 2013-06-14.
  28. "संग्रहीत प्रति" (PDF). Archived from the original (PDF) on 2015-02-26. Retrieved 2015-06-04. Naval Nuclear Propulsion, Magdi Ragheb. As of 2001, about 235 naval reactors had been built
  29. "आईटीईआर से परे". The ITER Project. Information Services, Princeton Plasma Physics Laboratory. Archived from the original on 7 November 2006. Retrieved 5 February 2011. - Projected fusion power timeline
  30. Union-Tribune Editorial Board (March 27, 2011). "परमाणु विवाद". Union-Tribune. Archived from the original on November 19, 2011.
  31. James J. MacKenzie. Review of The Nuclear Power Controversy by Arthur W. Murphy The Quarterly Review of Biology, Vol. 52, No. 4 (Dec., 1977), pp. 467-468.
  32. In February 2010 the nuclear power debate played out on the pages of The New York Times, see A Reasonable Bet on Nuclear Power Archived 2017-02-01 at the Wayback Machine and Revisiting Nuclear Power: A Debate Archived 2017-04-09 at the Wayback Machine and A Comeback for Nuclear Power? Archived 2010-02-26 at the Wayback Machine
  33. U.S. Energy Legislation May Be 'Renaissance' for Nuclear Power Archived 2009-06-26 at the Wayback Machine.
  34. Spencer R. Weart (2012). परमाणु भय का उदय. Harvard University Press. ISBN 9780674065062.
  35. Sturgis, Sue. "Investigation: Revelations about Three Mile Island disaster raise doubts over nuclear plant safety". Institute for Southern Studies. Archived from the original on 2010-04-18. Retrieved 2010-08-24.
  36. 36.0 36.1 "सबसे खराब परमाणु आपदाएं". Time.com. 2009-03-25. Archived from the original on 2013-08-26. Retrieved 2013-06-22.
  37. Strengthening the Safety of Radiation Sources Archived 2009-03-26 at the Wayback Machine p. 14.
  38. Johnston, Robert (September 23, 2007). "सबसे घातक विकिरण दुर्घटनाएँ और अन्य घटनाएँ जो विकिरण हताहतों का कारण बनती हैं". Database of Radiological Incidents and Related Events. Archived from the original on October 23, 2007.
  39. Markandya, A.; Wilkinson, P. (2007). "Electricity generation and health". Lancet. 370 (9591): 979–990. doi:10.1016/S0140-6736(07)61253-7. PMID 17876910. S2CID 25504602.
  40. "डॉ मैके गर्म हवा के बिना सतत ऊर्जा". Data from studies by the Paul Scherrer Institute including non EU data. p. 168. Archived from the original on 2 September 2012. Retrieved 15 September 2012.
  41. "How Deadly is Your Kilowatt? We Rank the Killer Energy Sources". Forbes. Archived from the original on 2012-06-10. Retrieved 2017-05-13. with Chernobyl's total predicted linear no-threshold cancer deaths included, nuclear power is safer when compared to many alternative energy sources' immediate, death rate.
  42. Brendan Nicholson (2006-06-05). "कोयले और गैस की तुलना में परमाणु ऊर्जा 'सस्ता, सुरक्षित'". The Age. Archived from the original on 2008-02-08. Retrieved 2008-01-18.
  43. Burgherr Peter (2008). "जीवाश्म, हाइड्रो और परमाणु ऊर्जा श्रृंखलाओं में दुर्घटना जोखिमों का तुलनात्मक विश्लेषण" (PDF). Human and Ecological Risk Assessment. 14 (5): 947–973, 962–5. doi:10.1080/10807030802387556. S2CID 110522982. Comparing Nuclear's latent cancer deaths, such as cancer with other energy sources immediate deaths per unit of energy generated(GWeyr). This study does not include fossil fuel related cancer and other indirect deaths created by the use of fossil fuel consumption in its "severe accident", an accident with more than 5 fatalities, classification.
  44. Richard Schiffman (12 March 2013). "दो साल बाद भी अमेरिका ने फुकुशिमा परमाणु आपदा का सबक नहीं सीखा है". The Guardian. Archived from the original on 2 February 2017.
  45. Martin Fackler (June 1, 2011). "रिपोर्ट ने जापान को सुनामी के खतरे को कम करके आंका". The New York Times. Archived from the original on February 5, 2017.
  46. "Worldwide First Reactor to Start Up in 2013, in China - World Nuclear Industry Status Report". Worldnuclearreport.org. 18 February 2013. Archived from the original on 2013-06-02. Retrieved 2013-06-14.
  47. Ayesha Rascoe (February 9, 2012). "अमेरिका ने एक पीढ़ी में पहले नए परमाणु संयंत्र को मंजूरी दी". Reuters. Archived from the original on July 1, 2017.
  48. Mark Cooper (18 June 2013). "Nuclear aging: Not so graceful". Bulletin of the Atomic Scientists. Archived from the original on 5 July 2013.
  49. Matthew Wald (June 14, 2013). "पुराने और अप्रतिस्पर्धी परमाणु संयंत्र उम्मीद से पहले बंद हो रहे हैं". The New York Times. Archived from the original on January 26, 2017.
  50. Conca, James. "यूरेनियम समुद्री जल निष्कर्षण परमाणु ऊर्जा को पूरी तरह से नवीकरणीय बनाता है". forbes.com. Archived from the original on 24 April 2018. Retrieved 4 May 2018.
  51. April 20, 2016 Volume 55, Issue 15 Pages 4101-4362 In this issue:Uranium in Seawater Page 962 to 965
  52. "सामूहिक रूप से, जीवन चक्र मूल्यांकन साहित्य से पता चलता है कि परमाणु ऊर्जा अन्य नवीकरणीय के समान है और कुल जीवन चक्र जीएचजी उत्सर्जन में जीवाश्म ईंधन की तुलना में बहुत कम है।". Nrel.gov. 2013-01-24. Archived from the original on 2013-07-02. Retrieved 2013-06-22.
  53. Wagner, Friedrich (2021). "CO2 emissions of nuclear power and renewable energies: a statistical analysis of European and global data". The European Physical Journal Plus. 136 (5): 562. Bibcode:2021EPJP..136..562W. doi:10.1140/epjp/s13360-021-01508-7. ISSN 2190-5444.
  54. Kharecha Pushker A (2013). "Prevented Mortality and Greenhouse Gas Emissions from Historical and Projected Nuclear Power - global nuclear power has prevented an average of 1.84 million air pollution-related deaths and 64 gigatonnes of CO2-equivalent (GtCO2-eq) greenhouse gas (GHG) emissions that would have resulted from fossil fuel burning". Environmental Science. 47 (9): 4889–4895. Bibcode:2013EnST...47.4889K. doi:10.1021/es3051197. PMID 23495839.
  55. 55.0 55.1 Sylvia Westall; Fredrik Dahl (June 24, 2011). "IAEA प्रमुख को परमाणु संयंत्रों की कड़ी सुरक्षा के लिए व्यापक समर्थन की उम्मीद". Scientific American. Archived from the original on June 25, 2011.
  56. "दबाव नापना". The Economist. 28 April 2011. Archived from the original on 31 August 2012.
  57. European Environment Agency (January 23, 2013). "Late lessons from early warnings: science, precaution, innovation: Full Report". p. 476. Archived from the original on May 17, 2013.
  58. Tomoko Yamazaki; Shunichi Ozasa (27 June 2011). "टेप्को की वार्षिक बैठक में फुकुशिमा रिटायरी ने परमाणु-विरोधी शेयरधारकों का नेतृत्व किया". Bloomberg. Archived from the original on 30 June 2011.
  59. Mari Saito (7 May 2011). "पीएम के प्लांट बंद करने के आह्वान के बाद जापान के परमाणु विरोधी प्रदर्शनकारियों ने रैली की". Reuters. Archived from the original on 7 May 2011.
  60. 60.0 60.1 Ipsos (23 June 2011), Global Citizen Reaction to the Fukushima Nuclear Plant Disaster (theme: environment / climate) Ipsos Global @dvisor (PDF), archived from the original (PDF) on 24 December 2014. Survey website: Ipsos MORI: Poll: Strong global opposition towards nuclear power Archived 2016-04-03 at the Wayback Machine.
  61. 61.0 61.1 61.2 Kidd, Steve (January 21, 2011). "New reactors—more or less?". Nuclear Engineering International. Archived from the original on 2011-12-12.
  62. Ed Crooks (12 September 2010). "Nuclear: New dawn now seems limited to the east". Financial Times. Archived from the original on 2022-12-10. Retrieved 12 September 2010.
  63. Edward Kee (16 March 2012). "परमाणु ऊर्जा का भविष्य" (PDF). NERA Economic Consulting. Archived from the original (PDF) on 5 October 2013. Retrieved 2 October 2013.
  64. परमाणु ऊर्जा का भविष्य. Massachusetts Institute of Technology. 2003. ISBN 978-0-615-12420-9. Archived from the original on 2017-05-18. Retrieved 2006-11-10.
  65. Massachusetts Institute of Technology (2011). "परमाणु ईंधन चक्र का भविष्य" (PDF). p. xv. Archived (PDF) from the original on 2011-06-01.
  66. "यूएई का चौथा पावर रिएक्टर निर्माणाधीन". www.world-nuclear-news.org. Archived from the original on 16 September 2017. Retrieved 4 May 2018.
  67. "अमीरात परमाणु ऊर्जा निगम (ईएनईसी) ने संयुक्त अरब अमीरात के शांतिपूर्ण परमाणु ऊर्जा कार्यक्रम की स्थिति पर एक परियोजना अद्यतन प्रदान की". www.fananews.com. Archived from the original on 6 October 2016. Retrieved 4 May 2018.
  68. Patel, Tara; Francois de Beaupuy (24 November 2010). "China Builds Nuclear Reactor for 40% Less Than Cost in France, Areva Says". Bloomberg. Archived from the original on 28 November 2010. Retrieved 2011-03-08.
  69. "Renewable Energy Market Update 2021 / Renewable electricity / Renewables deployment geared up in 2020, establishing a "new normal" for capacity additions in 2021 and 2022". IEA.org. International Energy Agency. May 2021. Archived from the original on 11 May 2021.
  70. Data: BP Statistical Review of World Energy, and Ember Climate (3 November 2021). "Electricity consumption from fossil fuels, nuclear and renewables, 2020". OurWorldInData.org. Our World in Data consolidated data from BP and Ember. Archived from the original on 3 November 2021.
  71. "The myth of renewable energy | Bulletin of the Atomic Scientists". Thebulletin.org. 2011-11-22. Archived from the original on 2013-10-07. Retrieved 2013-10-03.
  72. REN21 (2010). Renewables 2010 Global Status Report p. 15. Archived April 16, 2012, at the Wayback Machine
  73. "विकसित देशों में खाना पकाने के लिए ऊर्जा" (PDF). 2006. Archived (PDF) from the original on 2017-11-15. Retrieved 2018-07-13.
  74. REN21 (2011). "Renewables 2011: Global Status Report" (PDF). pp. 17, 18. Archived (PDF) from the original on 2015-09-24.
  75. REN21 (2013). "Renewables global futures report 2013" (PDF).[permanent dead link]
  76. International Energy Agency (2012). "Energy Technology Perspectives 2012" (PDF). Archived (PDF) from the original on 2012-07-08.
  77. United Nations Environment Programme Global Trends in Sustainable Energy Investment 2007: Analysis of Trends and Issues in the Financing of Renewable Energy and Energy Efficiency in OECD and Developing Countries Archived March 25, 2009, at the Wayback Machine (PDF), p. 3.
  78. World Energy Assessment (2001). Renewable energy technologies Archived June 9, 2007, at the Wayback Machine, p. 221.
  79. Steve Leone (25 August 2011). "U.N. Secretary-General: Renewables Can End Energy Poverty". Renewable Energy World. Archived from the original on 28 September 2013.
  80. "Renewables 2016: Global Status Report" (PDF). Archived (PDF) from the original on 2017-05-25. Retrieved 2017-05-24.
  81. 81.0 81.1 81.2 Worldwatch Institute (January 2012). "वैश्विक जलविद्युत का उपयोग और क्षमता बढ़ती है". Archived from the original on 2014-09-24. Retrieved 2014-01-11.
  82. Renewables 2011 Global Status Report, page 25, Hydropower Archived April 9, 2012, at the Wayback Machine, REN21, published 2011, accessed 2011-11-7.
  83. The World Wind Energy Association (2014). 2014 Half-year Report. WWEA. pp. 1–8.
  84. Global wind energy markets continue to boom – 2006 another record year Archived 2011-04-07 at the Wayback Machine (PDF).
  85. 85.0 85.1 85.2 85.3 "World Wind Energy Report 2010" (PDF). Report. World Wind Energy Association. February 2011. Archived from the original (PDF) on 4 September 2011. Retrieved 8 August 2011.
  86. "नवीकरणीय ऊर्जा". eirgrid.com. Archived from the original on 15 August 2011. Retrieved 22 November 2010.
  87. 87.0 87.1 87.2 REN21 (2011). "Renewables 2011: Global Status Report" (PDF). Archived from the original (PDF) on 2011-09-05.
  88. "यह पृष्ठ हटा दिया गया है - समाचार - द गार्जियन". The Guardian. Archived from the original on 2017-02-26.
  89. Spain Renewable Energy and High Penetration Archived June 9, 2012, at the Wayback Machine
  90. Terra-Gen Press Release Archived 2012-05-10 at the Wayback Machine, 17 April 2012
  91. BS Reporter (11 May 2012). "Suzlon creates country's largest wind park". business-standard.com. Archived from the original on 1 October 2012.
  92. "Top News". www.renewableenergyworld.com. Archived from the original on 5 January 2016. Retrieved 4 May 2018.
  93. 93.0 93.1 "Drilling Down: What Projects Made 2008 Such a Banner Year for Wind Power?". renewableenergyworld.com. Archived from the original on 2011-07-15.
  94. 94.0 94.1 AWEA: U.S. Wind Energy Projects – Texas Archived December 29, 2007, at the Wayback Machine
  95. FG Forrest; a. s.; fg {zavináč } fg {tečka} cz - Content Management System - Edee CMS; SYMBIO Digital, s. r. o. - Webdesign. "CEZ Group - The Largest Wind Farm in Europe Goes Into Trial Operation". cez.cz. Archived from the original on 2015-07-01.{{cite web}}: CS1 maint: multiple names: authors list (link)
  96. AWEA: U.S. Wind Energy Projects – Indiana Archived 2010-09-18 at the Wayback Machine
  97. Santillan-Jimenez Eduardo (2015). "Continuous catalytic deoxygenation of model and algal lipids to fuel-like hydrocarbons over Ni–Al layered double hydroxide". Catalysis Today. 258: 284–293. doi:10.1016/j.cattod.2014.12.004.
  98. 98.0 98.1 "कठिन अर्थव्यवस्था के बावजूद जैव ईंधन की वापसी". Worldwatch Institute. 2011-08-31. Archived from the original on 2012-05-30. Retrieved 2011-08-31.
  99. "प्रौद्योगिकी रोडमैप, परिवहन के लिए जैव ईंधन" (PDF). 2011. Archived (PDF) from the original on 2014-07-22.
  100. How Geothermal energy works Archived 2014-09-25 at the Wayback Machine. Ucsusa.org. Retrieved on 2013-04-24.
  101. Lay T., Hernlund J., Buffett B. A. (2008). "Core–mantle boundary heat flow". Nature Geoscience. 1 (1): 25–32. Bibcode:2008NatGe...1...25L. doi:10.1038/ngeo.2007.44.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  102. Nemzer, J. "भूतापीय ताप और शीतलन". Archived from the original on 1998-01-11.
  103. "Geothermal capacity | About BP | BP Global". Bp.com. Archived from the original on 2013-10-06. Retrieved 2013-10-05.
  104. Fridleifsson, Ingvar B.; Bertani, Ruggero; Huenges, Ernst; Lund, John W.; Ragnarsson, Arni; Rybach, Ladislaus (2008-02-11), O. Hohmeyer and T. Trittin, ed., The possible role and contribution of geothermal energy to the mitigation of climate change (pdf), IPCC Scoping Meeting on Renewable Energy Sources, Luebeck, Germany, pp. 59–80, retrieved 2009-04-06
  105. Glassley, William E. (2010). Geothermal Energy: Renewable Energy and the Environment, CRC Press, ISBN 9781420075700.
  106. Green Power Archived 2014-10-15 at the Wayback Machine. eweb.org
  107. Cothran, Helen (2002), Energy Alternatives, Greenhaven Press, ISBN 978-0737709049
  108. Fridleifsson, Ingvar (2001). "लोगों के लाभ के लिए भूतापीय ऊर्जा". Renewable and Sustainable Energy Reviews. 5 (3): 299–312. CiteSeerX 10.1.1.459.1779. doi:10.1016/S1364-0321(01)00002-8.
  109. Paul Gipe (4 April 2013). "100 प्रतिशत नवीकरणीय विजन बिल्डिंग". Renewable Energy World. Archived from the original on 6 October 2014.
  110. IPCC (2011). "अक्षय ऊर्जा स्रोतों और जलवायु परिवर्तन शमन पर विशेष रिपोर्ट" (PDF). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. p. 17. Archived from the original (PDF) on 2014-01-11.
  111. S. Pacala; R. Socolow (2004). "Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies" (PDF). Science. Science Vol. 305. 305 (5686): 968–972. Bibcode:2004Sci...305..968P. doi:10.1126/science.1100103. PMID 15310891. S2CID 2203046. Archived (PDF) from the original on 2015-08-12.
  112. Mark A. Delucchi; Mark Z. Jacobson (2011). "Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies" (PDF). Energy Policy. Elsevier Ltd. pp. 1170–1190. Archived (PDF) from the original on 2012-06-16.
  113. National Research Council (2010). Electricity from Renewable Resources: Status, Prospects, and Impediments. National Academies of Science. p. 4. doi:10.17226/12619. ISBN 978-0-309-13708-9. Archived from the original on 2014-03-27.
  114. Amory Lovins (March–April 2012). "जीवाश्म ईंधन के लिए एक विदाई". Foreign Affairs. 329 (5997): 1292–1294. Bibcode:2010Sci...329.1292H. doi:10.1126/science.1195449. PMID 20829473. S2CID 206529026. Archived from the original on 2012-07-07.
  115. "यह वास्तव में जलवायु परिवर्तन को उलटने के लिए क्या करेगा". ieee.org. 2014-11-18. Archived from the original on 24 November 2016. Retrieved 4 May 2018.
  116. "फिलिप्स टोरनाडो एशियाई कॉम्पैक्ट फ्लोरोसेंट". Philips. Archived from the original on 2012-08-04. Retrieved 2007-12-24.
  117. Richard L. Kauffman Obstacles to Renewable Energy and Energy Efficiency. in: From Silos to Systems: Issues in Clean Energy and Climate Change. A report on the work of the REIL Network, 2008-2010. Edited by Parker L et al. Yale School of Forestry & Environmental Studies 2010
  118. Diesendorf, Mark (2007). Greenhouse Solutions with Sustainable Energy, UNSW Press, p. 86.
  119. IEA (2021), Net Zero by 2050, IEA, Paris https://www.iea.org/reports/net-zero-by-2050, License: CC BY 4.0
  120. "The Twin Pillars of Sustainable Energy: Synergies between Energy Efficiency and Renewable Energy Technology and Policy". Aceee.org. Archived from the original on 2009-04-29. Retrieved 2010-07-16.
  121. Ross, Cullen (26 August 2016). "नवीकरणीय ऊर्जा नीतियों का मूल्यांकन" (PDF). The Australian Journal of Agricultural and Resource Economics. 61 (1): 1–18. doi:10.1111/1467-8489.12175. hdl:10.1111/1467-8489.12175. S2CID 157313814.
  122. "समाचार". Lawrence Livermore National Laboratory. Archived from the original on 2010-09-22.
  123. Fuel Cell Materials Technology in Vehicular Propulsion: Report. National Academies, 1983.
  124. "Oak Ridge National Laboratory — Biomass, Solving the science is only part of the challenge". Archived from the original on 2013-07-02. Retrieved 2008-01-06.
  125. "Oil Price Leap in the Early Nineties," Noroil, December 1989, pages 35–38.
  126. Opec Oil Outlook to 2025 Table 4, Page 12
  127. Sustainable Development and Innovation in the Energy Sector. Ulrich Steger, Wouter Achterberg, Kornelis Blok, Henning Bode, Walter Frenz, Corinna Gather, Gerd Hanekamp, Dieter Imboden, Matthias Jahnke, Michael Kost, Rudi Kurz, Hans G. Nutzinger, Thomas Ziesemer. Springer, December 5, 2005.
  128. "Energy independence and security: A reality check" (PDF). deloitte.com. Archived from the original (PDF) on April 5, 2013.
  129. Brittle Power: Energy Plan for National Security Archived 2009-07-02 at the Wayback Machine. Amory B. Lovins and L. Hunter Lovins (1982).
  130. "The Fragility of Domestic Energy." Archived 2009-01-06 at the Wayback Machine Amory B. Lovins and L. Hunter Lovins. Atlantic Monthly. November 1983.
  131. "Our Electric Future." Archived 2014-08-25 at the Wayback Machine Andrew Grove. The American. July/August 2008.
  132. Andrew Grove and Robert Burgelman (December 2008). "ऊर्जा लचीलापन के लिए एक विद्युत योजना". McKinsey Quarterly. Archived from the original on 2014-08-25. Retrieved 2010-07-20.
  133. Resilience in Energy: Building Infrastructure Today for Tomorrow's Automotive Fuel. Reform Institute. March 2009.[permanent dead link]
  134. World energy consumption outlook from the International Energy Outlook, published by the U.S. DOE Energy Information Administration
  135. Source: Energy Information AdministrationInternational Energy Outlook 2004 Archived 2017-07-27 at the Wayback Machine
  136. Mandil, C. (2008) "Our energy for the future". S.A.P.I.EN.S. 1 (1) Archived 2009-04-28 at the Wayback Machine
  137. "जीवाश्म ईंधन खा रहे हैं". Resilience. Archived from the original on 2007-06-11.
  138. Peak Oil: the threat to our food security Archived July 14, 2009, at the Wayback Machine retrieved 28 May 2009
  139. Faunce TA, Lubitz W, Rutherford AW, MacFarlane D, Moore, GF, Yang P, Nocera DG, Moore TA, Gregory DH, Fukuzumi S, Yoon KB, Armstrong FA, Wasielewski MR, Styring S. ‘Energy and Environment Case for a Global Project on Artificial Photosynthesis.’ Energy and Environmental Science 2013, 6 (3), 695 - 698 DOI:10.1039/C3EE00063J Styring, Stenbjorn; Wasielewski, Michael R.; Armstrong, Fraser A.; Yoon, Kyung Byung; Fukuzumi, Shunichi; Gregory, Duncan H.; Moore, Tom A.; Nocera, Daniel G.; Yang, Peidong; Moore, Gary F.; MacFarlane, Douglas; Rutherford, A. W. (Bill); Lubitz, Wolfgang; Faunce, Thomas A. (2013-02-20). "Energy and environment policy case for a global project on artificial photosynthesis". Energy & Environmental Science. 6 (3): 695–698. doi:10.1039/C3EE00063J. (accessed 13 March 2013)
  140. Joan Lisa Bromberg (October 2000). नासा और अंतरिक्ष उद्योग. JHU Press. p. 1. ISBN 978-0-8018-6532-9. Retrieved 10 June 2011.
  141. Kai-Uwe Schrogl (2 August 2010). Yearbook on Space Policy 2008/2009: Setting New Trends. Springer. p. 49. ISBN 978-3-7091-0317-3. Retrieved 10 June 2011.
  142. Propulsion Techniques: Action and Reaction edited by Peter J. Turchi. p341
  143. Climate Change: The Science, Impacts and Solutions. Edited by A. Pittock
  144. "पश्चिम की परमाणु गलती". www.msn.com. Retrieved 2021-12-08.
  145. "How Do Wind Turbines Work?". Energy.gov (in English). Retrieved 2020-12-10.
  146. "बिब्लियोबोर्ड". openresearchlibrary.org. Retrieved 2020-12-10.
  147. Ledec, George C.; Rapp, Kennan W.; Aiello, Roberto G. (2011-12-01). "Greening the Wind : Environmental and Social Considerations for Wind Power Development" (in English). hdl:10986/2388. {{cite journal}}: Cite journal requires |journal= (help)
  148. "How Geothermal Energy Works | Union of Concerned Scientists". www.ucsusa.org (in English). Retrieved 2020-12-14.
  149. Society, National Geographic (2012-11-20). "भू - तापीय ऊर्जा". National Geographic Society (in English). Retrieved 2020-12-14.
  150. US EPA, OAR. "भू - तापीय ऊर्जा". archive.epa.gov (in English). Retrieved 2020-12-14.
  151. "Where is Geothermal Energy Used?". GreenFire Energy Inc. (in English). Retrieved 2020-12-14.
  152. Wong, Bill (June 28, 2011), "Drake Landing Solar Community" Archived 2016-03-04 at the Wayback Machine, IDEA/CDEA District Energy/CHP 2011 Conference, Toronto, pp. 1–30, retrieved 21 April 2013
  153. Wong B., Thornton J. (2013). Integrating Solar & Heat Pumps. Renewable Heat Workshop.


स्रोत

पत्रिकाओं


बाहरी संबंध