हाइड्रोजन ईंधन

From Vigyanwiki

हाइड्रोजन ईंधन हाइड्रोजन को संदर्भित करता है जिसे ऑक्सीजन के साथ ईंधन के रूप में जलाया जाता है। यह शून्य-कार्बन है, इसे ऐसी प्रक्रिया में बनाया जाए जिसमें कार्बन सम्मिलित न हो। इसका उपयोग ईंधन कोशिकाओं या आंतरिक दहन इंजनों में किया जा सकता है (हाइड्रोजन आंतरिक दहन इंजन वाहन देखें)। हाइड्रोजन वाहनों के संबंध में, वाणिज्यिक [[ईंधन सेल वाहनों]] जैसे यात्री कारों में हाइड्रोजन का उपयोग प्रारंभ हो गया है, और कई वर्षों से ईंधन सेल बसों में इसका उपयोग किया जा रहा है। यह अंतरिक्ष यान प्रणोदन के लिए ईंधन के रूप में भी प्रयोग किया जाता है और हाइड्रोजन संचालित विमानों के लिए प्रस्तावित किया जा रहा है।

उत्पादन

क्योंकि शुद्ध हाइड्रोजन बड़ी मात्रा में पृथ्वी पर स्वाभाविक रूप से नहीं होता है, इसे सामान्यतः औद्योगिक पैमाने पर प्राथमिक ऊर्जा इनपुट की आवश्यकता होती है।[1] हाइड्रोजन ईंधन का उत्पादन मीथेन से या पानी के इलेक्ट्रोलिसिस द्वारा किया जा सकता है।[2] 2020 तक, बायोमास गैसीकरण या पानी के इलेक्ट्रोलिसिस जैसे अन्य मार्गों द्वारा केवल थोड़ी मात्रा के साथ भाप में शोधन या मीथेन और कोयले के गैसीकरण के आंशिक ऑक्सीकरण द्वारा जीवाश्म ईंधन से अधिकांश हाइड्रोजन (% 95%) का उत्पादन किया जाता है।[3][4][5]

भाप-मीथेन शोधन, बड़ी मात्रा में हाइड्रोजन के उत्पादन के लिए वर्तमान अग्रणी तकनीक,[6] मीथेन से हाइड्रोजन निकालती है। चूंकि, यह प्रतिक्रिया जीवाश्म कार्बन डाइऑक्साइड और कार्बन मोनोआक्साइड को वायुमंडल में छोड़ती है, जो प्राकृतिक कार्बन चक्र के लिए ग्रीनहाउस गैसें हैं, और इस प्रकार जलवायु परिवर्तन में योगदान करती हैं।[7] इलेक्ट्रोलिसिस में, हाइड्रोजन और ऑक्सीजन को पृथक करने के लिए विद्युत को पानी से चलाया जाता है। यह विधि पवन, सौर, भू-तापीय, जलविद्युत, जीवाश्म ईंधन, बायोमास, परमाणु और कई अन्य ऊर्जा स्रोतों का उपयोग कर सकती है।[8] इस प्रक्रिया से हाइड्रोजन प्राप्त करने का अध्ययन कम लागत पर घरेलू स्तर पर उत्पादन करने के व्यवहार्य विधि के रूप में किया जा रहा है। शोधकर्ता कृत्रिम पत्ते भी विकसित कर रहे हैं जो उत्प्रेरक के साथ प्रकाश अवशोषक को एकीकृत करते हैं और सीधे पानी से हाइड्रोजन का उत्पादन कर सकते हैं। चूंकि यह तकनीक अभी भी प्रारंभिक चरण में है, हल्के उपकरणों के फ्लोटिंग फार्म दूरस्थ समुदायों को संभावित रूप से आपूर्ति कर सकते हैं।[9]

शिन्ज़ो अबे ने मार्च 2020 में FH2R सुविधा का दौरा किया

हाइड्रोजन ईंधन के उत्पादन के लिए दुनिया की सबसे बड़ी सुविधा का प्रमाणित किया जाता है[10]फुकुशिमा हाइड्रोजन एनर्जी रिसर्च फील्ड (FH2R),10 मेगावाट-श्रेणी की हाइड्रोजन उत्पादन इकाई है, जिसका उद्घाटन मार्च 2020 में नामी, फुकुशिमा प्रान्त में हुआ था।[11] साइट 180,000 मीटर2 भूमि है, जिसमें से अधिकांश पर सौर सरणी का प्रभुत्व है; हाइड्रोजन ईंधन का उत्पादन करने के लिए ग्रिड से विद्युत का उपयोग पानी के इलेक्ट्रोलिसिस के लिए भी किया जाता है।[10]

उत्पादन को सामान्यतः रंग लेबल के संदर्भ में वर्गीकृत किया जाता है; 'ग्रे हाइड्रोजन' औद्योगिक प्रक्रिया के उप-उत्पाद के रूप में उत्पादित होता है, 'ब्लू हाइड्रोजन' उत्पादन प्रक्रिया के माध्यम से उत्पादित होता है जहां CO2 का उत्पादन भी किया जाता है, फिर बाद में कार्बन को पकड़ने और भंडारण के माध्यम से प्रभुत्व स्थापित कर लिया जाता है, और अंत में 'हरा हाइड्रोजन' का उत्पादन पूरी तरह से नवीकरणीय स्रोतों से किया जाता है।

ऊर्जा

आवर्त सारणी में हाइड्रोजन प्रथम समूह तथा प्रथम आवर्त में पाया जाता है अर्थात् यह सबसे हल्का तत्व है। हाइड्रोजन वायुमंडल में अपने शुद्ध रूप में विरले ही पाई जाती है, H2.[7]वायु में जलने वाली शुद्ध हाइड्रोजन की ज्वाला में हाइड्रोजन (H2) ऑक्सीजन (O2) के साथ अभिक्रिया करके पानी (H2O) बनाता है और ऊर्जा मुक्त करता है।

2H2 (g) + O2 (g) → 2H2O (g) + ऊर्जा

शुद्ध ऑक्सीजन के अतिरिक्त वायुमंडलीय हवा में, हाइड्रोजन के दहन से जल वाष्प के साथ थोड़ी मात्रा में नाइट्रोजन ऑक्साइड निकल सकते हैं। जारी की गई ऊर्जा हाइड्रोजन को ईंधन के रूप में उपयोग करने की अनुमति देती है। इलेक्ट्रोकेमिकल सेल में, उस ऊर्जा का उपयोग अपेक्षाकृत उच्च दक्षता के साथ किया जा सकता है। यदि ऊर्जा का उपयोग ऊष्मा उत्पन्न करने के लिए किया जाता है, तो कार्नोट की प्रमेय (ऊष्मप्रवैगिकी) # ईंधन कोशिकाओं और बैटरी स्थानों के लिए प्रयोज्यता प्रक्रिया की तापीय क्षमता को सीमित कर देती है।

हाइड्रोजन को सामान्यतः विद्युत की तरह ऊर्जा वाहक माना जाता है, क्योंकि इसे सौर ऊर्जा, बायोमास, विद्युत ऊर्जा (जैसे फोटोवोल्टिक प्रणाली के रूप में या पवन टर्बाइनों के माध्यम से), या हाइड्रोकार्बन जैसे प्राथमिक ऊर्जा स्रोत से उत्पादित किया जाना चाहिए। प्राकृतिक गैस या कोयला।[8]प्राकृतिक गैस का उपयोग कर पारंपरिक हाइड्रोजन उत्पादन महत्वपूर्ण पर्यावरणीय प्रभावों को प्रेरित करता है; जैसा कि किसी भी हाइड्रोकार्बन के उपयोग से कार्बन डाइऑक्साइड उत्सर्जित होता है।[12] इसी समय, प्राकृतिक गैस में 20% हाइड्रोजन (इष्टतम भाग जो गैस पाइप और उपकरणों को प्रभावित नहीं करता है) को जोड़ने से हीटिंग और खाना पकाने से CO2 उत्सर्जन कम हो सकता है।[13] हाइड्रोजन भारी मात्रा में पानी, हाइड्रोकार्बन और अन्य कार्बनिक पदार्थों में बंद है।

ईंधन के रूप में हाइड्रोजन का उपयोग करने की चुनौतियों में से इन यौगिकों से हाइड्रोजन को कुशलतापूर्वक निकालने में सक्षम होना है। वर्तमान में, भाप शोधन, जो प्राकृतिक गैस के साथ उच्च तापमान वाली भाप को जोड़ती है, उत्पादित अधिकांश हाइड्रोजन के लिए उत्तरदायी है।[14] हाइड्रोजन उत्पादन की यह विधि 700-1100 °C पर होती है, और इसकी दक्षता 60-75% होती है।[15] हाइड्रोजन को इलेक्ट्रोलिसिस के माध्यम से पानी से भी उत्पादित किया जा सकता है, जो कम कार्बन-सघन है | यदि प्रतिक्रिया को चलाने के लिए उपयोग की जाने वाली विद्युत जीवाश्म-ईंधन विद्युत संयंत्रों से नहीं जबकि नवीकरणीय या परमाणु ऊर्जा स्रोतों से आती है। प्रोटॉन एक्सचेंज मेम्ब्रेन (पीईएम) इलेक्ट्रोलाइज़र का उपयोग करके 2030 तक 82-86% दक्षता के लक्ष्य के साथ जल इलेक्ट्रोलिसिस की दक्षता लगभग 70-80% है,[16][17][18]

ईंधन के लिए हाइड्रोजन के उत्पादन के अन्य प्रकारों का भी वर्तमान में परीक्षण किया जा रहा है। नवीकरणीय तरल शोधन अंतिम उपयोग के बिंदु के निकट हाइड्रोजन का उत्पादन करने के लिए इथेनॉल जैसे तरल ईंधन लेने और उच्च तापमान भाप के साथ प्रतिक्रिया करने की प्रक्रिया है। उत्प्रेरक की उपस्थिति में, हाइड्रोजन, कार्बन मोनोऑक्साइड और कार्बन डाइऑक्साइड का उत्पादन होता है। परिणामी कार्बन मोनोऑक्साइड को जल-गैस शिफ्ट प्रतिक्रिया में अधिक कार्बन डाइऑक्साइड और हाइड्रोजन का उत्पादन करने के लिए भाप के साथ उच्च तापमान पर प्रतिक्रिया दी जाती है। फिर हाइड्रोजन को पृथक करके शुद्ध किया जाता है। [19] हाइड्रोजन का उत्पादन करने के लिए किण्वन के लिए अन्य विधि स्टार्च युक्त फीडस्टॉक्स का उपयोग कर रही है। इसे डार्क किण्वन के रूप में जाना जाता है और मुख्य रूप से कार्बोहाइड्रेट को हाइड्रोजन में किण्वन करने के लिए अवायवीय बैक्टीरिया का उपयोग करता है।[20] अन्य प्रक्रियाएं फोटोहेटरोट्रोफिक प्रक्रियाएं हैं। इस प्रक्रिया में, शुद्ध गैर-सल्फर बैक्टीरिया (पीएनएस) या हरी शैवाल नामक प्रोकैरियोटिक सूक्ष्मजीव प्रकाश संश्लेषण के मार्ग के माध्यम से हाइड्रोजन का उत्पादन करने के लिए प्रकाश के साथ प्रतिक्रिया करता है। गहरे किण्वन के विपरीत, ये प्रक्रियाएं आणविक हाइड्रोजन के उत्पादन के लिए हाइड्रोजनेज और नाइट्रोजिनेस जैसे एंजाइमों का उपयोग करती हैं। [21]

वर्तमान में, हाइड्रोजन गैस के उत्पादन में कमी मुख्य रूप से जीवाश्म ईंधन से आ रही है। वास्तव में, 96% हाइड्रोजन का उत्पादन सीधे जीवाश्म ईंधन से होता है, जिनमें से अधिकांश प्राकृतिक गैस (48%) से आता है। ग्रीन हाइड्रोजन में बिना ब्रेकडाउन के इलेक्ट्रोलिसिस द्वारा जीवाश्म ईंधन से अप्रत्यक्ष रूप से केवल 4% हाइड्रोजन का उत्पादन होता है। [22]

ग्रीन हाइड्रोजन ऐसी हाइड्रोजन है जो नवीकरणीय ऊर्जा से उत्पन्न होती है। इसमें सौर, पवन और जलविद्युत शक्ति जैसे हरित स्रोतों से आने वाली विद्युत के साथ इलेक्ट्रोलिसिस सम्मिलित है। ब्लू हाइड्रोजन हाइड्रोजन है जो उन्नत प्रक्रियाओं में प्राकृतिक गैस से उत्पन्न होती है जो ग्रीनहाउस गैस उत्सर्जन का उत्सर्जन करती है। ग्रे हाइड्रोजन भाप मीथेन शोधन, या भाप शोधन से उत्पन्न होता है, जिसमें नीले हाइड्रोजन की तुलना में कुल ग्रीनहाउस गैस उत्सर्जन अधिक होता है। अंत में, कोयला वर्गीकरण में कोयले से ब्राउन हाइड्रोजन का उत्पादन किया जाता है, जिसमें उत्पादित हाइड्रोजन के प्रति टन सबसे अधिक ग्रीनहाउस गैस उत्सर्जन होता है। हाइड्रोलिसिस से परे हरित हाइड्रोजन उत्पादन के नवीनतम स्रोत में थर्मोकेमिकल जल विभाजन। परमाणु रिएक्टर की उपस्थिति में क्लोरीन और सल्फर का उपयोग करके, हाइड्रोजन का उत्पादन करने के लिए सूर्य के प्रकाश को सौर थर्मोकेमिकल हाइड्रोजन (एसटीसीएच) रिएक्टर के ऊपर केंद्रित किया जा सकता है। [23]

एक बार उत्पादित होने के बाद, हाइड्रोजन का उपयोग प्राकृतिक गैस के समान ही किया जा सकता है - इसे विद्युत और ऊष्मा उत्पन्न करने के लिए ईंधन कोशिकाओं तक पहुँचाया जा सकता है, संयुक्त चक्र गैस टरबाइन में बड़ी मात्रा में केंद्रीय रूप से उत्पादित विद्युत का उत्पादन करने के लिए उपयोग किया जाता है या दहन चलाने के लिए जलाया जाता है। इंजन; कोई कार्बन या मीथेन उत्सर्जन उत्पन्न करने वाली सभी विधियाँ।[24] प्रत्येक स्थिति में हाइड्रोजन ऑक्सीजन के साथ मिलकर पानी बनाता है। यह भी इसके सबसे महत्वपूर्ण लाभों में से है क्योंकि हाइड्रोजन ईंधन पर्यावरण के अनुकूल है। हाइड्रोजन ज्वाला में ऊष्मा नवगठित पानी के अणुओं से उज्ज्वल उत्सर्जन है। पानी के अणु प्रारंभिक गठन पर उत्तेजित अवस्था में होते हैं और फिर जमीनी अवस्था में संक्रमण करते हैं; थर्मल विकिरण जारी करने वाला संक्रमण। हवा में जलने पर, तापमान लगभग 2000 डिग्री सेल्सियस (प्राकृतिक गैस के समान) होता है।[25][26]

ऐतिहासिक रूप से, कार्बन यौगिक ऊर्जा के सबसे व्यावहारिक वाहक रहे हैं, क्योंकि हाइड्रोजन और कार्बन संयुक्त अधिक मात्रा में घने होते हैं, चूंकि हाइड्रोजन में मीथेन या गैसोलीन के रूप में तीन गुना विशिष्ट ऊर्जा (ऊर्जा प्रति यूनिट द्रव्यमान) होती है। चूंकि हाइड्रोजन सबसे हल्का तत्व है और इस प्रकार लोहे से बने पुराने प्राकृतिक गैस पाइपों से रिसाव की प्रवृत्ति थोड़ी अधिक होती है, प्लास्टिक (पॉलीइथाइलीन पीई100) पाइपों से रिसाव लगभग 0.001% पर बहुत कम होने की अपेक्षा है।[25][26]

कारण यह है कि भाप-मीथेन शोधन पारंपरिक रूप से इलेक्ट्रोलिसिस के पक्ष में रहा है, जबकि मीथेन शोधन सीधे ऊर्जा के स्रोत के रूप में प्राकृतिक गैस का उपयोग करता है, इलेक्ट्रोलिसिस को इसके लिए विद्युत ऊर्जा की आवश्यकता होती है। जब विद्युत ऊर्जा (पवन टर्बाइनों और सौर पीवी के माध्यम से) के उत्पादन की लागत प्राकृतिक गैस की लागत से कम हो जाती है, तो इलेक्ट्रोलिसिस एसएमआर से सस्ता हो जाएगा।[27]

प्राकृतिक गैस सामान्यतः उपलब्ध होने से पहले, कुछ स्थितियों में पानी के इलेक्ट्रोलिसिस द्वारा उद्योग के लिए टन भार हाइड्रोजन का उत्पादन किया जाता था, चूंकि ईंधन के रूप में उपयोग के लिए नहीं। रिस्डन, तस्मानिया, ऑस्ट्रेलिया में स्थित संयंत्र में, प्रति वर्ष 60,963 टन अमोनियम सल्फेट उर्वरक का उत्पादन करने के लिए निर्माण किया गया था, नाइट्रोजन और हाइड्रोजन पर प्रतिक्रिया करके अमोनिया को संश्लेषित किया गया था। नाइट्रोजन को द्रव वायु के आसवन द्वारा प्राप्त किया गया था और हाइड्रोजन को विद्युत अपघटन द्वारा बनाया गया था। डिजाइन हाइड्रोजन उत्पादन दर 2,790 टन प्रति वर्ष थी और डिजाइन अमोनिया उत्पादन दर 15,714 टन प्रति वर्ष थी। उत्पादन 1956 के अंत में प्रारंभ हुआ और संयंत्र 1986 तक चला। मरकरी आर्क रेक्टिफायर का उपयोग किया गया। कुछ अमोनिया का उत्पादन 1993 तक जारी रहा।[28] इलेक्ट्रोलिसिस के लिए विद्युत हाइड्रो-इलेक्ट्रिक पावर स्टेशनों द्वारा उत्पन्न की गई थी।

उपयोग

हाइड्रोजन ईंधन तरल-प्रणोदक रॉकेट, कारों, ट्रकों, ट्रेनों, नावों और हवाई जहाजों, पोर्टेबल ईंधन सेल अनुप्रयोगों या स्थिर ईंधन सेल अनुप्रयोगों के लिए शक्ति (भौतिकी) प्रदान कर सकता है, जो विद्युत मोटर को शक्ति प्रदान कर सकता है।[29] हाइड्रोजन को नवीकरणीय ऊर्जा का प्राथमिक स्थायी स्रोत माना जाता है और उन्नत ऊर्जा रूपांतरण प्रणालियों के लिए इसकी अत्यधिक आवश्यकता होती है।[30][31]

कारों में हाइड्रोजन ईंधन का उपयोग करने की समस्या हाइड्रोजन का भंडारण उच्च दबाव वाले टैंक या क्रायोजेनिक टैंक में हाइड्रोजन के भंडारण से उत्पन्न होती है।[32] जटिल धातु हाइड्राइड्स जैसे वैकल्पिक भंडारण मीडिया विकास में हैं। सामान्यतः, बैटरी कारों के आकार या छोटे वाहनों के लिए अधिक उपयुक्त होती है, लेकिन भारी ट्रकों जैसे बड़े वाहनों के लिए हाइड्रोजन उत्तम हो सकती है, क्योंकि हाइड्रोजन ऊर्जा भंडारण अधिक श्रेणी और तेज ईंधन भरने का समय प्रदान करता है।[33]

हाइड्रोजन ईंधन का उपयोग स्थिर विद्युत उत्पादन संयंत्रों को विद्युत देने या हीटिंग के लिए प्राकृतिक गैस का विकल्प प्रदान करने के लिए भी किया जा सकता है।

ईंधन सेल

जापान में हाइड्रोजन रिचार्जिंग स्टेशन

ईंधन सेल अपनी उच्च दक्षता, कम शोर और सीमित गतिमान भागों के कारण हाइड्रोजन से विद्युत शक्ति में ऊर्जा रूपांतरण के लिए सबसे आकर्षक विकल्प प्रस्तुत करते हैं। हाइड्रोजन से स्थिर और मोबाइल विद्युत उत्पादन दोनों के लिए ईंधन सेल रुचि रखते हैं। ईंधन कोशिकाओं को प्रायः वाहन प्रणोदन प्रणाली का भाग माना जाता है।

दहन इंजन का उपयोग करने की तुलना में बैटरी और विद्युत की मोटर सहित विद्युतीकृत पावरट्रेन को विद्युत देने के लिए ईंधन सेल का उपयोग करना दो से तीन गुना अधिक कुशल है, चूंकि इनमें से कुछ लाभ विद्युतीकृत पावरट्रेन (अर्थात पुनर्योजी ब्रेकिंग सहित) से संबंधित हैं। इसका अर्थ यह है कि हाइड्रोजन दहन इंजन की तुलना में ईंधन सेल में हाइड्रोजन का उपयोग करके अधिक ईंधन बचत उपलब्ध है।

हाइड्रोजन में आंतरिक दहन इंजन रूपांतरण

मोनो-ईंधन हाइड्रोजन दहन के साथ, वाणिज्यिक वाहनों में दहन इंजनों में हाइड्रोजन-डीजल मिश्रण पर चलने के लिए परिवर्तित होने की क्षमता होती है। यह यूके में प्रोटोटाइप में प्रदर्शित किया गया है, जहां सामान्य ड्राइविंग परिस्थितियों के समय उनके CO2 उत्सर्जन में 40% तक की कमी आई है।[34] यह दोहरे-ईंधन लचीलेपन से सीमा की चिंता समाप्त हो जाती है क्योंकि वाहन वैकल्पिक रूप से केवल डीजल पर ही भर सकते हैं जब कोई हाइड्रोजन ईंधन उपलब्ध नहीं होता है। इंजनों में अपेक्षाकृत साधारण संशोधनों की आवश्यकता है, साथ ही 350 बार के संपीड़न पर हाइड्रोजन टैंकों को जोड़ने की भी आवश्यकता है।[35]

वोल्वो एफएच16 हेवी-ड्यूटी ट्रक के केवल हाइड्रोजन का उपयोग करने के लिए 100% रूपांतरण की दक्षता का परीक्षण करने के लिए परीक्षण चल रहे हैं। सीमा 300 किमी/17 किलो होने की अपेक्षा है;[36] जिसका अर्थ मानक डीजल इंजन से उत्तम दक्षता है[37] (जहां गैसोलीन गैलन समतुल्य की सन्निहित ऊर्जा)।

पारंपरिक ईंधन की तुलना में, यदि हाइड्रोजन के लिए कम कीमत (€5/किग्रा),[38] यूरोप या यूके में इस प्रकार के रूपांतरण के माध्यम से महत्वपूर्ण ईंधन बचत की जा सकती है। यूएस में डीजल/गैसोलीन के साथ प्रतिस्पर्धा करने के लिए कम कीमत की आवश्यकता होगी, क्योंकि इन ईंधनों पर उतना अधिक कर नहीं लगाया जाता है।

हाइड्रोजन का उपयोग करने वाले दहन इंजन रुचि रखते हैं क्योंकि प्रौद्योगिकी मोटर वाहन उद्योग में कम महत्वपूर्ण परिवर्तन प्रदान करती है, और संभावित रूप से पूरी तरह से विद्युत या ईंधन सेल विकल्पों की तुलना में वाहन की कम लागत वाली लागत होती है। चूंकि, इंजन की गैर-शून्य उत्सर्जन प्रकृति का अर्थ है कि यह शहर के शून्य उत्सर्जन क्षेत्रों में काम नहीं कर पाएगा, जब तक कि यह हाइब्रिड पावरट्रेन का भाग न हो।[citation needed]


कमियां

हाइड्रोजन में प्रति इकाई द्रव्यमान में उच्च ऊर्जा सामग्री होती है। चूंकि, कमरे के तापमान और वायुमंडलीय दबाव पर, इसमें तरल ईंधन या यहां तक ​​कि प्राकृतिक गैस की तुलना में प्रति इकाई आयतन में बहुत कम ऊर्जा की मात्रा होती है। इस कारण से, सामान्यतः इसका तापमान 33 K से कम करके इसे या तो संकुचित या द्रवीभूत किया जाता है। उच्च दबाव वाले टैंकों का वजन उनके द्वारा धारण किए जा सकने वाले हाइड्रोजन से कहीं अधिक होता है। उदाहरण के लिए 2014 टोयोटा भविष्य में, पूर्ण टैंक में हाइड्रोजन के भार से केवल 5.7% होता है, शेष द्रव्यमान टैंक का होता है।[39]

हाइड्रोजन ईंधन इसकी कम प्रज्वलन ऊर्जा और उच्च दहन ऊर्जा के कारण संकटजनक है, और क्योंकि यह टैंकों से सरलता से रिसाव करता है।[40] हाइड्रोजन फिलिंग स्टेशनों पर विस्फोट की सूचना मिली है।[41] हाइड्रोजन ईंधन भरने वाले स्टेशन, जैसे पेट्रोल, सामान्यतः हाइड्रोजन आपूर्तिकर्ताओं से ट्रक द्वारा हाइड्रोजन की डिलीवरी प्राप्त करते हैं। सभी वस्तु वितरण प्रणालियों के समान, आपूर्ति सुविधा में रुकावट कई ईंधन भरने वाले स्टेशनों को बंद कर सकती है।[42]

यह भी देखें

संदर्भ

टिप्पणियाँ

  1. Wang, Feng (March 2015). "Thermodynamic analysis of high-temperature helium heated fuel reforming for hydrogen production". International Journal of Energy Research. 39 (3): 418–432. doi:10.1002/er.3263. S2CID 93689484.
  2. Jones, J.C. (March 2015). "Energy-return-on-energy-invested for hydrogen fuel from the steam reforming of natural gas". Fuel. 143: 631. doi:10.1016/j.fuel.2014.12.027.
  3. Roberts, David (2018-02-16). "This company may have solved one of the hardest problems in clean energy". Vox (in English). Retrieved 2019-10-30.
  4. Ogden, J.M. (1999). "Prospects for building a hydrogen energy infrastructure". Annual Review of Energy and the Environment. 24: 227–279. doi:10.1146/annurev.energy.24.1.227.
  5. "Life cycle emissions of hydrogen". 4thgeneration.energy. Retrieved 2020-05-27.
  6. U.S. Department of Energy. (2007 Feb). Potential for hydrogen production from key renewable resources in the United States. (Technical Report NREL/TP-640-41134). National Renewable Energy Laboratory Golden, CO: Milbrandt, A. & Mann, M. Retrieved from: http://www.afdc.energy.gov/afdc/pdfs/41134.pdf
  7. 7.0 7.1 Altork, L.N. & Busby, J. R. (2010 Oct). Hydrogen fuel cells: part of the solution. Technology & Engineering Teacher, 70(2), 22–27.
  8. 8.0 8.1 Florida Solar Energy Center. (n.d.). Hydrogen Basics. Retrieved from: http://www.fsec.ucf.edu/en/consumer/hydrogen/basics/index.htm
  9. Andrei, Virgil; Ucoski, Geani M.; Pornrungroj, Chanon; Uswachoke, Chawit; Wang, Qian; Achilleos, Demetra S.; Kasap, Hatice; Sokol, Katarzyna P.; Jagt, Robert A.; Lu, Haijiao; Lawson, Takashi; Wagner, Andreas; Pike, Sebastian D.; Wright, Dominic S.; et al. (2022-08-17). "Floating perovskite-BiVO4 devices for scalable solar fuel production". Nature (in English). 608 (7923): 518–522. Bibcode:2022Natur.608..518A. doi:10.1038/s41586-022-04978-6. ISSN 1476-4687. S2CID 251645379.
  10. 10.0 10.1 "The world´s largest-class hydrogen production, Fukushima Hydrogen Energy Research Field (FH2R) now is completed at Namie town in Fukushima". Toshiba Energy Press Releases. Toshiba Energy Systems and Solutions Corporations. 7 March 2020. Retrieved 1 April 2020.
  11. "Opening Ceremony of Fukushima Hydrogen Energy Research Field (FH2R) Held with Prime Minister Abe and METI Minister Kajiyama". METI News Releases. Ministry of Economy, Trade and Industry. 9 March 2020. Retrieved 1 April 2020.
  12. Zehner, Ozzie (2012). Green Illusions. Lincoln and London: University of Nebraska Press. pp. 1–169, 331–42.
  13. "Climate change hope for hydrogen fuel". BBC News. 2 January 2020.
  14. "Alternative Fuels Data Center: Hydrogen Basics". www.afdc.energy.gov. Retrieved 2016-02-27.
  15. Kalamaras, Christos M.; Efstathiou, Angelos M. (2013). "Hydrogen Production Technologies: Current State and Future Developments". Conference Papers in Energy. 2013: 1–9. doi:10.1155/2013/690627.
  16. Stolten, Detlef (Jan 4, 2016). Hydrogen Science and Engineering: Materials, Processes, Systems and Technology. John Wiley & Sons. p. 898. ISBN 9783527674299. Retrieved 22 April 2018.
  17. "ITM – Hydrogen Refuelling Infrastructure – February 2017" (PDF). level-network.com. p. 12. Retrieved 17 April 2018.
  18. "Cost reduction and performance increase of PEM electrolysers" (PDF). fch.europa.eu. Fuel Cells and Hydrogen Joint Undertaking. p. 9. Retrieved 17 April 2018.
  19. "Hydrogen Production: Biomass-Derived Liquid Reforming".
  20. "Fermentative Hydrogen Production - an overview | ScienceDirect Topics".
  21. Antonopoulou, G.; Ntaikou, I.; Stamatelatou, K.; Lyberatos, G. (2011). "Biological and fermentative production of hydrogen". Handbook of Biofuels Production. pp. 305–346. doi:10.1533/9780857090492.2.305. ISBN 9781845696795.
  22. Kothari, Richa; Buddhi, D.; Sawhney, R.L. (2008). "Comparison of environmental and economic aspects of various hydrogen production methods". Renewable and Sustainable Energy Reviews. 12 (2): 553–563. doi:10.1016/j.rser.2006.07.012.
  23. Safari, Farid; Dincer, Ibrahim (2020). "A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production". Energy Conversion and Management. 205: 112182. doi:10.1016/j.enconman.2019.112182. S2CID 214089650.
  24. Ono, Katsutoshi (January 2015). "Fundamental Theories on a Combined Energy Cycle of an Electrostatic Induction Electrolytic Cell and Fuel Cell to Produce Fully Sustainable Hydrogen Energy". Electrical Engineering in Japan. 190 (2): 1–9. doi:10.1002/eej.22673. S2CID 111289549.
  25. 25.0 25.1 "Energy Thoughts and Surprises". 2016-11-17. Retrieved 22 April 2018.
  26. 26.0 26.1 Sadler, Dan (2018-04-06). "100% hydrogen unlocks everything". medium.com. cH2ange. Retrieved 22 April 2018.
  27. Philibert, Cédric. "Commentary: Producing industrial hydrogen from renewable energy". iea.org. International Energy Agency. Retrieved 22 April 2018.
  28. Nick Ramshaw "ELECTROLYTIC ZINC WORKS Nomination for a Heritage Recognition Award" Nyrstar & Engineering Heritage Tasmania, June 2012
  29. Colella, W.G. (October 2005). "Switching to a U.S. hydrogen fuel cell vehicle fleet: The resultant change in emissions, energy use, and greenhouse gases". Journal of Power Sources. 150 (1/2): 150–181. Bibcode:2005JPS...150..150C. doi:10.1016/j.jpowsour.2005.05.092.
  30. "Hydrogen as a sustainable source of renewable energy". phys.org (in English). Retrieved 2021-08-23.
  31. Kovalska, Evgeniya; Roy, Pradip Kumar; Antonatos, Nikolas; Mazanek, Vlastimil; Vesely, Martin; Wu, Bing; Sofer, Zdenek (2021-07-22). "Photocatalytic activity of twist-angle stacked 2D TaS2". NPJ 2D Materials and Applications (in English). 5 (1): 1–9. doi:10.1038/s41699-021-00247-8. ISSN 2397-7132.
  32. Zubrin, Robert (2007). Energy Victory: Winning the War on Terror by Breaking Free of Oil. Amherst, New York: Prometheus Books. p. 121. ISBN 978-1-59102-591-7.
  33. "Hyundai raises hydrogen game as new trucks roll into Europe". Reuters. 2021-05-24. Retrieved 2021-06-14.
  34. "ULEMCo signs MoU with ENGV Pty Ltd to open the market for hydrogen conversions in Australia". Green Car Congress. Retrieved 2021-06-14.
  35. Dalagan, Maria Theresa (2 December 2017). "ULEMCO developing hydrogen-fuelled vehicles". freightwaves.com. Retrieved 22 April 2018.
  36. "UK firm to demonstrate "world's first" hydrogen-fuelled combustion engine truck". theengineer.co.uk. Centaur Media plc. 2018-04-17. Retrieved 22 April 2018.
  37. Mårtensson, Lars. "Emissions from Volvo's trucks" (PDF). volvotrucks.com. p. 3. Retrieved 22 April 2018.
  38. André Løkke, Jon. "Wide Spread Adaption of Competitive Hydrogen Solution" (PDF). nelhydrogen.com/. Nel ASA. p. 16. Retrieved 22 April 2018.
  39. Mike Millikin (2014-11-18). "Toyota FCV Mirai launches in LA; initial TFCS specs; $57,500 or $499 lease; leaning on Prius analogy". Green Car Congress. Retrieved 2014-11-23.
  40. Utgikar, Vivek P; Thiesen, Todd (2005). "Safety of compressed hydrogen fuel tanks: Leakage from stationary vehicles". Technology in Society. 27 (3): 315–320. doi:10.1016/j.techsoc.2005.04.005.
  41. Dobson, Geoff (12 June 2019). "Exploding hydrogen station leads to FCV halt". EV Talk.
  42. Woodrow, Melanie. "Bay Area experiences hydrogen shortage after explosion", ABC news, June 3, 2019


ग्रन्थसूची