संख्या का गैर-पूर्णांक आधार

From Vigyanwiki
Revision as of 12:57, 10 June 2023 by alpha>Indicwiki (Created page with "{{short description|Number systems with a non-integer radix (base), such as base 2.5}} {{more footnotes needed|date=March 2019}} {{Numeral systems}} एक गैर-पू...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

एक गैर-पूर्णांक प्रतिनिधित्व गैर-पूर्णांक संख्याओं का उपयोग एक स्थितीय संकेतन के मूलांक या आधार के रूप में करता है। एक गैर-पूर्णांक मूलांक β > 1 के लिए, का मान

है

संख्या डीi β से कम गैर-ऋणात्मक पूर्णांक हैं। इसे 'बीटा-विस्तार' के रूप में भी जाना जाता है, जो कि द्वारा शुरू की गई एक धारणा है Rényi (1957) और सबसे पहले विस्तार से अध्ययन किया Parry (1960). प्रत्येक वास्तविक संख्या में कम से कम एक (संभवतः अनंत) β-विस्तार होता है। सभी β-विस्तारों का समुच्चय (गणित) जिसका परिमित प्रतिनिधित्व है, वलय (गणित) 'Z'[β, β] का एक उपसमुच्चय है-1]।

कोडिंग सिद्धांत में β-विस्तार के अनुप्रयोग हैं (Kautz 1965) और क्वासिक क्रिस्टल के मॉडल (Burdik et al. 1998; Thurston 1989).

निर्माण

β-विस्तार दशमलव विस्तार का एक सामान्यीकरण है। जबकि अनंत दशमलव विस्तार अद्वितीय नहीं हैं (उदाहरण के लिए, 1.000... = 0.999...), सभी परिमित दशमलव विस्तार अद्वितीय हैं। हालांकि, यहां तक ​​​​कि परिमित β-विस्तार भी अद्वितीय नहीं हैं, उदाहरण के लिए φ + 1 = φ2 β = φ के लिए, सुनहरा अनुपात। किसी दिए गए वास्तविक संख्या के β-विस्तार के लिए एक वैधानिक विकल्प निम्न लालची एल्गोरिदम द्वारा निर्धारित किया जा सकता है, अनिवार्य रूप से इसके कारण Rényi (1957) और इसके द्वारा यहां दिए गए अनुसार तैयार किया गया है Frougny (1992).

होने देना β > 1 आधार हो और x एक गैर-ऋणात्मक वास्तविक संख्या हो। द्वारा निरूपित करें x एक्स का फर्श समारोह (यानी, एक्स से कम या उसके बराबर सबसे बड़ा पूर्णांक) और चलो {x} = x − ⌊x x का भिन्नात्मक भाग हो। एक पूर्णांक k मौजूद है जैसे कि βkx < βk+1. तय करना

और

के लिए k − 1 ≥  j > −∞, रखना

दूसरे शब्दों में, x का विहित β-विस्तार सबसे बड़ा d चुनकर परिभाषित किया गया हैk ऐसा है कि βkdkx, फिर सबसे बड़ा d चुननाk−1 ऐसा है कि βkdk + βk−1dk−1x, और इसी तरह। इस प्रकार यह एक्स का प्रतिनिधित्व करने वाले लेक्सिकोग्राफिक ऑर्डर सबसे बड़ा स्ट्रिंग चुनता है।

पूर्णांक आधार के साथ, यह संख्या x के लिए सामान्य रेडिक्स विस्तार को परिभाषित करता है। यह निर्माण सामान्य एल्गोरिथम को संभवतः β के गैर-पूर्णांक मानों तक विस्तारित करता है।

रूपांतरण

उपरोक्त चरणों का पालन करते हुए, हम वास्तविक संख्या के लिए β-विस्तार बना सकते हैं (चरण a के समान हैं , यद्यपि n को पहले से गुणा किया जाना चाहिए −1 इसे सकारात्मक बनाने के लिए, तो परिणाम को इससे गुणा करना होगा −1 इसे फिर से नकारात्मक बनाने के लिए)।

सबसे पहले, हमें अपने को परिभाषित करना चाहिए k मान (निकटतम शक्ति का प्रतिपादक β से अधिक n, साथ ही साथ अंकों की मात्रा , कहाँ है n आधार में लिखा है β). वह k के लिए मूल्य n और β को इस प्रकार लिखा जा सकता है:

बाद एक k मूल्य पाया जाता है, रूप में लिखा जा सकता है d, कहाँ

के लिए k − 1 ≥  j > −∞. पहला k का मान d दशमलव स्थान के बाईं ओर दिखाई देते हैं।

इसे निम्नलिखित स्यूडोकोड में भी लिखा जा सकता है:

function toBase(n, b) {
	k = floor(log(b, n)) + 1
	precision = 8
	result = ""

	for (i = k - 1, i > -precision-1, i--) {
		if (result.length == k) result += "."
		
		digit = floor((n / b^i) mod b)
		n -= digit * b^i
		result += digit
	}

	return result
}

[1] ध्यान दें कि उपरोक्त कोड केवल के लिए मान्य है और , क्योंकि यह प्रत्येक अंक को उनके सही प्रतीकों या सही ऋणात्मक संख्याओं में नहीं बदलता है। उदाहरण के लिए, यदि किसी अंक का मान है 10, इसे इस रूप में दर्शाया जाएगा 10 के बजाय A.

उदाहरण कार्यान्वयन कोड

आधार बनाना π

  • जावास्क्रिप्ट:[1]
    function toBasePI(num, precision = 8) {    
        let k = Math.floor(Math.log(num)/Math.log(Math.PI)) + 1;
        if (k < 0) k = 0;
    
        let digits = [];
    
        for (let i = k-1; i > (-1*precision)-1; i--) {
            let digit = Math.floor((num / Math.pow(Math.PI, i)) % Math.PI);
            num -= digit * Math.pow(Math.PI, i);
            digits.push(digit);
    
            if (num <= 0)
                break;
        }
    
        if (digits.length > k)
            digits.splice(k, 0, ".");
    
        return digits.join("");
    }
    


आधार से π

  • जावास्क्रिप्ट:[1]
    function fromBasePI(num) {
        let numberSplit = num.split(/\./g);
        let numberLength = numberSplit[0].length;
    
        let output = 0;
        let digits = numberSplit.join("");
    
        for (let i = 0; i < digits.length; i++) {
            output += digits[i] * Math.pow(Math.PI, numberLength-i-1);
        }
    
        return output;
    }
    


उदाहरण

आधार 2

आधार 2 का वर्गमूल|2 बाइनरी अंक प्रणाली के समान ही व्यवहार करता है क्योंकि किसी संख्या को बाइनरी अंक प्रणाली से आधार में बदलने के लिए सभी को करना पड़ता है 2 प्रत्येक बाइनरी अंक के बीच में एक शून्य अंक रखा जाता है; उदाहरण के लिए, 191110 = 111011101112 101010001010100010101 बन जाता है2 और 511810 = 10011111111102 1000001010101010101010100 बन जाता है2. इसका अर्थ है कि प्रत्येक पूर्णांक को आधार में व्यक्त किया जा सकता है 2 दशमलव बिंदु की आवश्यकता के बिना। आधार का उपयोग एक वर्ग (ज्यामिति) के किनारे (ज्यामिति) के बीच के संबंध को उसके विकर्ण के बीच 1 की भुजा लंबाई वाले वर्ग के रूप में दिखाने के लिए भी किया जा सकता है।2 10 का विकर्ण होगा2 और एक वर्ग जिसकी भुजा की लंबाई 10 है2 100 का विकर्ण होगा2. आधार का एक अन्य उपयोग चांदी के अनुपात को आधार में इसके प्रतिनिधित्व के रूप में दिखाना है 2 बस 11 है2. इसके अलावा, पार्श्व लंबाई 1 के साथ एक नियमित अष्टभुज का क्षेत्रफल2 1100 है2, पार्श्व लंबाई 10 के साथ एक नियमित अष्टभुज का क्षेत्रफल2 110000 है2, पार्श्व लंबाई 100 के साथ एक नियमित अष्टभुज का क्षेत्रफल2 11000000 है2, वगैरह…

सुनहरा आधार

सुनहरे आधार में, कुछ संख्याओं में एक से अधिक दशमलव आधार समतुल्य होते हैं: वे अस्पष्ट होते हैं। उदाहरण के लिए: 11φ = 100φ.

आधार ψ

बेस सुपरगोल्डन अनुपात में कुछ संख्याएँ भी हैं | ψ अस्पष्ट भी हैं। उदाहरण के लिए, 101ψ = 1000ψ.

आधार ई

आधार e (गणितीय स्थिरांक) के साथ प्राकृतिक लघुगणक सामान्य लघुगणक की तरह व्यवहार करता है जैसे ln(1e) = 0, एलएन (10e) = 1, एलएन (100e) = 2 और एलएन (1000e) = 3।

आधार ई मूलांक β> 1 का सबसे किफायती विकल्प है (Hayes 2001), जहां मूलांक अर्थव्यवस्था को रेडिक्स के उत्पाद के रूप में और मूल्यों की दी गई श्रेणी को व्यक्त करने के लिए आवश्यक प्रतीकों की स्ट्रिंग की लंबाई के रूप में मापा जाता है।

आधार π

आधार pi|π का उपयोग किसी वृत्त के व्यास और उसकी परिधि के बीच के संबंध को अधिक आसानी से दिखाने के लिए किया जा सकता है, जो इसकी परिधि से मेल खाता है; चूंकि परिधि = व्यास × π, व्यास 1 वाला एक वृत्तπ 10 की परिधि होगीπ, 10 व्यास वाला एक वृत्तπ 100 की परिधि होगीπ, आदि। इसके अलावा, चूंकि क्षेत्र = π × त्रिज्या2, 1 की त्रिज्या वाला एक वृत्तπ 10 का क्षेत्रफल होगाπ, 10 की त्रिज्या वाला एक वृत्तπ 1000 का क्षेत्र होगाπ और 100 की त्रिज्या वाला एक वृत्तπ 100000 का एक क्षेत्र होगाπ.[2]


गुण

किसी भी स्थितीय संख्या प्रणाली में प्रत्येक संख्या को विशिष्ट रूप से व्यक्त नहीं किया जा सकता है। उदाहरण के लिए, आधार दस में, नंबर 1 के दो प्रतिनिधित्व हैं: 1.000... और 0.999.... दो अलग-अलग प्रतिनिधित्व वाली संख्याओं का सेट वास्तविक में सघन सेट है (Petkovšek 1990), लेकिन अद्वितीय β-विस्तार के साथ वास्तविक संख्याओं को वर्गीकृत करने का प्रश्न पूर्णांक आधारों की तुलना में काफी अधिक सूक्ष्म है (Glendinning & Sidorov 2001).

एक और समस्या उन वास्तविक संख्याओं को वर्गीकृत करना है जिनके β-विस्तार आवधिक हैं। मान लीजिए β > 1, और 'Q'(β) β युक्त परिमेय संख्या का सबसे छोटा क्षेत्र विस्तार है। फिर [0,1) में कोई भी वास्तविक संख्या जिसका आवधिक β-विस्तार हो, 'Q'(β) में होना चाहिए। दूसरी ओर, इसका विलोम (तर्क) सत्य होना आवश्यक नहीं है। यदि β एक पिसोट संख्या है तो इसका विलोम मान्य है (Schmidt 1980), हालांकि आवश्यक और पर्याप्त शर्तें ज्ञात नहीं हैं।

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 "घर". decimalsystem.js.org.
  2. "अजीब संख्या आधार". DataGenetics. Retrieved 2018-02-01.


अग्रिम पठन

  • Sidorov, Nikita (2003), "Arithmetic dynamics", in Bezuglyi, Sergey; Kolyada, Sergiy (eds.), Topics in dynamics and ergodic theory. Survey papers and mini-courses presented at the international conference and US-Ukrainian workshop on dynamical systems and ergodic theory, Katsiveli, Ukraine, August 21–30, 2000, Lond. Math. Soc. Lect. Note Ser., vol. 310, Cambridge: Cambridge University Press, pp. 145–189, ISBN 978-0-521-53365-2, Zbl 1051.37007


बाहरी संबंध