फैराडे का प्रेरण का नियम

From Vigyanwiki
फैराडे का प्रयोग तार के कॉइल के बीच प्रेरण दिखा रहा है: तरल बैटरी (दाएं) एक करंट प्रदान करती है जो छोटे कॉइल (ए) के माध्यम से प्रवाहित होती है, जिससे एक चुंबकीय क्षेत्र बनता है। जब कुण्डलियाँ स्थिर होती हैं, तो कोई धारा प्रेरित नहीं होती है। लेकिन जब छोटे कॉइल को बड़े कॉइल (B) के अंदर या बाहर ले जाया जाता है, तो बड़े कॉइल के माध्यम से चुंबकीय प्रवाह बदल जाता है, जिससे करंट उत्पन्न होता है जिसे गैल्वेनोमीटर (G) द्वारा पता लगाया जाता है।[1]

फैराडे का इंडक्शन (प्रेरण) का नियम (संक्षेप में, फैराडे का नियम) विद्युत् चुम्बकत्व का एक बुनियादी नियम है, जो अभिरुचि करता है कि एक वैद्युतवाहक बल (ईएमएफ) उत्पन्न करने के लिए एक चुंबकीय क्षेत्र एक विद्युत परिपथ के साथ कैसे परस्पर प्रभाव करेगा - एक घटना जिसे विद्युत चुंबकीय प्रेरण के रूप में जाना जाता है। यह रूपांतरक (ट्रांसफार्मर), कुचालक और कई प्रकार के बिजली की मोटर, [[ विद्युत जनरेटर ]] और परिनालिका का मूलभूत संचालन सिद्धांत है।[2][3]

मैक्सवेल-फैराडे समीकरण (मैक्सवेल के समीकरणों में से एक के रूप में सूचीबद्ध) इस तथ्य का वर्णन करता है कि एक स्थानिक रूप से भिन्न (और संभवतः समय-भिन्न भी, इस पर निर्भर करता है कि एक चुंबकीय क्षेत्र समय में कैसे भिन्न होता है) विद्युत क्षेत्र हमेशा एक समय-भिन्न चुंबकीय क्षेत्र के साथ होता है, जबकि फैराडे के कानून में कहा गया है कि प्रवाहकीय लूप पर ईएमएफ (वैद्युतवाहक बल, एक यूनिट चार्ज पर किए गए विद्युत चुम्बकीय कार्य के रूप में परिभाषित किया जाता है) प्रवाहकीय लूप पर होता है, जब लूप द्वारा संलग्न सतह के माध्यम से चुंबकीय प्रवाह समय में भिन्न होता है।

फैराडे के नियम की खोज की जा चुकी थी और इसके एक पहलू (रूपांतरक ईएमएफ) को बाद में मैक्सवेल-फैराडे समीकरण के रूप में तैयार किया गया था। फैराडे के कानून का समीकरण मैक्सवेल-फैराडे समीकरण (रूपांतरक ईएमएफ का वर्णन) और लोरेंत्ज़ बल (गतिशील ईएमएफ का वर्णन) द्वारा प्राप्त किया जा सकता है। मैक्सवेल-फैराडे समीकरण का अभिन्न रूप केवल रूपांतरक ईएमएफ का वर्णन करता है, जबकि फैराडे के नियम का समीकरण रूपांतरक ईएमएफ और गतिक ईएमएफ दोनों का वर्णन करता है।


इतिहास

फैराडे के लौह वलय उपकरण का आरेख। बाएं कॉइल का बदलता चुंबकीय प्रवाह दाएं कॉइल में करंट को प्रेरित करता है।[4]

1831 में माइकल फैराडे और 1832 में जोसेफ हेनरी द्वारा स्वतंत्र रूप से विद्युत चुम्बकीय प्रेरण की खोज की गई थी।[5] फैराडे अपने प्रयोगों के परिणामों को प्रकाशित करने वाले पहले व्यक्ति थे।[6][7] फैराडे के विद्युत चुम्बकीय प्रेरण के पहले प्रायोगिक प्रदर्शन में (29 अगस्त, 1831),[8] उन्होंने एक लोहे की अंगूठी (टोरस्र्स ) (एक आधुनिक टॉरॉयडल रूपांतरक के समान व्यवस्था) के विपरीत दिशा में दो तारों को लपेटा। विद्युत चुम्बक के हाल ही में खोजे गए गुणों के अपने आकलन के आधार पर, उन्होंने उम्मीद की कि जब एक तार में करंट प्रवाहित होना शुरू होता है, तो एक तरह की तरंग रिंग के माध्यम से यात्रा करेगी और विपरीत दिशा में कुछ विद्युत प्रभाव पैदा करेगी। उसने एक तार को बिजली की शक्ति नापने का यंत्र में प्लग किया, और दूसरे तार को बैटरी से जोड़ते हुए उसे देखा। वास्तव में, जब उन्होंने तार को बैटरी से संसक्त, और जब उन्होंने इसे असंगत किया, तो उन्होंने एक क्षणिक धारा (जिसे उन्होंने बिजली की लहर कहा) देखा।[9]: 182–183  यह प्रेरण बैटरी के संसक्त और असंगत होने पर होने वाले चुंबकीय प्रवाह में बदलाव के कारण था।[4]दो महीनों के भीतर, फैराडे ने विद्युत चुम्बकीय प्रेरण की कई अन्य अभिव्यक्तियाँ पाईं। उदाहरण के लिए, उन्होंने क्षणिक धाराओं को देखा जब उन्होंने तारों के तार के अंदर और बाहर एक बार चुंबक को जल्दी से सर्पण किया, और उन्होंने एक सर्पण विद्युत चालक तार (फैराडे की डिस्क) के साथ बार चुंबक के पास एक तांबे की डिस्क को घुमाकर एक स्थिर (प्रत्यक्ष धारा) धारा उत्पन्न किया था।.[9]: 191–195 

बायां

माइकल फैराडे ने एक अवधारणा का उपयोग करते हुए विद्युत चुम्बकीय प्रेरण की व्याख्या की जिसे उन्होंने बल की रेखाएं कहा। हालांकि, उस समय के वैज्ञानिकों ने उनके सैद्धांतिक विचारों को व्यापक रूप से खारिज कर दिया, मुख्यतः क्योंकि वे गणितीय रूप से तैयार नहीं किए गए थे।[9]: 510  एक अपवाद जेम्स क्लर्क मैक्सवेल थे, जिन्होंने 1861-62 में फैराडे के विचारों को अपने मात्रात्मक विद्युत चुम्बकीय सिद्धांत के आधार के रूप में इस्तेमाल किया।[9]: 510 [10][11] मैक्सवेल के कागजात में, विद्युत चुम्बकीय प्रेरण के समय-भिन्न पहलू को एक अंतर समीकरण के रूप में व्यक्त किया जाता है, जिसे ओलिवर हीविसाइड ने फैराडे के कानून के रूप में संदर्भित किया है, हालांकि यह फैराडे के कानून के मूल संस्करण से अलग है, और #दो घटनाओं का वर्णन नहीं करता है। हीविसाइड का संस्करण (#मैक्सवेल-फैराडे समीकरण|नीचे मैक्सवेल-फैराडे समीकरण देखें) वह रूप है जिसे आज मैक्सवेल के समीकरणों के रूप में ज्ञात समीकरणों के समूह में मान्यता प्राप्त है।

1834 में एमिल लेनज़ द्वारा प्रतिपादित लेनज़ का नियम,[12] सर्किट के माध्यम से प्रवाह का वर्णन करता है, और विद्युत चुम्बकीय प्रेरण से उत्पन्न प्रेरित ईएमएफ और वर्तमान की दिशा देता है (नीचे दिए गए उदाहरणों में विस्तृत)।


फैराडे का नियम

Alternating electric current flows through the परिनालिका on the left, producing a changing magnetic field. यह क्षेत्र विद्युत चुम्बकीय प्रेरण द्वारा दाईं ओर तार लूप में विद्युत प्रवाह का कारण बनता है।

फैराडे के कानून का सबसे व्यापक संस्करण कहता है:

The electromotive force around a closed path is equal to the negative of the time rate of change of the magnetic flux enclosed by the path.[13][14]


गणितीय कथन

सतह अभिन्न की परिभाषा सतह को विभाजित करने पर निर्भर करती है Σ छोटे सतह तत्वों में। प्रत्येक तत्व एक वेक्टर से जुड़ा होता है dA तत्व के क्षेत्र के बराबर परिमाण और तत्व के लिए सामान्य दिशा के साथ और बाहर की ओर इशारा करते हुए (सतह के अभिविन्यास के संबंध में)।

चुंबकीय क्षेत्र में तार के एक लूप के लिए, चुंबकीय प्रवाह ΦB किसी भी सतह (गणित) के लिए परिभाषित किया गया है Σ जिसकी सीमा (टोपोलॉजी) दिया गया लूप है। चूँकि वायर लूप गतिमान हो सकता है, हम लिखते हैं Σ(t) सतह के लिए। चुंबकीय प्रवाह सतह अभिन्न है:

जहाँ पे dA चलती सतह के सतह क्षेत्र का एक तत्व है Σ(t), B चुंबकीय क्षेत्र है, और B · dA एक डॉट उत्पाद है जो प्रवाह के तत्व का प्रतिनिधित्व करता है dA. अधिक दृश्य शब्दों में, वायर लूप के माध्यम से चुंबकीय प्रवाह लूप से गुजरने वाली फील्ड लाइन की संख्या के समानुपाती होता है।

जब प्रवाह बदलता है—क्योंकि B परिवर्तन, या क्योंकि वायर लूप को स्थानांतरित या विकृत किया जाता है, या दोनों - फैराडे के प्रेरण के नियम का कहना है कि वायर लूप एक वैद्युतवाहक बल प्राप्त करता है, जिसे यूनिट चार्ज से उपलब्ध ऊर्जा के रूप में परिभाषित किया जाता है जो वायर लूप के चारों ओर एक बार यात्रा करता है।[15]: ch17 [16][17] (हालांकि कुछ स्रोत परिभाषा को अलग तरीके से बताते हैं, इस अभिव्यक्ति को विशेष सापेक्षता के समीकरणों के साथ संगतता के लिए चुना गया था।) समान रूप से, यह वह वोल्टेज है जिसे इलेक्ट्रिक सर्किट बनाने के लिए तार को काटकर और चालक तार में वाल्टमीटर जोड़कर मापा जाएगा। .

फैराडे के कानून में कहा गया है कि ईएमएफ भी चुंबकीय प्रवाह के समय व्युत्पन्न द्वारा दिया जाता है:

जहाँ पे वैद्युतवाहक बल (ईएमएफ) है और ΦB चुंबकीय प्रवाह है।

वैद्युतवाहक बल की दिशा लेंज़ के नियम द्वारा दी गई है।

1845 में फ्रांज अर्न्स्ट न्यूमैन द्वारा गणितीय रूप में विद्युत धाराओं को शामिल करने के नियम स्थापित किए गए थे।[18] फैराडे के नियम में दोनों परिमाणों और इसके चरों की दिशाओं के बीच संबंधों के बारे में जानकारी शामिल है। हालाँकि, दिशाओं के बीच संबंध स्पष्ट नहीं हैं; वे गणितीय सूत्र में छिपे हैं।

ऑल्ट=

लेन्ज़ के नियम का प्रयोग किए बिना, फैराडे के नियम से सीधे वैद्युतवाहक बल (ईएमएफ) की दिशा का पता लगाना संभव है। बाएं हाथ का नियम ऐसा करने में मदद करता है, जो इस प्रकार है:[19][20]

  • बाएं हाथ की मुड़ी हुई उंगलियों को लूप (पीली रेखा) से संरेखित करें।
  • अपना अंगूठा तानें फैला हुआ अंगूठा किस दिशा को इंगित करता है n (भूरा), पाश से घिरे क्षेत्र के लिए सामान्य
  • का चिह्न खोजें ΔΦBप्रवाह में परिवर्तन, प्रारंभिक और अंतिम अपशिष्टों निर्धारित करें (जिसका अंतर है ΔΦB) सामान्य के संबंध में n, जैसा कि फैला हुआ अंगूठा दिखाता है।
  • यदि प्रवाह में परिवर्तन, ΔΦB, सकारात्मक है, घुमावदार उंगलियां वैद्युतवाहक बल (पीले तीर) की दिशा दिखाती हैं।
  • यदि ΔΦB ऋणात्मक है, वैद्युतवाहक बल की दिशा घुमावदार उंगलियों (पीले तीर के विपरीत) की दिशा के विपरीत है।

N समरूप घुमावों से बने तार के कसकर लपेटे गए कुंडल के लिए, प्रत्येक समान ΦB के साथ, फैराडे के प्रेरण के नियम में कहा गया है कि[21][22]

जहाँ पे N तार के घुमावों की संख्या है और ΦB एकल पाश के माध्यम से चुंबकीय प्रवाह है।

मैक्सवेल–फैराडे समीकरण

सतह के साथ केल्विन-स्टोक्स प्रमेय का एक उदाहरण Σ, इसकी सीमा Σ, और अभिविन्यास n दाहिने हाथ के नियम द्वारा निर्धारित।

मैक्सवेल-फैराडे समीकरण बताता है कि एक समय-भिन्न चुंबकीय क्षेत्र हमेशा एक स्थानिक रूप से भिन्न (संभवतः समय-भिन्न), गैर-रूढ़िवादी वेक्टर क्षेत्र विद्युत क्षेत्र, और इसके विपरीत के साथ होता है। मैक्सवेल-फैराडे समीकरण है


(एसआई इकाइयों में) जहां ∇ × कर्ल (गणित) रैखिक संकारक है और फिर से E(r, t) विद्युत क्षेत्र है और B(r, t) चुंबकीय क्षेत्र है। ये क्षेत्र आमतौर पर स्थिति के कार्य हो सकते हैं r और समय t.[23] मैक्सवेल-फैराडे समीकरण मैक्सवेल के चार समीकरणों में से एक है, और इसलिए चिरसम्मत विद्युत चुंबकत्व के सिद्धांत में एक मौलिक भूमिका निभाता है। यह केल्विन-स्टोक्स प्रमेय द्वारा एक अभिन्न रूप में भी लिखा जा सकता है,[24] इस प्रकार फैराडे के नियम का पुनरुत्पादन:

जहां, जैसा कि चित्र में दिखाया गया है, Σ बंद समोच्च से घिरा सतह है Σ, dl समोच्च का एक अतिसूक्ष्म सदिश तत्व है ∂Σ, और dA सतह का एक अतिसूक्ष्म सदिश तत्व है Σ. इसकी दिशा उस सतह के पैच के लिए लांबिक है, परिमाण सतह के एक अतिसूक्ष्म पैच का क्षेत्र है।

दोनों dl और dA एक संकेत अस्पष्टता है; सही संकेत प्राप्त करने के लिए, दाहिने हाथ के नियम का उपयोग किया जाता है, जैसा कि लेख केल्विन-स्टोक्स प्रमेय में बताया गया है। समतल सतह के लिए Σ, एक सकारात्मक पथ तत्व dl वक्र का Σ दाहिने हाथ के नियम द्वारा परिभाषित किया गया है कि जब अंगूठा सामान्य की दिशा में इशारा करता है तो दाहिने हाथ की उंगलियों से इशारा करता है n ज़मीनी स्तर पर Σ.

चारों ओर रेखा अभिन्न Σ परिसंचरण (भौतिकी) कहा जाता है।[15]: ch3  का अशून्य संचलन E स्थैतिक आवेशों द्वारा उत्पन्न विद्युत क्षेत्र के व्यवहार से भिन्न होता है। एक चार्ज जनित E-फ़ील्ड को अदिश क्षेत्र के ढाल के रूप में व्यक्त किया जा सकता है जो पोइसन के समीकरण का समाधान है, और इसमें शून्य पथ अभिन्न है। ढाल प्रमेय देखें।

समाकल समीकरण किसी भी पथ के लिए सत्य होता है Σ अंतरिक्ष और किसी भी सतह के माध्यम से Σ जिसके लिए वह मार्ग एक सीमा है।

यदि सतह Σ समय में नहीं बदल रहा है, समीकरण को फिर से लिखा जा सकता है:

दाहिनी ओर सतह समाकल चुंबकीय प्रवाह के लिए स्पष्ट अभिव्यक्ति है ΦB के माध्यम से Σ.

एक बदलते चुंबकीय प्रवाह से प्रेरित विद्युत सदिश क्षेत्र, समग्र विद्युत क्षेत्र के सोलनॉइडल सदिश क्षेत्र, आयतन अभिन्न समीकरण द्वारा गैर-सापेक्षतावादी सीमा में अनुमानित किया जा सकता है[23]: 321 

प्रमाण

चार मैक्सवेल के समीकरण (मैक्सवेल-फैराडे समीकरण सहित), लोरेंत्ज़ बल कानून के साथ, शास्त्रीय विद्युत चुंबकत्व में सब कुछ प्राप्त करने के लिए पर्याप्त आधार हैं।[15][16]इसलिए, इन समीकरणों से प्रारंभ करके फैराडे के नियम को सिद्ध करना संभव है।[25][26] प्रारंभिक बिंदु एक मनमाना सतह के माध्यम से प्रवाह का समय-व्युत्पन्न है Σ (जिसे स्थानांतरित या विकृत किया जा सकता है) अंतरिक्ष में:

(परिभाषा से)। मैक्सवेल-फैराडे समीकरण और कुछ सदिश सर्वसमिकाओं की सहायता से इस कुल समय व्युत्पन्न का मूल्यांकन और सरलीकरण किया जा सकता है; विवरण नीचे दिए गए बॉक्स में हैं:

Consider the time-derivative of magnetic flux through a closed boundary (loop) that can move or be deformed. The area bounded by the loop is denoted as Σ(t)), then the time-derivative can be expressed as

The integral can change over time for two reasons: The integrand can change, or the integration region can change. These add linearly, therefore:

where t0 is any given fixed time. We will show that the first term on the right-hand side corresponds to transformer emf, the second to motional emf (from the magnetic Lorentz force on charge carriers due to the motion or deformation of the conducting loop in the magnetic field). The first term on the right-hand side can be rewritten using the integral form of the Maxwell–Faraday equation:

Next, we analyze the second term on the right-hand side:

The area swept out by a vector element dl of a loop Σ in time dt when it has moved with velocity vl .
The proof of this is a little more difficult than the first term; more details and alternate approaches for the proof can be found in the references.[25][26][27] As the loop moves and/or deforms, it sweeps out a surface (see the right figure). As a small part of the loop dl moves with velocity vl over a short time dt, it sweeps out an area whose vector is dAsweep = vl dt × dl (note that this vector is toward out from the display in the right figure). Therefore, the change of the magnetic flux through the loop due to the deformation or movement of the loop over the time dt is

Here, identities of triple scalar products are used. Therefore,

where vl is the velocity of a part of the loop Σ.

Putting these together results in,

परिणाम है:

कहाँ पे ∂Σ सतह की सीमा (लूप) है Σ, और vl सीमा के एक भाग का वेग है।

एक प्रवाहकीय लूप के मामले में, ईएमएफ (वैद्युतवाहक फोर्स) एक यूनिट चार्ज पर किया जाने वाला विद्युत चुम्बकीय कार्य है, जब यह लूप के चारों ओर एक बार घूम चुका होता है, और यह काम लोरेंत्ज़ बल कानून द्वारा किया जाता है। इसलिए, ईएमएफ के रूप में व्यक्त किया जाता है

कहाँ पे ईएमएफ है और v इकाई आवेश वेग है।

मैक्रोस्कोपिक दृश्य में, लूप के एक खंड पर शुल्क के लिए, v औसत में दो घटक होते हैं; एक खंड के साथ आवेश का वेग है vt, और दूसरा खंड का वेग है vl (लूप विकृत या स्थानांतरित हो गया है)। vt के निर्देशन के बाद से प्रभार पर किए गए कार्य में योगदान नहीं करता है vt की दिशा के समान है . गणितीय रूप से,

जबसे के लंबवत है जैसा और उसी दिशा में हैं। अब हम देख सकते हैं कि, प्रवाहकीय लूप के लिए, ईएमएफ उस पर हस्ताक्षर को छोड़कर लूप के माध्यम से चुंबकीय प्रवाह के समय-व्युत्पन्न के समान है। इसलिए, अब हम फैराडे के नियम (प्रवाहकीय पाश के लिए) के समीकरण तक पहुँचते हैं
कहाँ पे . इस अभिन्न को तोड़कर, रूपांतरक ईएमएफ के लिए है (समय-भिन्न चुंबकीय क्षेत्र के कारण) और गतिमान ईएमएफ के लिए है (चुंबकीय क्षेत्र में लूप की गति या विरूपण द्वारा आवेशों पर चुंबकीय लोरेंत्ज़ बल के कारण)।

अपवाद

फैराडे के नियम का सामान्यीकरण यह बताने के लिए आकर्षक है कि: यदि∂Σअंतरिक्ष में कोई भी मनमाना बंद लूप है, फिर चुंबकीय प्रवाह का कुल समय व्युत्पन्नΣचारों ओर ईएमएफ के बराबर है∂Σ. यह कथन, हालांकि, हमेशा सत्य नहीं होता है और इसका कारण केवल स्पष्ट कारण से नहीं है कि जब कोई कंडक्टर मौजूद नहीं होता है तो ईएमएफ खाली जगह में अपरिभाषित होता है। जैसा कि पिछले खंड में उल्लेख किया गया है, फैराडे के कानून को तब तक काम करने की गारंटी नहीं है जब तक कि अमूर्त वक्र का वेग न हो ∂Σ बिजली का संचालन करने वाली सामग्री के वास्तविक वेग से मेल खाता है।[28] नीचे दिए गए दो उदाहरणों से पता चलता है कि किसी की गति के दौरान अक्सर गलत परिणाम प्राप्त होते हैं ∂Σ सामग्री की गति से तलाक हो गया है।[15]

इस तरह के उदाहरणों का विश्लेषण पथ का ध्यान रखकर किया जा सकता है ∂Σ पदार्थ के समान वेग से गति करता है।[28]वैकल्पिक रूप से, मैक्सवेल-फैराडे समीकरण के साथ लोरेंत्ज़ बल कानून को जोड़कर कोई भी ईएमएफ की सही गणना कर सकता है:[15]: ch17 [29]

जहां यह ध्यान रखना बहुत महत्वपूर्ण है कि (1) [vm] कंडक्टर का वेग है ... पथ तत्व का वेग नहीं dl और (2) सामान्य तौर पर, समय के संबंध में आंशिक व्युत्पन्न को अभिन्न के बाहर नहीं ले जाया जा सकता क्योंकि क्षेत्र समय का एक कार्य है।[29]


फैराडे का नियम और सापेक्षता


दो घटनाएं

फैराडे का नियम दो अलग-अलग घटनाओं का वर्णन करने वाला एक समीकरण है: गतिमान तार पर एक चुंबकीय बल द्वारा उत्पन्न गतिमान ईएमएफ (वर्तमान-वाही तार पर लोरेंत्ज़ बल # बल देखें), और एक विद्युत बल द्वारा उत्पन्न रूपांतरक ईएमएफ बदलते चुंबकीय क्षेत्र (#मैक्सवेल-फैराडे समीकरण | मैक्सवेल-फैराडे समीकरण द्वारा वर्णित)।

जेम्स क्लर्क मैक्सवेल ने अपने 1861 के पेपर बल की भौतिक रेखाओं पर में इस तथ्य की ओर ध्यान आकर्षित किया।[30] उस पेपर के भाग II के उत्तरार्ध में, मैक्सवेल दो घटनाओं में से प्रत्येक के लिए एक अलग भौतिक विवरण देता है।

कुछ आधुनिक पाठ्यपुस्तकों में विद्युत चुम्बकीय प्रेरण के इन दो पहलुओं का संदर्भ दिया गया है।[31] जैसा कि रिचर्ड फेनमैन कहते हैं:

So the "flux rule" that the emf in a circuit is equal to the rate of change of the magnetic flux through the circuit applies whether the flux changes because the field changes or because the circuit moves (or both) ...

Yet in our explanation of the rule we have used two completely distinct laws for the two cases – v × B for "circuit moves" and ∇ × E = −∂tB for "field changes".

We know of no other place in physics where such a simple and accurate general principle requires for its real understanding an analysis in terms of two different phenomena.

— Richard P. Feynman, The Feynman Lectures on Physics[32]


चार आयामी औपचारिकता के आधार पर व्याख्या

सामान्य स्थिति में, गतिमान तार में आवेशों पर चुंबकीय बल की क्रिया द्वारा या इसके क्षेत्र को बदलने वाले सर्किट में गतिमान ईएमएफ उपस्थिति की व्याख्या असंतोषजनक है। तथ्य की बात के रूप में, तार या सर्किट में चार्ज पूरी तरह से अनुपस्थित हो सकते हैं, तो क्या इस मामले में विद्युत चुम्बकीय प्रेरण प्रभाव गायब हो जाएगा? इस स्थिति का लेख में विश्लेषण किया गया है, जिसमें फैराडे के नियम में चार-आयामी सहसंयोजक रूप में विद्युत चुम्बकीय क्षेत्र के अभिन्न समीकरणों को लिखते समय आंशिक समय व्युत्पन्न के बजाय सर्किट के माध्यम से चुंबकीय प्रवाह का कुल समय व्युत्पन्न दिखाई देता है। . [33] इस प्रकार, विद्युत चुम्बकीय प्रेरण तब प्रकट होता है जब चुंबकीय क्षेत्र समय के साथ बदलता है या जब सर्किट का क्षेत्र बदलता है। भौतिक दृष्टिकोण से, प्रेरण ईएमएफ के बारे में नहीं, बल्कि प्रेरित विद्युत क्षेत्र की ताकत के बारे में बात करना बेहतर है , जो सर्किट में तब होता है जब चुंबकीय प्रवाह बदलता है। इस मामले में योगदान शब्द के माध्यम से चुंबकीय क्षेत्र में परिवर्तन से किया जाता है , कहाँ पे वेक्टर क्षमता है। यदि निरंतर चुंबकीय क्षेत्र के मामले में सर्किट क्षेत्र बदल रहा है, तो सर्किट का कुछ हिस्सा अनिवार्य रूप से चल रहा है, और विद्युत क्षेत्र चुंबकीय क्षेत्र के लोरेंत्ज़ परिवर्तन के परिणामस्वरूप आने वाले संदर्भ फ्रेम K' में सर्किट के इस हिस्से में उभरता है , स्थिर संदर्भ फ्रेम K में मौजूद है, जो सर्किट से होकर गुजरता है। क्षेत्र की उपस्थिति इन K' को मूविंग सर्किट में प्रेरण इफेक्ट के परिणामस्वरूप माना जाता है, भले ही सर्किट में चार्ज मौजूद हों या नहीं। संचालन सर्किट में, क्षेत्र आरोपों की गति का कारण बनता है। संदर्भ फ्रेम K में, यह प्रेरण के ईएमएफ की तरह दिखता है , जिसके रूप में ढाल , सर्किट के साथ लिया गया, ऐसा लगता है कि क्षेत्र उत्पन्न होता है .

आइंस्टीन के विचार

इस स्पष्ट द्विभाजन पर चिंतन प्रमुख मार्गों में से एक था जिसने अल्बर्ट आइंस्टीन को विशेष सापेक्षता विकसित करने के लिए प्रेरित किया:

It is known that Maxwell's electrodynamics—as usually understood at the present time—when applied to moving bodies, leads to asymmetries which do not appear to be inherent in the phenomena. Take, for example, the reciprocal electrodynamic action of a magnet and a conductor.

The observable phenomenon here depends only on the relative motion of the conductor and the magnet, whereas the customary view draws a sharp distinction between the two cases in which either the one or the other of these bodies is in motion. For if the magnet is in motion and the conductor at rest, there arises in the neighbourhood of the magnet an electric field with a certain definite energy, producing a current at the places where parts of the conductor are situated.

But if the magnet is stationary and the conductor in motion, no electric field arises in the neighbourhood of the magnet. In the conductor, however, we find an electromotive force, to which in itself there is no corresponding energy, but which gives rise—assuming equality of relative motion in the two cases discussed—to electric currents of the same path and intensity as those produced by the electric forces in the former case.

Examples of this sort, together with unsuccessful attempts to discover any motion of the earth relative to the "light medium," suggest that the phenomena of electrodynamics as well as of mechanics possess no properties corresponding to the idea of absolute rest.


यह भी देखें


संदर्भ

  1. Poyser, Arthur William (1892). Magnetism and Electricity: A manual for students in advanced classes. London and New York: Longmans, Green, & Co. Fig. 248, p. 245. Retrieved 2009-08-06.
  2. Sadiku, M. N. O. (2007). Elements of Electromagnetics (4th ed.). New York & Oxford: Oxford University Press. p. 386. ISBN 978-0-19-530048-2.
  3. "Applications of electromagnetic induction". Boston University. 1999-07-22.
  4. 4.0 4.1 Giancoli, Douglas C. (1998). Physics: Principles with Applications (5th ed.). pp. 623–624.
  5. "A Brief History of Electromagnetism" (PDF).
  6. Ulaby, Fawwaz (2007). Fundamentals of applied electromagnetics (5th ed.). Pearson:Prentice Hall. p. 255. ISBN 978-0-13-241326-8.
  7. "Joseph Henry". Member Directory, National Academy of Sciences. Retrieved 2016-12-30.
  8. Faraday, Michael; Day, P. (1999-02-01). The philosopher's tree: a selection of Michael Faraday's writings. CRC Press. p. 71. ISBN 978-0-7503-0570-9. Retrieved 28 August 2011.
  9. 9.0 9.1 9.2 9.3 Williams, L. Pearce (1965). Michael Faraday. New York, Basic Books.[full citation needed]
  10. Clerk Maxwell, James (1904). A Treatise on Electricity and Magnetism. Vol. 2 (3rd ed.). Oxford University Press. pp. 178–179, 189.
  11. "Archives Biographies: Michael Faraday". The Institution of Engineering and Technology.
  12. Lenz, Emil (1834). "Ueber die Bestimmung der Richtung der durch elektodynamische Vertheilung erregten galvanischen Ströme". Annalen der Physik und Chemie. 107 (31): 483–494. Bibcode:1834AnP...107..483L. doi:10.1002/andp.18341073103.
    A partial translation of the paper is available in Magie, W. M. (1963). A Source Book in Physics. Cambridge, MA: Harvard Press. pp. 511–513.
  13. Jordan, Edward; Balmain, Keith G. (1968). Electromagnetic Waves and Radiating Systems (2nd ed.). Prentice-Hall. p. 100. Faraday's Law, which states that the electromotive force around a closed path is equal to the negative of the time rate of change of magnetic flux enclosed by the path.
  14. Hayt, William (1989). Engineering Electromagnetics (5th ed.). McGraw-Hill. p. 312. ISBN 0-07-027406-1. The magnetic flux is that flux which passes through any and every surface whose perimeter is the closed path.
  15. 15.0 15.1 15.2 15.3 15.4 15.5 Feynman, Richard P. "The Feynman Lectures on Physics Vol. II". feynmanlectures.caltech.edu. Retrieved 2020-11-07.
  16. 16.0 16.1 Griffiths, David J. (1999). Introduction to Electrodynamics (3rd ed.). Upper Saddle River, NJ: Prentice Hall. pp. 301–303. ISBN 0-13-805326-X.
  17. Tipler; Mosca (2004). Physics for Scientists and Engineers. p. 795. ISBN 9780716708100.
  18. Neumann, Franz Ernst (1846). "Allgemeine Gesetze der inducirten elektrischen Ströme" (PDF). Annalen der Physik. 143 (1): 31–44. Bibcode:1846AnP...143...31N. doi:10.1002/andp.18461430103. Archived from the original (PDF) on 12 March 2020.
  19. 19.0 19.1 Yehuda Salu (2014). "A Left Hand Rule for Faraday's Law". The Physics Teacher. 52 (1): 48. Bibcode:2014PhTea..52...48S. doi:10.1119/1.4849156. Video Explanation
  20. Salu, Yehuda. "Bypassing Lenz's Rule - A Left Hand Rule for Faraday's Law". www.PhysicsForArchitects.com. Archived from the original on 7 May 2020. Retrieved 30 July 2017.
  21. Whelan, P. M.; Hodgeson, M. J. (1978). Essential Principles of Physics (2nd ed.). John Murray. ISBN 0-7195-3382-1.
  22. Nave, Carl R. "Faraday's Law". HyperPhysics. Georgia State University. Retrieved 2011-08-29.
  23. 23.0 23.1 Griffiths, David J. (2017). Introduction to Electrodynamics. 4 (Fourth ed.). Cambridge University Press. ISBN 978-1-108-42041-9. OCLC 965197645.
  24. Harrington, Roger F. (2003). Introduction to electromagnetic engineering. Mineola, NY: Dover Publications. p. 56. ISBN 0-486-43241-6.
  25. 25.0 25.1 Davison, M. E. (1973). "A Simple Proof that the Lorentz Force, Law Implied Faraday's Law of Induction, when B is Time Independent". American Journal of Physics. 41 (5): 713. Bibcode:1973AmJPh..41..713D. doi:10.1119/1.1987339.
  26. 26.0 26.1 Krey; Owen (14 August 2007). Basic Theoretical Physics: A Concise Overview. p. 155. ISBN 9783540368052.
  27. Simonyi, K. (1973). Theoretische Elektrotechnik (5th ed.). Berlin: VEB Deutscher Verlag der Wissenschaften. eq. 20, p. 47.
  28. 28.0 28.1 Stewart, Joseph V. Intermediate Electromagnetic Theory. p. 396. This example of Faraday's Law [the homopolar generator] makes it very clear that in the case of extended bodies care must be taken that the boundary used to determine the flux must not be stationary but must be moving with respect to the body.
  29. 29.0 29.1 Hughes, W. F.; Young, F. J. (1965). The Electromagnetodynamics of Fluid. John Wiley. Eq. (2.6–13) p. 53.
  30. Clerk Maxwell, James (1861). "On physical lines of force". Philosophical Magazine. Taylor & Francis. 90: 11–23. doi:10.1080/14786431003659180. S2CID 135524562.
  31. Griffiths, David J. (1999). Introduction to Electrodynamics (3rd ed.). Upper Saddle River, NJ: Prentice Hall. pp. 301–3. ISBN 0-13-805326-X.
    Note that the law relating flux to emf, which this article calls "Faraday's law", is referred to in Griffiths' terminology as the "universal flux rule". Griffiths uses the term "Faraday's law" to refer to what this article calls the "Maxwell–Faraday equation". So in fact, in the textbook, Griffiths' statement is about the "universal flux rule".
  32. The Feynman Lectures on Physics Vol. II Ch. 17: The Laws of Induction
  33. Fedosin, Sergey G. (2019). "On the Covariant Representation of Integral Equations of the Electromagnetic Field". Progress in Electromagnetics Research C. 96: 109–122. arXiv:1911.11138. Bibcode:2019arXiv191111138F. doi:10.2528/PIERC19062902. S2CID 208095922.
  34. Einstein, Albert. "On the Electrodynamics of Moving Bodies" (PDF).


आगे की पढाई


बाहरी कड़ियाँ