बहुलक विज्ञान में पथ अभिन्नता

From Vigyanwiki
एक परमाणु बल सूक्ष्मदर्शी यंट्ष का उपयोग करके लेखाबद्ध की गई वास्तविक रैखिक बहुलक श्रृंखलाएं

बहुलक एक वृहदणु है, जो कई समान या समान दोहराए गए सब यूनिटों से बना होता है। पॉलीमर आम हैं, लेकिन जैविक माध्यम तक सीमित नहीं हैं। वे परिचित कृत्रिम प्लास्टिक से लेकर DNA और प्रोटीन जैसे प्राकृतिक जैव बहुलक तक हैं। उनकी अनूठी लम्बी आणविक संरचना अद्वितीय भौतिक गुणों का उत्पादन करती है, जिसमें कठोरता, चिपचिपापन, और पारदर्शकता और अंशक्रिस्टली संरचना बनाने की प्रवृत्ति समिलित है। 1920 में हर्मन स्टुडिंगर द्वारा सहसंयोजक बंधित बृहदाण्विक संरचनाओं के रूप में बहुलक की आधुनिक अवधारणा प्रस्तावित की गई थी।[1]

बहुलक के अध्ययन में एक उप-क्षेत्र बहुलक भौतिकी है। कोमल पदार्थ के अध्ययन के एक भाग के रूप में, बहुलक भौतिकी यांत्रिक गुणों के अध्ययन से संबंधित है[2] और संधनित द्रव्य भौतिकी के परिप्रेक्ष्य पर केंद्रित है।

क्योंकि बहुलक इतने बड़े अणु होते हैं, जो स्थूल मानदण्ड पर सीमाबद्ध होते हैं, उनके भौतिक गुण समान्यतः नियतात्मक विधियों का उपयोग करके हल करने के लिए बहुत जटिल होते हैं। इसलिए, प्रासंगिक परिणाम प्राप्त करने के लिए प्रायः सांख्यिकीय दृष्टिकोण लागू किए जाते हैं। इस सापेक्ष सफलता का मुख्य कारण यह है कि बड़ी संख्या में एकलक से बने बहुलक को असीमित रूप से कई एकलक की थर्मोडायनामिक सीमा में वर्णित किया जाता है, हालांकि वास्तविकता में वे आकार में स्पष्ट रूप से परिमित हैं।

ऊष्मीय उतार-चढ़ाव तरल समाधानों में बहुलक के आकार को लगातार प्रभावित करते हैं, और उनके प्रभाव को प्रतिरूपिंग करने के लिए सांख्यिकीय यांत्रिकी और गतिकी के सिद्धांतों का उपयोग करने की आवश्यकता होती है। पथ अभिन्न दृष्टिकोण इस मूल आधार के अनुरूप होता है और इसके वहन किए गए परिणाम असमान रूप से सांख्यिकीय औसत होते हैं। पथ अभिन्न, जब बहुलक के अध्ययन के लिए लागू किया जाता है, अनिवार्य रूप से एक गणितीय तंत्र का वर्णन करने, गणना करने और सांख्यिकीय रूप से सभी संभावित स्थानिक विन्यास को तौलने के लिए एक बहुलक अच्छी तरह से परिभाषित क्षमता और तापमान परिस्थितियों के अनुरूप हो सकता है। नियोजित पथ अभिन्न, अब तक अनसुलझी समस्याओं का सफलतापूर्वक समाधान किया गया: अपवर्जित आयतन, उलझाव, लिंक और समुद्री मील कुछ नाम हैं।[3] सिद्धांत के विकास में प्रमुख योगदानकर्ताओं में नोबेल पुरस्कार विजेता पी.जी. डी जेनेस, सर सैम एडवर्ड, M. डोई,

F.W. विएगे[3]और H. क्लेनर्ट समिलित हैं।[4]

पथ अभिन्न सूत्रीकरण

पथ अभिन्न के शुरुआती प्रयासों को 1918 में देखा जा सकता है।[5] एक ठोस गणितीय औपचारिकता 1921 तक स्थापित नहीं हुई थी। यह अंततः रिचर्ड फेनमैन को क्वांटम यांत्रिकी के लिए एक सूत्रीकरण का निर्माण करने के लिए प्रेरित करता है, जिसे अब समान्यतः फेनमैन अभिन्न के रूप में जाना जाता है। पथ अभिन्न्स के मूल में कार्यात्मक एकीकरण की अवधारणा निहित है। नियमित अभिन्न में एक सीमित प्रक्रिया होती है जहां फलन के चर के स्थान पर फलन का योग लिया जाता है। कार्यात्मक एकीकरण में फलन के योग को फलन के स्थान पर ले लिया जाता है। प्रत्येक फलन के लिए कार्यात्मक जोड़ने के लिए एक मान लौटाता है। पथ अभिन्न को रेखा अभिन्न के साथ भ्रमित नहीं होना चाहिए जो चर के अन्तरिक्ष में वक्र के साथ मूल्यांकन किए गए एकीकरण के साथ नियमित अभिन्न हैं। बहुत आश्चर्यजनक रूप से कार्यात्मक अभिन्न प्रायः अपसारित नही होते हैं, इसलिए भौतिक रूप से सार्थक परिणाम प्राप्त करने के लिए पथ अभिन्न का एक अंश लिया जाता है।

यह लेख फेनमैन और अल्बर्ट हिब्स द्वारा अपनाई गई संकेतन का उपयोग करेगा, एक पथ अभिन्न को दर्शाता है:

साथ कार्यात्मक के रूप में और कार्यात्मक अंतर।

आदर्श बहुलक

लघु आदर्श श्रृंखला

एक बहुलक की स्थानिक संरचना और विन्यास का मात्रात्मक विश्लेषण करने के लिए एक अत्यंत भोली अभी तक उपयोगी दृष्टिकोण मुक्त यादृच्छिक भ्रमण प्रतिरूप है। बहुलक को इकाई अणुओं की तरह बिंदु की एक श्रृंखला के रूप में दर्शाया गया है जो रासायनिक बंधों से दृढ़ता से बंधे होते हैं और इसलिए क्रमिक इकाइयों के बीच पारस्परिक दूरी को स्थिर होने का अनुमान लगाया जा सकता है।

आदर्श बहुलक प्रतिरूप में बहुलक सबयूनिट एक दूसरे के संबंध में घूमने के लिए पूरी तरह से स्वतंत्र हैं, और इसलिए बहुलकीकरण की प्रक्रिया को एक यादृच्छिक तीन आयामी चाल के रूप में देखा जा सकता है, जिसमें प्रत्येक एकलक पूर्व निर्धारित लंबाई और यादृच्छिक चरण के अनुरूप जोड़ा जाता है। गणितीय रूप से यह बन्धन की स्थिति सदिश के लिए प्रायिकता फलन के माध्यम से औपचारिक रूप से तैयार किया जाता है, यानी संलग्न इकाइयों की एक जोड़ी के सापेक्ष स्थिति:

के साथ डायराक डेल्टा के लिए है। यहां ध्यान देने वाली महत्वपूर्ण बात यह है कि बन्धन स्थिति सदिश का त्रिज्या , के एक क्षेत्र पर एक समान वितरण (निरंतर) होता है।

आदर्श प्रतिरूप की एक दूसरी महत्वपूर्ण विशेषता यह है कि बन्धन सदिश एक दूसरे से स्वतंत्र हैं, जिसका अर्थ है कि हम पूर्ण बहुलक संरचना के लिए वितरण फलन (भौतिकी) लिख सकते हैं:

जहां हमने माना एकलक और मूक सूचकांक के रूप में कार्य करता है। धनु कोष्ठक { } का अर्थ है सदिश के समुच्चय का एक फलन है।

इस प्रतिरूप के मुख्य परिणामों में समिलित हैं:


अंतांत सदिश वर्ग औसत

यादृच्छिक भ्रमण प्रतिरूप के अनुसार, समरूपता के विचारों के कारण अंत से अंत सदिश औसत गायब हो जाता है। इसलिए, बहुलक आकार का अनुमान लगाने के लिए, हम सदिश विचरण को समाप्त करने के लिए अंत की ओर मुड़ते हैं: अंत से अंत सदिश के रूप में परिभाषित किया गया है: .

इस प्रकार, बहुलक आकार के लिए पहला अपरिष्कृत सन्निकटन सरल है

.

अंतांत सदिश प्रायिकता बंटन

जैसा कि उल्लेख किया गया है, हम समान्यतः बहुलक विन्यास की सांख्यिकीय विशेषताओं में रुचि रखते हैं। इसलिए एक केंद्रीय मात्रा अंत से अंत सदिश प्रायिकता बंटन होगी:

ध्यान दें कि बंटन केवल अंत से अंत सदिश परिमाण (गणित) पर निर्भर करता है। साथ ही, उपरोक्त अभिव्यक्ति इससे बड़े आकार के लिए गैर-शून्य प्रायिकता देता है, स्पष्ट रूप से एक अनुचित परिणाम जो इसकी व्युत्पत्ति के लिए ली गई सीमा से उपजा है।

नियंत्र अंतर समीकरण

बहुलक रचना के लिए एक चिकनी स्थानिक समोच्च रेखा की सीमा लेना, अर्थात और व्यवरोध के अंतर्गत (गणित) प्रायिकता बंटन के लिए एक अंतर समीकरण आता है:

लाप्लासियन के साथ वास्तविक स्थान के संबंध में लिया गया। टेलर विस्तार के माध्यम से इस समीकरण को प्राप्त करने का एक तरीका है ) और

किसी को आश्चर्य हो सकता है कि पहले से ही विश्लेषणात्मक रूप से प्राप्त फलन के लिए अंतर समीकरण से चिंतित क्यों होना, लेकिन जैसा कि प्रदर्शित किया गया है, इस समीकरण को गैर-आदर्श परिस्थितियों के लिए भी सामान्यीकृत किया जा सकता है।

पथ अभिन्न अभिव्यक्ति

तीन संभावित पथ जो बहुलक बना सकते हैं बिंदु A से शुरू होकर बिंदु B पर समाप्त होते हैं (आरेख के विपरीत, वर्णित प्रतिरूप सभी संभावित पथों के लिए निरंतर समोच्च लंबाई मानता है)

एक चिकनी समोच्च की समान धारणा के तहत, पथ अभिन्न का उपयोग करके वितरण फलन व्यक्त किया जा सकता है:

जहां हमने परिभाषित किया

यहाँ बहुलक के लिए एक परिमापित चर के रूप में कार्य करता है, जो इसके स्थानिक विन्यास, या समोच्च प्रभाव का वर्णन करता है।

एक्सपोनेंट बहुलक विन्यास की संख्या घनत्व के लिए एक माप है जिसमें बहुलक का आकार निरंतर और अलग-अलग वक्र के करीब होता है।[3]


स्थानिक बाधाएँ

अब तक, पथ अभिन्न दृष्टिकोण ने हमें कोई नया परिणाम नहीं दिया। उसके लिए, आदर्श प्रतिरूप से आगे कदम उठाना चाहिए। इस सीमित प्रतिरूप से पहले प्रस्थान के रूप में, अब हम स्थानिक अवरोधों की बाधा पर विचार करते हैं। आदर्श प्रतिरूप ने प्रत्येक अतिरिक्त एकलक के स्थानिक विन्यास पर कोई बाधा नहीं मानी, जिसमें एकलक के बीच बल समिलित हैं जो स्पष्ट रूप से उपस्थित हैं, क्योंकि दो एकलक एक ही स्थान पर कब्जा नहीं कर सकते। यहां, हम न केवल एकलक-एकलक परस्पर क्रिया को समिलित करने के लिए बाधा की अवधारणा लेंगे, बल्कि धूल और सीमा की स्थिति जैसे दीवारों या अन्य भौतिक अवरोधों की उपस्थिति से उत्पन्न होने वाली बाधाओं को भी समिलित करेंगे।[3]


धूल

छोटे अभेद्य कणों, या धूल से भरे स्थान पर विचार करें। एकलक अंत बिंदु को छोड़कर स्थान के अंश को द्वारा निरूपित करें ताकि इसके मान की सीमा हो: .

के लिए एक टेलर विस्तार का निर्माण करके, कोई भी एक नए नियंत्र अंतर समीकरण पर पहुंच सकता है:

जिसके लिए संबंधित पथ अभिन्न निम्न है:


दीवारें

एक कोशिका झिल्ली का आरेख। दीवार का एक सामान्य रूप एक बहुलक का सामना हो सकता है।

एक सटीक कठोर दीवार बनाने के लिए, बस समुच्चय करें अंतरिक्ष में सभी क्षेत्रों के लिए दीवार समोच्च के कारण बहुलक की पहुंच से बाहर है।

एक बहुलक समान्यतः जिन दीवारों के साथ संपर्क करता है, वे जटिल संरचनाएं होती हैं। समोच्च न केवल धक्कों और मोड़ों से भरा हो सकता है, बल्कि बहुलक के साथ उनकी परस्पर क्रिया ऊपर चित्रित कठोर यांत्रिक आदर्शीकरण से बहुत दूर है। व्यवहार में, एक बहुलक प्रायः "अवशोषित" हो जाता है या आकर्षक अंतराअणुक बलों के कारण दीवार पर संघनित हो जाता है। गर्मी के कारण, इस प्रक्रिया को एक एन्ट्रापी संचालित प्रक्रिया द्वारा प्रतिसाद दिया जाता है, जो बहुलक विन्यासों का समर्थन करता है जो प्रावस्था समष्टि में बड़ी मात्रा के अनुरूप होता है। एक ऊष्मागतिक अधिशोषण-विशोषण की प्रक्रिया उत्पन्न होती है। इसका एक सामान्य उदाहरण एक कोशिका झिल्ली के भीतर सीमित बहुलक हैं।

आकर्षण बलों के वर्णन के लिए, प्रति एकलक की क्षमता को इस रूप में परिभाषित करें: . संभावित क्षमता को बोल्ट्जमान गुणक के माध्यम से समिलित किया जाएगा। संपूर्ण बहुलक के लिए यह निम्न रूप लेता है:

जहां हम उपयोग करते थे के साथ तापमान और बोल्ट्जमैन स्थिरांक के रूप में। दाहिने हाथ की ओर, हमारी सामान्य सीमाओं को लिया जाता है।

स्थायी अंतिम स्टेशन के साथ बहुलक विन्यास की संख्या अब पथ अभिन्न द्वारा निर्धारित की जा सकती है:

आदर्श बहुलक स्थिति के समान, इस अभिन्न को अंतर समीकरण के प्रचारक के रूप में व्याख्या किया जा सकता है:

यह द्वि-रैखिक विस्तार की ओर जाता है


प्रसामान्य लांबिक विश्लेषण ईजेनफंक्शन और ईजेनवेल्यूज के संदर्भ में:

और इसलिए हमारी अवशोषण समस्या एक ईजेनफंक्शन समस्या में कम हो जाती है।

एक सामान्य अच्छी (आकर्षक) क्षमता के लिए यह महत्वपूर्ण तापमान के साथ अवशोषण घटना के लिए दो प्रवृत्तियों की ओर जाता है विशिष्ट समस्या मापदंडों द्वारा निर्धारित  :

उच्च तापमान में , विभव कूप की कोई बाध्य अवस्था नहीं है, जिसका अर्थ है कि सभी ईजेनवेल्यूज सकारात्मक हैं और संबंधित ईजेनफंक्शन उपगामी रूप लेता है :

, के साथ ईजेनवेल्यूज ​​​​को दर्शाते हुए।

चरों को अलग करने और पर सतह मनाने के बाद और परिणाम x निर्देशांक के लिए दिखाया गया है। यह अभिव्यक्ति सतह से दूर, बहुलक के लिए एक बहुत ही खुले विन्यास का प्रतिनिधित्व करती है, जिसका अर्थ है कि बहुलक अव्यवस्थित है।

कम पर्याप्त तापमान के लिए , जहाँ कम से कम एक ऋणात्मक ईजेनवेल्यू के साथ घिरी हुई स्थिति उपस्थित है। हमारी "बड़ी बहुलक" सीमा में, इसका मतलब है कि द्वि-रैखिक विस्तार जमीनी स्थिति पर हावी होगा, जो विषम रूप से रूप लेता है:

इस बार बहुलक के विन्यास प्रभावकारी मोटाई के साथ सतह के पास एक संकीर्ण परत में स्थानीयकृत होते हैं

इस पद्धति का उपयोग करके "दीवार" ज्यामिति और अंतःक्रियात्मक की समस्याओं की एक विस्तृत विविधता को हल किया जा सकता है। मात्रात्मक रूप से अच्छी तरह से परिभाषित परिणाम प्राप्त करने के लिए किसी को पुनर्प्राप्त ईजेनफलन का उपयोग करना होगा और संबंधित विन्यास योग का निर्माण करना होगा।

पूर्ण और कठोर समाधान के लिए देखें।

अपवर्जित आयतन

एक और स्पष्ट दबाव, अब तक स्पष्ट रूप से अवहेलित, एक ही बहुलक के भीतर एकलक के बीच की परस्पर क्रिया है। इस अत्यंत यथार्थवादी दबाव के अंतर्गत विन्यासों की संख्या के लिए एक सटीक समाधान अभी तक किसी भी आयाम के लिए नहीं मिला है।[3]इस समस्या को ऐतिहासिक रूप से अपवर्जित आयतन समस्या के रूप में जाना जाता है। समस्या को बेहतर तरीके से समझने के लिए, जैसा कि पहले प्रस्तुत किया गया था, प्रत्येक एकलक के अंत बिंदु पर एक छोटे से दृढ़ गोले (ऊपर उल्लिखित धूल के कणों के विपरीत नहीं) के साथ एक यादृच्छिक चलने वाली श्रृंखला की कल्पना कर सकते हैं। इन क्षेत्रों की त्रिज्या अनिवार्य रूप से , पालन करती है, अन्यथा उत्तरोत्तर गोले अतिछादित करेंगे।

एक पथ अभिन्न दृष्टिकोण एक अनुमानित समाधान प्राप्त करने के लिए एक अपेक्षाकृत सरल विधि प्रदान करता है:Cite error: Invalid <ref> tag; invalid names, e.g. too many प्रस्तुत किए गए परिणाम तीन आयामी स्थान के लिए हैं, लेकिन किसी भी आयाम के लिए आसानी से सामान्यीकृत किए जा सकते हैं। गणना दो उचित मान्यताओं पर आधारित है:

  1. अपवर्जित आयतन स्थिति के लिए सांख्यिकीय विशेषताएँ एक बहुलक के समान होती हैं लेकिन एक अंश के साथ एक समान मात्रा के छोटे क्षेत्रों द्वारा परिकल्पित एकलक क्षेत्र के समान आयतन के छोटे गोले द्वारा कब्जा कर लिया गया।
  2. इन उपरोक्त विशेषताओं को सबसे संभावित श्रृंखला विन्यास की गणना के द्वारा अनुमानित किया जा सकता है।

के लिए पथ अभिन्न अभिव्यक्ति के अनुसार पहले प्रस्तुत किया गया था, सबसे संभावित विन्यास वक्र होगा जो मूल पथ अभिन्न के घातांक को कम करता है:

अभिव्यक्ति को न्यूनतम करने के लिए, विचरण कलन का प्रयोग करें और यूलर-लैग्रेंज समीकरण प्राप्त करें:

समुच्चय .

उचित फलन निर्धारित करने के लिए , गोले की त्रिज्या पर विचार करें, मोटाई और रूपरेखा बहुलक की उत्पत्ति के आसपास केंद्रित है। इस खोल में एकलक की औसत संख्या निमन के बराबर होनी चाहिए

.

दूसरी ओर, वही औसत के बराबर होना चाहिए (उसे याद रखो को मूल्यों के साथ एक पैरामीट्रिजेशन गुणक् के रूप में परिभाषित किया गया था ). इस समानता का परिणाम है:

हमें प्राप्त हुआ अब इसे इस रूप में लिखा जा सकता है:

यहां पहुंचने के लिए हम फिर से विचरण कलन का उपयोग करते हैं:

ध्यान दें कि अब हमारे पास बिना किसी के लिए एक साधारण अवकल समीकरण है। हालांकि देखने में बहुत भयावह है, इस समीकरण का बहुत ही सरल समाधान है:

हम इस महत्वपूर्ण निष्कर्ष पर पहुंचे कि अपवर्जित आयतन वाले बहुलक के लिए अंत से अंत तक की दूरी N के साथ बढ़ती है:

, आदर्श प्रतिरूप परिणाम से पहला विचलन: .

गाऊसी श्रृंखला

गठनात्मक वितरण

अब तक, गणना में समिलित एकमात्र बहुलक पैपरिमाप बहुलक की संख्या थे जिन्हें अनंत और निरंतर बंधन लंबाई तक ले जाया गया था। यह समान्यतः पर्याप्त है, क्योंकि बहुलक की स्थानीय संरचना समस्या को प्रभावित करने का एकमात्र तरीका है। "निरंतर बंधन दूरी" सन्निकटन की तुलना में थोड़ा बेहतर करने की कोशिश करने के लिए, आइए हम अगले सबसे प्राथमिक दृष्टिकोण की जांच करें; एकल बंधन लंबाई का अधिक यथार्थवादी विवरण एक गाऊसी वितरण होगा:[6]

तो पहले की तरह, हम परिणाम बनाए रखते हैं: . ध्यान दें कि हालांकि पहले से थोड़ा अधिक जटिल, में अभी भी एक ही मापदण्ड है - .

हमारे नए बंधन सदिश वितरण के लिए गठनात्मक वितरण फलन निम्न है:

जहां हमने आपेक्षिक बंधन सदिश से पूर्ण स्थिति सदिश अंतर पर परिवर्तित किया: .

इस रचना को गाऊसी श्रृंखला के रूप में जाना जाता है। गॉसियन सन्निकटन के लिए बहुलक संरचना के सूक्ष्म विश्लेषण के लिए नहीं है, लेकिन बड़े मानदण्ड पर गुणों के लिए सटीक परिणाम देता है।

इस प्रतिरूप को समझने का एक सहज ज्ञान युक्त तरीका मनकों के एक यांत्रिक प्रतिरूप के रूप में क्रमिक रूप से एक हार्मोनिक स्प्रिंग से जुड़ा हुआ है। ऐसे प्रतिरूप के लिए संभावित ऊर्जा द्वारा दिया गया है:

तापीय संतुलन पर कोई भी बोल्ट्जमैन वितरण की उम्मीद कर सकता है, जो वास्तव में के लिए ऊपर दिए गए परिणाम को ठीक करता है

गॉसियन श्रृंखला की एक महत्वपूर्ण गुण स्व-समानता है। मतलब के लिए किन्हीं दो इकाइयों के बीच फिर से गाऊसी है, केवल और इकाई से इकाई की दूरी पर निर्भर करता है।

यह तुरंत होता है .

जैसा कि स्थानिक अवरोधों के खंड में स्पष्ट रूप से किया गया था, हम प्रत्यय को एक निरंतर सीमा तक ले जाते है और द्वारा . तो अब, हमारे गठनात्मक वितरण द्वारा व्यक्त किया गया है:

स्वतंत्र चर एक सदिश से एक फलन में परिवर्तित हो जाता है, जिसका अर्थ है अब एक कार्यात्मक (गणित) है। इस सूत्र को वीनर वितरण के रूप में जाना जाता है।

एक बाहरी क्षेत्र के तहत चेन रचना

बाहरी स्केलर संभावित क्षेत्र मानते हुए , ऊपर वर्णित संतुलन गठनात्मक वितरण को बोल्ट्जमान कारक द्वारा संशोधित किया जाएगा:

गॉसियन श्रृंखला संरूपण वितरण के अध्ययन में एक महत्वपूर्ण उपकरण ग्रीन का कार्य है, जिसे पथ अभिन्न भागफल द्वारा परिभाषित किया गया है:

पथ एकीकरण की व्याख्या सभी बहुलक वक्रों के योग के रूप में की जाती है कि से शुरू करें और पर समाप्त करें .

सरल शून्य फ़ील्ड केस के लिए ग्रीन फलन वापस कम हो जाता है:

अधिक सामान्य स्थिति में, सभी संभव बहुलक अनुरूपताओं के लिए पूर्ण विभाजन फलन (गणित) में वजन कारक की भूमिका निभाता है:

ग्रीन फलन के लिए एक महत्वपूर्ण पहचान उपस्थित है जो इसकी परिभाषा से सीधे उपजी है:

इस समीकरण का एक स्पष्ट भौतिक महत्व है, जो पथ अभिन्न की अवधारणा को स्पष्ट करने के लिए भी काम कर सकता है:

उत्पाद से शुरू होने वाली श्रृंखला के वजन कारक को व्यक्त करता है , के माध्यम से गुजरता में चरण, और पर समाप्त होता है बाद कदम। सभी संभव मध्यबिंदुओं पर एकीकरण से शुरू होने वाली श्रृंखला के लिए सांख्यिकीय भार वापस देता है , और पर समाप्त हो रहा है . अब यह स्पष्ट हो जाना चाहिए कि पथ इंटेग्रल केवल उन सभी संभव लिटरल पथों का योग है जो पॉलीमर दो स्थिर अंतबिंदुओं के बीच बना सकता है।

की मदद से किसी भी भौतिक मात्रा का औसत गणना की जा सकती है। यह मानते हुए की स्थिति पर ही निर्भर करता है -वाँ खंड, फिर:

इसका कारण यह है कि ए को एक से अधिक एकलक पर निर्भर होना चाहिए। यह मानते हुए अब निर्भर करता है साथ ही औसत रूप लेता है:

अधिक एकलक निर्भरता के लिए एक स्पष्ट सामान्यीकरण के साथ।

यदि कोई उचित सीमा शर्तें लगाता है:

फिर टेलर विस्तार की मदद से , के लिए एक अंतर समीकरण प्राप्त किया जा सकता है:

इस समीकरण की सहायता से का स्पष्ट रूप विभिन्न प्रकार की समस्याओं के लिए पाया जाता है। फिर, विभाजन फलन की गणना के साथ कई सांख्यिकीय मात्राएं निकाली जा सकती हैं।

बहुलक क्षेत्र सिद्धांत

शक्ति निर्भरता खोजने के लिए एक अलग नया दृष्टिकोण बहिष्कृत वॉल्यूम प्रभावों के कारण, पहले प्रस्तुत किए गए से बेहतर माना जाता है।[4]

बहुलक भौतिकी में शास्त्रीय क्षेत्र सिद्धांत दृष्टिकोण बहुलक उतार-चढ़ाव और क्षेत्र में उतार-चढ़ाव के अंतरंग संबंध पर आधारित है। कई कण प्रणाली के सांख्यिकीय यांत्रिकी को एक उतार-चढ़ाव वाले क्षेत्र द्वारा वर्णित किया जा सकता है। इस तरह के पहनावे में एक कण अंतरिक्ष के माध्यम से उतार-चढ़ाव वाली कक्षा में एक फैशन में चलता है जो एक यादृच्छिक बहुलक श्रृंखला जैसा दिखता है। निकाले जाने वाला तात्कालिक निष्कर्ष यह है कि बहुलक के बड़े समूहों को एक उतार-चढ़ाव वाले क्षेत्र द्वारा भी वर्णित किया जा सकता है। जैसा कि यह निकला, वही एकल बहुलक के बारे में भी कहा जा सकता है।

प्रस्तुत मूल पथ अभिन्न अभिव्यक्ति के अनुरूप, बहुलक का अंत से अंत वितरण अब रूप लेता है:

हमारे नए पथ इंटीग्रैंड में समिलित हैं:

  • उतार-चढ़ाव वाला क्षेत्र
  • क्रिया (भौतिकी) : साथ एकलक-एकलक प्रतिकारक क्षमता को नकारना।
  • जो श्रोडिंगर समीकरण को संतुष्ट करता है:

साथ आयाम और बंधन लंबाई द्वारा निर्धारित प्रभावी द्रव्यमान के रूप में कार्य करना।

ध्यान दें कि इनर अभिन्न अब भी एक पथ अभिन्न है, इसलिए फलन के दो स्थान - पॉलीमर कन्फर्मेशन - पर एकीकृत होते हैं - और अदिश क्षेत्र .

इन पथ समाकलनों की भौतिक व्याख्या होती है। कार्य अंतरिक्ष पर निर्भर यादृच्छिक क्षमता में एक कण की कक्षा का वर्णन करता है . पथ अभिन्न है इस क्षमता में उतार-चढ़ाव वाले बहुलक के अंत से अंत तक वितरण करता है। दूसरा पथ अभिन्न है वजन के साथ अन्य श्रृंखला तत्वों के प्रतिकारक बादल के लिए खाते। विचलन से बचने के लिए, एकीकरण को काल्पनिक इकाई क्षेत्र अक्ष के साथ चलना है।

उतार-चढ़ाव वाले बहुलक के लिए इस तरह के क्षेत्र विवरण का महत्वपूर्ण लाभ है कि यह क्षेत्र सिद्धांत में महत्वपूर्ण घटनाओं के सिद्धांत के साथ संबंध स्थापित करता है।

का समाधान खोजने के लिए , समान्यतः एक लाप्लास परिवर्तन को नियोजित करता है और सांख्यिकीय औसत के समान एक सहसंबंध फलन पर विचार करता है पूर्व में वर्णित, उतार-चढ़ाव वाले जटिल क्षेत्र द्वारा प्रतिस्थापित हरे रंग के कार्य के साथ। बड़े बहुलक (N>>1) की सामान्य सीमा में, अंत से अंत तक सदिश वितरण के समाधान कई बॉडी सिस्टम में महत्वपूर्ण घटनाओं के लिए क्वांटम फील्ड थ्योरिटिक दृष्टिकोण में अध्ययन किए गए अच्छी तरह से विकसित शासन के अनुरूप हैं।[7][8]


बहु-बहुलक प्रणाली

इस प्रकार अब तक प्रस्तुत उपचार में एक और सरलीकृत धारणा दी गई थी; सभी प्रतिरूपों ने एक एकल बहुलक का वर्णन किया। स्पष्ट रूप से अधिक शारीरिक रूप से यथार्थवादी विवरण को बहुलक के बीच बातचीत की संभावना को ध्यान में रखना होगा। संक्षेप में, यह बहिष्कृत वॉल्यूम समस्या का विस्तार है।

एक सचित्र बिंदु से इसे देखने के लिए, एक केंद्रित बहुलक समाधान (रसायन विज्ञान) के एक स्नैप शॉट की कल्पना कर सकते हैं। अपवर्जित आयतन सहसंबंध अब न केवल एक श्रृंखला के भीतर हो रहे हैं, बल्कि बहुलक एकाग्रता में वृद्धि पर अन्य श्रृंखलाओं से संपर्क बिंदुओं की बढ़ती संख्या अतिरिक्त अपवर्जित आयतन उत्पन्न करती है। ये अतिरिक्त संपर्क व्यक्तिगत बहुलक के सांख्यिकीय व्यवहार पर पर्याप्त प्रभाव डाल सकते हैं।

दो अलग-अलग लंबाई के पैमानों के बीच अंतर किया जाना चाहिए।[9] छोटे सिरे से अंत सदिश पैमानों द्वारा एक व्यवस्था दी जाएगी . इन पैमानों पर श्रृंखला का टुकड़ा स्वयं से केवल सहसंबंधों का अनुभव करता है, अर्थात शास्त्रीय आत्म-परहेज व्यवहार। बड़े मानदण्ड के लिए स्व-परहेज सहसंबंध एक महत्वपूर्ण भूमिका नहीं निभाते हैं और श्रृंखला के आँकड़े गॉसियन श्रृंखला के समान होते हैं। महत्वपूर्ण मूल्य एकाग्रता का एक कार्य होना चाहिए। सहज रूप से, एक महत्वपूर्ण एकाग्रता पहले से ही पाई जा सकती है। यह एकाग्रता जंजीरों के बीच ओवरलैप की विशेषता है। यदि बहुलक केवल मामूली रूप से ओवरलैप करते हैं, तो एक श्रृंखला अपने स्वयं के आयतन में व्याप्त हो जाती है। यह देता है:

जहां हम उपयोग करते थे यह एक महत्वपूर्ण परिणाम है और एक तुरंत देखता है कि बड़ी श्रृंखला लंबाई एन के लिए, ओवरलैप एकाग्रता बहुत कम है। पहले वर्णित आत्म-परहेज चलने को बदल दिया गया है और इसलिए विभाजन फलन अब एकल बहुलक मात्रा बहिष्कृत पथों द्वारा शासित नहीं है, लेकिन शेष घनत्व सांख्यिकीय उतार-चढ़ाव द्वारा बहुलक समाधान की समग्र एकाग्रता द्वारा निर्धारित किया जाता है। लगभग पूरी तरह से भरे हुए जाली प्रतिरूप (भौतिकी) द्वारा कल्पना की गई बहुत बड़ी सांद्रता की सीमा में, घनत्व में उतार-चढ़ाव कम और कम महत्वपूर्ण हो जाता है।

आरंभ करने के लिए, आइए हम कई श्रृंखलाओं के पथ अभिन्न सूत्रीकरण का सामान्यीकरण करें। विभाजन फलन गणना के लिए सामान्यीकरण बहुत सरल है और जो कुछ करना है वह सभी श्रृंखला खंडों के बीच की बातचीत को ध्यान में रखना है:

जहाँ भारित ऊर्जा अवस्थाओं को इस प्रकार परिभाषित किया गया है:

साथ बहुलक की संख्या को निरूपित करना।

यह समान्यतः आसान नहीं है और विभाजन फलन की सटीक गणना नहीं की जा सकती है। एक सरलीकरण एकरूपता को मान लेना है जिसका अर्थ है कि सभी श्रृंखलाओं की लंबाई समान है। या, गणितीय रूप से: .

एक और समस्या यह है कि विभाजन फलन में बहुत अधिक स्वतंत्रता की डिग्री होती है। जंजीरों की संख्या समिलित बहुत बड़े हो सकते हैं और प्रत्येक श्रृंखला में स्वतंत्रता की आंतरिक डिग्री होती है, क्योंकि उन्हें पूरी तरह से लचीला माना जाता है। इस कारण से, सामूहिक चरों को प्रस्तुत करना सुविधाजनक है, जो इस स्थिति में बहुलक खंड घनत्व है:

साथ कुल समाधान मात्रा।

एक सूक्ष्म घनत्व ऑपरेटर के रूप में देखा जा सकता है जिसका मूल्य घनत्व को एक मनमाना बिंदु पर परिभाषित करता है .

रूपान्तरण जितना कोई सोच सकता है उससे कम तुच्छ है और इसे ठीक से नहीं किया जा सकता है। अंतिम परिणाम तथाकथित यादृच्छिक चरण सन्निकटन (RPA) से मेल खाता है जिसका उपयोग प्रायः ठोस-अवस्था भौतिकी में किया जाता रहा है। खंड घनत्व का उपयोग करके विभाजन फलन की स्पष्ट रूप से गणना करने के लिए पारस्परिक स्थान पर स्विच करना होगा, चर बदलना होगा और उसके बाद ही एकीकरण को निष्पादित करना होगा। विस्तृत व्युत्पत्ति के लिए देखें।[6]<रेफरी नाम= एडवर्ड्स एंडरसन 1975 पीपी. 965–974 >{{cite journal | last1=Edwards | first1=S F | last2=Anderson | first2=P W | title=स्पिन ग्लास का सिद्धांत| journal=Journal of Physics F: Metal Physics | publisher=IOP Publishing | volume=5 | issue=5 | year=1975 | issn=0305-4608 | doi=10.1088/0305-4608/5/5/017 | pages=965–974| bibcode=1975JPhF....5..965E }</ref> प्राप्त किए गए विभाजन फलन के साथ, विभिन्न प्रकार की भौतिक मात्राएं निकाली जा सकती हैं जैसा कि पहले बताया गया है।

यह भी देखें

संदर्भ

  1. H.R Allcock; F.W. Lampe; J.E Mark, Contemporary Polymer Chemistry (3 ed.). (Pearson Education 2003). p. 21. ISBN 0-13-065056-0.
  2. P. Flory, Principles of Polymer Chemistry, Cornell University Press, 1953. ISBN 0-8014-0134-8.
  3. 3.0 3.1 3.2 3.3 3.4 F.W. Wiegel, Introduction to Path-Integral Methods in Physics and Polymer science (World Scientific, Philadelphia, 1986).
  4. 4.0 4.1 H. Kleinert, PATH INTEGRALS in Quantum mechanics, Statistics, Polymer Physics, and Financial Markets (World Scientific, 2009).
  5. Daniell, P. J. (1918). "इंटीग्रल का एक सामान्य रूप". The Annals of Mathematics. JSTOR. 19 (4): 279–294. doi:10.2307/1967495. ISSN 0003-486X. JSTOR 1967495.
  6. 6.0 6.1 M. Doi and S.F. Edwards, The Theory of Polymer Dynamics, (Clarendon press,Oxford, 1986).
  7. D.J. Amit, Renormalization Group and Critical Phenomena, (World Scientific Singapore, 1984.)
  8. G. Parisi, Statistical Field Theory, (Addison-Wesley, Reading Mass. 1988).
  9. Vilgis, T.A. (2000). "Polymer Theory: Path Integrals and Scaling". Physics Reports. 336 (3): 167–254. Bibcode:2000PhR...336..167V. doi:10.1016/S0370-1573(99)00122-2.