हिल्बर्ट श्रृंखला और हिल्बर्ट बहुपद

From Vigyanwiki

कम्यूटेटिव बीजगणित में, हिल्बर्ट फलन, हिल्बर्ट बहुपद, और एक श्रेणीबद्ध क्रमविनिमेय बीजगणित की हिल्बर्ट श्रृंखला एक क्षेत्र पर सूक्ष्म रूप से उत्पन्न तीन दृढ़ता से संबंधित धारणाएं हैं जो बीजगणित के सजातीय घटकों के आयाम के विकास को मापती हैं।

इन धारणाओं को फ़िल्टर किए गए बीजगणितों तक बढ़ा दिया गया है, और इन बीजगणितों पर वर्गीकृत या फ़िल्टर किए गए मॉड्यूल (गणित) के साथ-साथ प्रोजेक्टिव योजनाओं पर सुसंगत ढेरों के लिए भी बढ़ाया गया है।

जिन विशिष्ट स्थितियों में इन धारणाओं का उपयोग किया जाता है, वे निम्नलिखित हैं:

  • एक बहुभिन्नरूपी बहुपद वलय के समरूप आदर्श (रिंग थ्योरी) द्वारा भागफल, कुल डिग्री द्वारा वर्गीकृत।
  • एक बहुभिन्नरूपी बहुपद वलय के एक आदर्श द्वारा भागफल, कुल डिग्री द्वारा फ़िल्टर किया गया।
  • अपने उच्चतम अनुकूल क्षमता द्वारा एक स्थानीय वलय का निस्पंदन करता है। इस स्थिति में हिल्बर्ट बहुपद को हिल्बर्ट-सैमुअल बहुपद कहा जाता है।

बीजगणित या एक मॉड्यूल की डेविड हिल्बर्ट श्रृंखला ग्रेडेड वेक्टर स्पेस की हिल्बर्ट-पोंकेयर श्रृंखला की विशेष स्थिति होती है।

कम्प्यूटेशनल बीजगणितीय ज्यामिति में हिल्बर्ट बहुपद और हिल्बर्ट श्रृंखला महत्वपूर्ण हैं, क्योंकि वे स्पष्ट बहुपद समीकरणों द्वारा परिभाषित आयाम और बीजगणितीय विविधता की डिग्री की गणना के लिए सबसे आसान ज्ञात विधि होती हैं। इसके अतिरिक्त, वे बीजगणितीय किस्मों के श्रेणीयों के लिए उपयोगी आविष्कार प्रदान करते हैं क्योंकि एक समतल श्रेणी में किसी भी बंद बिंदु पर एक ही हिल्बर्ट बहुपद होते है . इसका उपयोग हिल्बर्ट योजना और उद्धरण योजना के निर्माण में किया जाता है।

परिभाषाएं और मुख्य गुण

एक क्षेत्र K पर सूक्ष्म रूप से उत्पन्न क्रम विनिमय बीजगणित S पर विचार करें, जो सकारात्मक डिग्री के तत्वों द्वारा अंतिम रूप से उत्पन्न होता है। इस का मतलब है कि

ओर वो .

हिल्बर्ट फलन

K-सदिश स्थल Sn के आयाम के लिए पूर्णांक n को मानचित्र करता है। हिल्बर्ट श्रृंखला, जिसे ग्रेडेड वेक्टर रिक्त स्थान की अधिक सामान्य सेटिंग में हिल्बर्ट-पोंकेयर श्रृंखला कहा जाता है, औपचारिक श्रृंखला होती है

अगर S द्वारा उत्पन्न होता है h सकारात्मक डिग्री के सजातीय तत्व , तो हिल्बर्ट श्रृंखला का योग एक परिमेय भिन्न है

कहाँ Q पूर्णांक गुणांक वाला एक बहुपद है।

अगर S डिग्री 1 के तत्वों द्वारा उत्पन्न होता है तो हिल्बर्ट श्रृंखला के योग को फिर से लिखा जा सकता है

कहाँ P पूर्णांक गुणांक वाला एक बहुपद है, और का क्रुल आयाम है S.

इस स्थिति में इस तर्कसंगत अंश का श्रृंखला विस्तार है

कहाँ

के लिए द्विपद गुणांक है और 0 अन्यथा है।

अगर

का गुणांक में इस प्रकार है

के लिए सूचकांक की अवधि i इस योग में एक बहुपद है n डिग्री अग्रणी गुणांक के साथ इससे पता चलता है कि एक अद्वितीय बहुपद मौजूद है तर्कसंगत गुणांक के साथ जो के बराबर है के लिए n बहुत पर्याप्त। यह बहुपद हिल्बर्ट बहुपद है, और इसका रूप है

कम से कम n0 ऐसा है कि के लिए nn0 को हिल्बर्ट नियमितता कहा जाता है। से कम हो सकता है .

हिल्बर्ट बहुपद एक संख्यात्मक बहुपद है, क्योंकि आयाम पूर्णांक हैं, लेकिन बहुपद में लगभग कभी भी पूर्णांक गुणांक नहीं होते हैं (Schenck 2003, pp. 41).

इन सभी परिभाषाओं को अंतिम रूप से उत्पन्न वर्गीकृत मॉड्यूल तक बढ़ाया जा सकता है S, एकमात्र अंतर के साथ कि एक कारक tm हिल्बर्ट श्रृंखला में दिखाई देता है, जहाँ m मॉड्यूल के जेनरेटर की न्यूनतम डिग्री है, जो नकारात्मक हो सकती है।

हिल्बर्ट फ़ंक्शन, हिल्बर्ट श्रृंखला और फ़िल्टर किए गए बीजगणित के हिल्बर्ट बहुपद संबद्ध ग्रेडेड बीजगणित के हैं।

प्रक्षेपी किस्म का हिल्बर्ट बहुपद V में Pn को सजातीय समन्वय वलय के हिल्बर्ट बहुपद के रूप में परिभाषित किया गया है V.

वर्गीकृत बीजगणित और बहुपद के छल्ले

सजातीय आदर्शों द्वारा बहुपद वलय और उनके भागफल विशिष्ट श्रेणीबद्ध बीजगणित हैं। इसके विपरीत यदि S क्षेत्र में उत्पन्न एक वर्गीकृत बीजगणित है K द्वारा n सजातीय तत्व g1, ..., gn डिग्री 1, फिर नक्शा जो भेजता है Xi पर gi श्रेणीबद्ध छल्लों के समरूपता को परिभाषित करें पर S. इसका कर्नेल (बीजगणित) एक सजातीय आदर्श है I और यह ग्रेडेड बीजगणित के एक समरूपता को परिभाषित करता है और S.

इस प्रकार, डिग्री 1 के तत्वों द्वारा उत्पन्न ग्रेडेड बीजगणित समरूप आदर्शों द्वारा बहुपद के छल्ले के भागफल, एक समरूपता तक बिल्कुल हैं। इसलिए, इस लेख का शेष भाग आदर्शों द्वारा बहुपद वलयों के भागफल तक ही सीमित रहेगा।

हिल्बर्ट श्रृंखला के गुण

Additivity

हिल्बर्ट श्रृंखला और हिल्बर्ट बहुपद अपेक्षाकृत सटीक अनुक्रमों के लिए योगात्मक हैं। अधिक सटीक, अगर

वर्गीकृत या फ़िल्टर किए गए मॉड्यूल का एक सटीक क्रम है, तो हमारे पास है

और

यह वेक्टर रिक्त स्थान के आयाम के लिए उसी संपत्ति से तुरंत अनुसरण करता है।

=== एक गैर-शून्य भाजक === द्वारा भागफल

होने देना A एक वर्गीकृत बीजगणित हो और f डिग्री का एक सजातीय तत्व d में A जो शून्य भाजक नहीं है। तो हमारे पास हैं

यह सटीक क्रम पर योगात्मकता से अनुसरण करता है

जहां तीर अंकित है f द्वारा गुणा है f, और ग्रेडेड मॉड्यूल है जो से प्राप्त किया जाता है A डिग्रियों को स्थानांतरित करके d, जिससे गुणा किया जा सके f की डिग्री 0 है। इसका तात्पर्य है कि


एक बहुपद वलय की हिल्बर्ट श्रृंखला और हिल्बर्ट बहुपद

बहुपद वलय की हिल्बर्ट श्रृंखला में अनिश्चित है

यह इस प्रकार है कि हिल्बर्ट बहुपद है

सबूत है कि हिल्बर्ट श्रृंखला में यह सरल रूप है, एक गैर शून्य विभाजक द्वारा भागफल के लिए पिछले सूत्र को पुनरावर्ती रूप से लागू करके प्राप्त किया जाता है ) और उस पर टिप्पणी करना


हिल्बर्ट श्रृंखला का आकार और आयाम

एक वर्गीकृत बीजगणित A डिग्री 1 के सजातीय तत्वों द्वारा उत्पन्न क्रुल आयाम शून्य है यदि अधिकतम सजातीय आदर्श, जो कि डिग्री 1 के सजातीय तत्वों द्वारा उत्पन्न आदर्श है, नीलपोटेंट आदर्श है। इसका तात्पर्य है कि का आयाम A के तौर पर K-सदिश स्थान परिमित है और हिल्बर्ट श्रृंखला की A एक बहुपद है P(t) ऐसा है कि P(1) के आयाम के बराबर है A के तौर पर K-सदिश स्थल।

यदि क्रुल का आयाम A सकारात्मक है, एक सजातीय तत्व है f घात एक का जो शून्य भाजक नहीं है (वास्तव में घात एक के लगभग सभी तत्वों में यह गुण होता है)। का क्रुल आयाम A/(f) का क्रुल आयाम है A शून्य से एक कम।

हिल्बर्ट श्रृंखला की योगात्मकता यह दर्शाती है . के क्रुल आयाम के बराबर इसे कई बार दोहराना A, हमें अंततः आयाम 0 का एक बीजगणित मिलता है जिसकी हिल्बर्ट श्रृंखला एक बहुपद है P(t). यह दिखाता है कि हिल्बर्ट श्रृंखला की A है

जहां बहुपद P(t) इस प्रकार कि P(1) ≠ 0 और d का क्रुल आयाम है A.

हिल्बर्ट श्रृंखला के लिए यह सूत्र बताता है कि हिल्बर्ट बहुपद की डिग्री है d, और इसका अग्रणी गुणांक है .

प्रक्षेपी किस्म की डिग्री और बेज़ाउट की प्रमेय

हिल्बर्ट श्रृंखला हमें हिल्बर्ट श्रृंखला के अंश के 1 पर मान के रूप में एक बीजगणितीय विविधता की डिग्री की गणना करने की अनुमति देती है। यह बेज़ाउट के प्रमेय का अपेक्षाकृत सरल प्रमाण भी प्रदान करता है।

प्रोजेक्टिव बीजगणितीय सेट और हिल्बर्ट श्रृंखला की डिग्री के बीच संबंध दिखाने के लिए, प्रोजेक्टिव बीजगणितीय सेट पर विचार करें V, एक सजातीय आदर्श के शून्य के सेट के रूप में परिभाषित , कहाँ k एक फ़ील्ड है, और चलो बीजगणितीय सेट पर नियमित कार्यों की अंगूठी बनें।

इस खंड में, किसी को बीजगणितीय सेटों की इरेड्यूसबिलिटी की आवश्यकता नहीं है और न ही आदर्शों की प्रधानता की। इसके अतिरिक्त, हिल्बर्ट श्रृंखला को गुणांक के क्षेत्र, क्षेत्र का विस्तार करके नहीं बदला जाता है k को, व्यापकता की हानि के बिना, बीजगणितीय रूप से संवृत होना माना जाता है।

आयाम d का V क्रुल डायमेंशन माइनस एक के बराबर है R, और की डिग्री V चौराहों के बिंदुओं की संख्या है, जिन्हें गुणकों के साथ गिना जाता है V के चौराहे के साथ सामान्य स्थिति में हाइपरप्लेन। इसका तात्पर्य अस्तित्व में है R, एक नियमित अनुक्रम का का d + 1 डिग्री एक के सजातीय बहुपद। एक नियमित अनुक्रम की परिभाषा का तात्पर्य सटीक अनुक्रमों के अस्तित्व से है

के लिए इसका अर्थ यह है कि

कहाँ की हिल्बर्ट श्रृंखला का अंश है R.

अंगूठी क्रुल आयाम एक है, और एक प्रोजेक्टिव बीजगणितीय सेट के नियमित कार्यों की अंगूठी है आयाम 0 में अंकों की एक परिमित संख्या होती है, जो कई बिंदु हो सकते हैं। जैसा एक नियमित अनुक्रम से संबंधित है, इनमें से कोई भी बिंदु समीकरण के हाइपरप्लेन से संबंधित नहीं है इस हाइपरप्लेन का पूरक एक affine अंतरिक्ष है जिसमें शामिल है यह बनाता है एक affine बीजगणितीय सेट, जिसमें है इसके नियमित कार्यों की अंगूठी के रूप में। रैखिक बहुपद में शून्य भाजक नहीं है और इस प्रकार एक सटीक अनुक्रम होता है

जिसका तात्पर्य है

यहां हम #filtered का उपयोग कर रहे हैं, और तथ्य यह है कि ग्रेडेड बीजगणित की हिल्बर्ट श्रृंखला फ़िल्टर्ड बीजगणित के रूप में इसकी हिल्बर्ट श्रृंखला भी है।

इस प्रकार एक आर्टिनियन रिंग है, जो कि ए है k-आयाम का सदिश स्थान P(1), और जॉर्डन-होल्डर प्रमेय को साबित करने के लिए इस्तेमाल किया जा सकता है P(1) बीजगणितीय सेट की डिग्री है V. वास्तव में, एक बिंदु की बहुलता एक रचना श्रृंखला में संबंधित अधिकतम आदर्श की घटनाओं की संख्या है।

बेज़ाउट के प्रमेय को सिद्ध करने के लिए, इसी तरह आगे बढ़ सकते हैं। अगर डिग्री का एक सजातीय बहुपद है , जो शून्य भाजक नहीं है R, सटीक अनुक्रम

पता चलता है कि

अंशों को देखते हुए यह बेज़ाउट के प्रमेय के निम्नलिखित सामान्यीकरण को सिद्ध करता है:

प्रमेय - अगर f डिग्री का एक सजातीय बहुपद है , जो शून्य भाजक नहीं है R, फिर के प्रतिच्छेदन की डिग्री V द्वारा परिभाषित हाइपरसफेस के साथ की डिग्री का उत्पाद है V द्वारा

अधिक ज्यामितीय रूप में, इसे इस प्रकार दोहराया जा सकता है:

प्रमेय - यदि डिग्री की एक प्रक्षेपी हाइपरसफेस d में डिग्री के बीजगणितीय सेट का कोई अलघुकरणीय घटक नहीं होता है δ, तो उनके प्रतिच्छेदन की डिग्री है .

सामान्य बेज़ाउट के प्रमेय को आसानी से एक हाइपरसफेस से शुरू करके, और इसके साथ प्रतिच्छेद करके निकाला जाता है n − 1 अन्य हाइपरसर्फ्स, एक के बाद एक।

पूरा चौराहा

एक अनुमानित बीजगणितीय सेट एक पूर्ण चौराहे है यदि इसका परिभाषित आदर्श नियमित अनुक्रम द्वारा उत्पन्न होता है। इस स्थिति में, हिल्बर्ट श्रृंखला के लिए एक सरल स्पष्ट सूत्र है।

होने देना होना k में सजातीय बहुपद , संबंधित डिग्री के सेटिंग one में निम्नलिखित सटीक क्रम हैं

हिल्बर्ट श्रृंखला की योज्यता का तात्पर्य इस प्रकार है

एक साधारण रिकर्सन देता है

इससे पता चलता है कि पूर्ण चौराहा एक नियमित अनुक्रम द्वारा परिभाषित किया गया है k बहुपद का कोडिमेंशन होता है k, और इसकी डिग्री अनुक्रम में बहुपदों की डिग्री का गुणनफल है।

मुक्त संकल्पों से सम्बन्ध

हर वर्गीकृत मॉड्यूल M एक श्रेणीबद्ध नियमित रिंग पर R हिल्बर्ट के सिज़ीजी प्रमेय के कारण एक वर्गीकृत मुक्त रिज़ॉल्यूशन है, जिसका अर्थ है कि एक सटीक अनुक्रम मौजूद है

जहां मुक्त मॉड्यूल वर्गीकृत हैं, और तीर डिग्री शून्य के रैखिक मानचित्र हैं।

हिल्बर्ट श्रृंखला की योगात्मकता का तात्पर्य है

अगर एक बहुपद वलय है, और यदि कोई आधार तत्वों की डिग्री जानता है तो पूर्ववर्ती वर्गों के सूत्र कटौती की अनुमति देते हैं से वास्तव में, इन सूत्रों का अर्थ है कि, यदि एक श्रेणीबद्ध मुक्त मॉड्यूल L का आधार है h डिग्री के सजातीय तत्व तो इसकी हिल्बर्ट श्रृंखला है

हिल्बर्ट श्रृंखला की गणना के लिए इन सूत्रों को एक तरीके के रूप में देखा जा सकता है। यह शायद ही कभी मामला है, जैसा कि ज्ञात एल्गोरिदम के साथ, हिल्बर्ट श्रृंखला की गणना और एक मुक्त संकल्प की गणना उसी ग्रोबनेर आधार से शुरू होती है, जिससे हिल्बर्ट श्रृंखला सीधे एक कम्प्यूटेशनल जटिलता के साथ गणना की जा सकती है जो उच्चतर नहीं है इससे मुक्त संकल्प की गणना की जटिलता