सामयिक क्वांटम क्षेत्र सिद्धांत

From Vigyanwiki
Revision as of 18:08, 22 April 2023 by alpha>Poonam Singh

गेज थ्योरी (गणित) और गणितीय भौतिकी में, एक टोपोलॉजिकल क्वांटम क्षेत्र सिद्धांत (या टोपोलॉजिकल फील्ड थ्योरी या TQFT) एक क्वांटम फील्ड थ्योरी है जो टोपोलॉजिकल इनवेरिएंट की गणना करती है।

यद्यपि TQFTs का आविष्कार भौतिकविदों द्वारा किया गया था, वे गणितीय रुचि के भी हैं, अन्य बातों के अतिरिक्त, गाँठ सिद्धांत और बीजगणितीय टोपोलॉजी में चार-कई गुना के सिद्धांत और बीजगणितीय ज्यामिति में मोडुली रिक्त स्थान के सिद्धांत से संबंधित हैं। साइमन डोनाल्डसन, वौघन जोंस, एडवर्ड विटन और मैक्सिम कोंटेसेविच ने टोपोलॉजिकल फील्ड थ्योरी से संबंधित गणितीय कार्य के लिए फील्ड मेडल जीते हैं।

संघनित पदार्थ भौतिकी में, टोपोलॉजिकल क्वांटम फील्ड थ्योरी टोपोलॉजिकल ऑर्डर स्टेट्स के कम-ऊर्जा प्रभावी सिद्धांत हैं, जैसे क्वांटम हॉल प्रभाव स्टेट्स, स्ट्रिंग जाल कंडेंस्ड स्टेट्स, और अन्य मजबूत सहसंबद्ध क्वांटम स्पिन लिक्विड स्टेट्स।

सिंहावलोकन

एक स्थलीय क्षेत्र सिद्धांत में, सहसंबंध समारोह (क्वांटम क्षेत्र सिद्धांत) अंतरिक्ष समय के मीट्रिक टेन्सर (सामान्य सापेक्षता) पर निर्भर नहीं करता है। इसका मतलब यह है कि सिद्धांत दिक्-काल के आकार में परिवर्तन के प्रति संवेदनशील नहीं है; यदि स्पेसटाइम विकृत या सिकुड़ता है, तो सहसंबंध कार्य नहीं बदलते हैं। परिणाम स्वरुप , वे टोपोलॉजिकल इनवेरिएंट हैं।

टोपोलॉजिकल फील्ड सिद्धांत कण भौतिकी में उपयोग किए जाने वाले फ्लैट मिन्कोव्स्की स्पेसटाइम पर बहुत रोचक नहीं हैं। मिन्कोवस्की स्थान सिकुड़ा हुआ स्थान हो सकता है, इसलिए मिन्कोवस्की अंतरिक्ष पर लागू एक टीक्यूएफटी का परिणाम तुच्छ टोपोलॉजिकल इनवेरिएंट में होता है। परिणाम स्वरुप , टीक्यूएफटी सामान्यतः घुमावदार अंतरिक्ष-समय पर लागू होते हैं, जैसे, उदाहरण के लिए, रीमैन सतहें। अधिकांश ज्ञात टोपोलॉजिकल फील्ड थ्योरी पांच से कम डायमेंशन के कर्व्ड स्पेसटाइम में क्वांटम फील्ड थ्योरी हैं। ऐसा लगता है कि कुछ उच्च-आयामी सिद्धांत उपस्तिथ हैं, किन्तु उन्हें बहुत अच्छी तरह से समझा नहीं गया है[citation needed].

माना जाता है कि क्वांटम ग्रेविटी पृष्ठभूमि स्वतंत्रता | बैकग्राउंड-इंडिपेंडेंट (कुछ उपयुक्त अर्थों में) है, और TQFTs बैकग्राउंड इंडिपेंडेंट क्वांटम फील्ड थ्योरी के उदाहरण प्रदान करते हैं। इसने मॉडल के इस वर्ग में चल रही सैद्धांतिक जांच को प्रेरित किया है।

(चेतावनी: अधिकांशतः यह कहा जाता है कि टीक्यूएफटी के पास स्वतंत्रता की केवल बहुत सी डिग्री होती है। यह मौलिक संपत्ति नहीं है। भौतिकविदों और गणितज्ञों का अध्ययन करने वाले अधिकांश उदाहरणों में यह सच होता है, किन्तु यह आवश्यक नहीं है। एक स्थलीय सिग्मा मॉडल अनंत-आयामी प्रोजेक्टिव स्पेस को लक्षित करता है, और यदि ऐसी चीज को परिभाषित किया जा सकता है तो यह स्वतंत्रता की कई डिग्री अनंत रूप से अनंत होगी।)

विशिष्ट मॉडल

ज्ञात टोपोलॉजिकल फील्ड सिद्धांत दो सामान्य वर्गों में आते हैं: श्वार्ज-टाइप टीक्यूएफटी और विट्टन-टाइप टीक्यूएफटी। Witten TQFTs को कभी-कभी कोहोमोलॉजिकल फील्ड थ्योरीज़ भी कहा जाता है। देखना (Schwarz 2000).

श्वार्ज-टाइप टीक्यूएफटी

श्वार्ज-टाइप टीक्यूएफटी में, सिस्टम के सहसंबंध फ़ंक्शन (क्वांटम फ़ील्ड सिद्धांत) या विभाजन फ़ंक्शन (क्वांटम फ़ील्ड सिद्धांत) की गणना मीट्रिक-स्वतंत्र क्रिया फ़ंक्शंस के पथ अभिन्न द्वारा की जाती है। उदाहरण के लिए, बीएफ मॉडल में, स्पेसटाइम एक द्वि-आयामी कई गुना एम है, वेधशालाओं का निर्माण दो-रूप एफ, एक सहायक स्केलर बी और उनके डेरिवेटिव से किया जाता है। क्रिया (जो अभिन्न पथ निर्धारित करती है) है

स्पेसटाइम मेट्रिक सिद्धांत में कहीं भी प्रकट नहीं होता है, इसलिए सिद्धांत स्पष्ट रूप से सामयिक रूप से अपरिवर्तनीय है। पहला उदाहरण 1977 में सामने आया और इसका श्रेय अल्बर्ट श्वार्ज|ए को जाता है। श्वार्ज; इसकी क्रिया कार्यात्मक है:

एक और अधिक प्रसिद्ध उदाहरण चेर्न-सीमन्स सिद्धांत है, जिसे गाँठ के आक्रमणकारियों पर लागू किया जा सकता है। सामान्यतः, विभाजन कार्य मीट्रिक पर निर्भर करते हैं किन्तु उपरोक्त उदाहरण मीट्रिक-स्वतंत्र हैं।

विटेन-टाइप टीक्यूएफटी

Witten-type TQFTs का पहला उदाहरण 1988 में विटन के पेपर में दिखाई दिया (Witten 1988a), अर्थात टोपोलॉजिकल यांग-मिल्स सिद्धांत चार आयामों में। चूंकि इसके एक्शन फंक्शनल में स्पेसटाइम मेट्रिक जी सम्मिलित हैαβ, एक टोपोलॉजिकल स्ट्रिंग थ्योरी के बाद # टोपोलॉजिकल ट्विस्ट यह मेट्रिक इंडिपेंडेंट निकला। तनाव-ऊर्जा टेंसर टी की स्वतंत्रतामेट्रिक से सिस्टम का αβ इस बात पर निर्भर करता है कि क्या BRST परिमाणीकरण|BRST-ऑपरेटर बंद है। विटेन के उदाहरण के बाद सामयिक स्ट्रिंग सिद्धांत में कई अन्य उदाहरण मिल सकते हैं।

विट्टन-टाइप TQFTs उत्पन्न होते हैं यदि निम्नलिखित शर्तें पूरी होती हैं:मौजूद

  1. कार्य TQFT में एक समरूपता है, अर्थात यदि एक समरूपता परिवर्तन को दर्शाता है (उदाहरण के लिए एक झूठ व्युत्पन्न) तब रखती है।
  2. समरूपता परिवर्तन त्रुटिहीन क्रम है, अर्थात
  3. उपस्थित, वेधशालाएँ हैं जो संतुष्ट करता है सभी के लिए .
  4. तनाव-ऊर्जा-टेंसर (या समान भौतिक मात्रा) रूप का है एक मनमाना टेंसर के लिए .

उदहारण के लिए (Linker 2015): 2-फ़ॉर्म फ़ील्ड दिया गया है अंतर ऑपरेटर के साथ जो संतुष्ट करता है , फिर क्रिया एक समरूपता है यदि तब से

.

इसके अतिरिक्त, निम्नलिखित धारण करता है (शर्त के अनुसार कि पर स्वतंत्र है और एक कार्यात्मक व्युत्पन्न के समान कार्य करता है):

.

इजहार के लिए आनुपातिक है दूसरे 2-फॉर्म के साथ .

अब वेधशालाओं का कोई भी औसत इसी हार उपाय के लिए ज्यामितीय क्षेत्र पर स्वतंत्र हैं और इसलिए सामयिक हैं:

.

तीसरी समानता इस तथ्य का उपयोग करती है कि और समरूपता परिवर्तनों के अनुसार हार माप का आविष्कार। तब से केवल एक संख्या है, इसका लाई डेरिवेटिव गायब हो जाता है।

गणितीय सूत्र

मूल अतियाः सहगल अभिगृहीत

माइकल अतियाह ने टोपोलॉजिकल क्वांटम क्षेत्र सिद्धांत के लिए स्वयंसिद्धों के एक सेट का सुझाव दिया, जो ग्रीम सहगल के अनुरूप क्षेत्र सिद्धांत के लिए प्रस्तावित स्वयंसिद्धों से प्रेरित था (बाद में, सहगल के विचार को संक्षेप में प्रस्तुत किया गया था) Segal (2001)), और सुपरसिमेट्री के विटन का ज्यामितीय अर्थ Witten (1982). अतियाह के स्वयंसिद्धों का निर्माण एक भिन्न (सामयिक या निरंतर) परिवर्तन के साथ सीमा को जोड़कर किया जाता है, जबकि सहगल के स्वयंसिद्ध अनुरूप परिवर्तनों के लिए हैं। श्वार्ज-टाइप QFTs के गणितीय उपचार के लिए ये स्वयंसिद्ध अपेक्षाकृत उपयोगी रहे हैं, चूंकि यह स्पष्ट नहीं है कि वे Witten-type QFTs की पूरी संरचना पर कब्जा करते हैं। मूल विचार यह है कि एक टीक्यूएफटी एक निश्चित श्रेणी (गणित) से लेकर वेक्टर रिक्त स्थान की श्रेणी तक एक मज़ेदार है।

वास्तव में स्वयंसिद्धों के दो अलग-अलग समूह हैं जिन्हें उचित रूप से अतियाह स्वयंसिद्ध कहा जा सकता है। ये स्वयंसिद्ध मूल रूप से भिन्न होते हैं कि वे एक निश्चित n-आयामी रीमैनियन / लोरेंट्ज़ियन स्पेसटाइम M पर परिभाषित TQFT पर लागू होते हैं या नहीं या एक बार में सभी n-आयामी स्पेसटाइम पर परिभाषित TQFT।

चलो Λ 1 के साथ एक क्रमविनिमेय अंगूठी हो (लगभग सभी वास्तविक दुनिया के उद्देश्यों के लिए हमारे पास Λ = 'Z', 'R' या 'C' होगा)। अतियाह ने मूल रूप से ग्राउंड रिंग Λ पर परिभाषित आयाम d में एक टोपोलॉजिकल क्वांटम फील्ड थ्योरी (TQFT) के स्वयंसिद्धों को निम्नलिखित के रूप में प्रस्तावित किया:

  • एक बारीकी से उत्पन्न Λ-मॉड्यूल जेड (Σ) प्रत्येक उन्मुख बंद चिकनी डी-आयामी मैनिफोल्ड Σ (होमोटॉपी स्वयंसिद्ध के अनुरूप) से जुड़ा हुआ है,
  • एक तत्व जेड (एम) ∈ जेड (एम) प्रत्येक उन्मुख चिकनी (डी + 1) -आयामी कई गुना (सीमा के साथ) एम (एक योजक सिद्धांत के अनुरूप) से जुड़ा हुआ है।

ये डेटा निम्नलिखित स्वयंसिद्धों के अधीन हैं (4 और 5 अतियाह द्वारा जोड़े गए थे):

  1. Z Σ और M के भिन्नता को संरक्षित करने वाले अभिविन्यास के संबंध में कार्यात्मक है,
  2. Z अनैच्छिक है, अर्थात Z(Σ*) = Z(Σ)* जहां Σ* Σ विपरीत अभिविन्यास के साथ है और Z(Σ)* दोहरे मॉड्यूल को दर्शाता है,
  3. Z गुणक है।
  4. जेड () = Λ डी-आयामी खाली कई गुना और जेड के लिए () = 1 (डी + 1) -आयामी खाली कई गुना के लिए।
  5. जेड (एम *) = Z(M) (सेस्क्विलिनियर रूप स्वयंसिद्ध)। यदि जिससे कि Z(M) को हर्मिटियन वेक्टर रिक्त स्थान के बीच एक रैखिक परिवर्तन के रूप में देखा जा सके, तो यह Z(M*) के बराबर है जो Z(M) का हर्मिटियन आसन्न है।

'टिप्पणी।' यदि एक बंद मैनिफोल्ड एम के लिए हम जेड (एम) को एक संख्यात्मक अपरिवर्तनीय के रूप में देखते हैं, तो एक सीमा के साथ कई गुना के लिए हमें जेड (एम) ∈ जेड (∂ एम) को रिश्तेदार अपरिवर्तनीय के रूप में सोचना चाहिए। चलो f : Σ → Σ एक अभिविन्यास-संरक्षण भिन्नता है, और f द्वारा Σ × I के विपरीत सिरों की पहचान करें। यह कई गुना Σ देता हैf और हमारे सिद्धांतों का मतलब है

जहां Σ(f) Z(Σ) का प्रेरित ऑटोमोर्फिज्म है।

'टिप्पणी।' सीमा Σ के साथ कई गुना M के लिए हम हमेशा दोहरा बना सकते हैं जो एक बंद मैनिफोल्ड है। पांचवां स्वयंसिद्ध यह दर्शाता है

जहां दाईं ओर हम हर्मिटियन (संभवतः अनिश्चितकालीन) मीट्रिक में मानदंड की गणना करते हैं।

भौतिकी से संबंध

भौतिक रूप से (2) + (4) आपेक्षिकीय आक्रमण से संबंधित हैं जबकि (3) + (5) सिद्धांत की क्वांटम प्रकृति के सूचक हैं।

Σ भौतिक स्थान को इंगित करने के लिए है (सामान्यतः, मानक भौतिकी के लिए d = 3) और Σ × I में अतिरिक्त आयाम काल्पनिक समय है। स्थान Z(Σ) क्वांटम सिद्धांत का हिल्बर्ट अंतरिक्ष है और हैमिल्टनियन (क्वांटम यांत्रिकी) H के साथ एक भौतिक सिद्धांत, एक समय विकास संचालिका e होगाitH या एक काल्पनिक टाइम ऑपरेटर e−tH. टोपोलॉजिकल क्यूएफटी की मुख्य विशेषता यह है कि एच = 0, जिसका तात्पर्य है कि सिलेंडर Σ × I के साथ कोई वास्तविक गतिशीलता या प्रसार नहीं है। चूंकि, Σ से गैर-तुच्छ प्रसार (या टनलिंग एम्पलीट्यूड) हो सकता है।0 एस के लिए1 एक मध्यवर्ती कई गुना एम के साथ ; यह एम की टोपोलॉजी को दर्शाता है।

यदि ∂M = Σ, तो हिल्बर्ट अंतरिक्ष Z(Σ) में विशिष्ट वेक्टर Z(M) को M द्वारा परिभाषित निर्वात स्थिति के रूप में माना जाता है। एक बंद कई गुना M के लिए संख्या Z(M) निर्वात अपेक्षा मान है। सांख्यिकीय यांत्रिकी के अनुरूप इसे विभाजन कार्य (क्वांटम क्षेत्र सिद्धांत) भी कहा जाता है।

क्यूएफटी के लिए फेनमैन पथ अभिन्न दृष्टिकोण में शून्य हैमिल्टनियन के साथ एक सिद्धांत को समझदारी से तैयार किया जा सकता है। इसमें सापेक्षवादी आक्रमण सम्मिलित है (जो सामान्य (डी + 1) -आयामी स्पेसटाइम पर लागू होता है) और सिद्धांत औपचारिक रूप से एक उपयुक्त लैग्रैंगियन (क्षेत्र सिद्धांत) द्वारा परिभाषित किया गया है - सिद्धांत के मौलिक क्षेत्रों का कार्यात्मक। एक Lagrangian जिसमें समय में केवल पहला डेरिवेटिव सम्मिलित होता है, औपचारिक रूप से एक शून्य हैमिल्टन की ओर जाता है, किन्तु Lagrangian में गैर-तुच्छ विशेषताएं हो सकती हैं जो M की टोपोलॉजी से संबंधित हैं।

अतियाह के उदाहरण

1988 में, एम. अतियाह ने एक पेपर प्रकाशित किया जिसमें उन्होंने टोपोलॉजिकल क्वांटम फील्ड थ्योरी के कई नए उदाहरणों का वर्णन किया, जिन्हें उस समय माना जाता था। (Atiyah 1988a)(Atiyah 1988b). इसमें कुछ नए विचारों के साथ कुछ नए टोपोलॉजिकल इनवेरिएंट सम्मिलित हैं: कैसन अपरिवर्तनीय , डोनाल्डसन अपरिवर्तनीय , जियोमेट्रिक ग्रुप थ्योरी | ग्रोमोव का सिद्धांत, फ्लोर होमोलॉजी और जोन्स बहुपद | जोन्स-विटन सिद्धांत।

डी = 0

इस स्थिति में Σ में परिमित रूप से अनेक बिंदु होते हैं। एक बिंदु से हम एक सदिश स्थान V = Z (बिंदु) और n-बिंदुओं को n-गुना टेन्सर उत्पाद से जोड़ते हैं: V⊗n = V ⊗ … ⊗ V. सममित समूह Snवी पर कार्य करता है⊗n. क्वांटम हिल्बर्ट स्पेस प्राप्त करने का एक मानक विधि मौलिक सिंपलेक्टिक मैनिफोल्ड (या चरण स्थान ) से प्रारंभ करना है और फिर इसे परिमाणित करना है। आइए हम S का विस्तार करेंnएक कॉम्पैक्ट लाई समूह जी के लिए और पूर्णांक कक्षाओं पर विचार करें जिसके लिए सहानुभूतिपूर्ण संरचना एक लाइन बंडल से आती है, फिर परिमाणीकरण जी के अप्रासंगिक प्रतिनिधित्व वी की ओर जाता है। यह बोरेल-वील प्रमेय या बोरेल-वील-बॉट की भौतिक व्याख्या है प्रमेय। इन सिद्धांतों का Lagrangian मौलिक क्रिया (लाइन बंडल की पवित्रता) है। इस प्रकार टोपोलॉजिकल क्यूएफटी डी = 0 के साथ स्वाभाविक रूप से झूठ समूहों और समरूपता समूह के मौलिक प्रतिनिधित्व सिद्धांत से संबंधित है।

डी = 1

हमें कॉम्पैक्ट सिम्प्लेक्टिक मैनिफोल्ड एक्स में बंद लूप द्वारा दी गई आवधिक सीमा स्थितियों पर विचार करना चाहिए। साथ में Witten (1982) डी = 0 के स्थितियोंमें लैग्रेंजियन के रूप में उपयोग किए जाने वाले होलोनॉमी ऐसे लूप का उपयोग हैमिल्टनियन को संशोधित करने के लिए किया जाता है। एक बंद सतह एम के लिए सिद्धांत का अपरिवर्तनीय जेड (एम) ग्रोमोव के अर्थ में स्यूडोहोलोमॉर्फिक वक्र एफ: एम → एक्स की संख्या है (वे सामान्य होलोमॉर्फिक नक्शा हैं यदि एक्स एक काहलर मैनिफोल्ड है)। यदि यह संख्या अपरिमित हो जाती है, अर्थात यदि मॉडुलि हैं, तो हमें M पर और डेटा निश्चित करना होगा। यह कुछ बिंदुओं P को चुनकर किया जा सकता है।iऔर फिर होलोमॉर्फिक मानचित्र f : M → X को f(Pi) एक निश्चित हाइपरप्लेन पर लेटने के लिए विवश। Witten (1988b) ने इस सिद्धांत के लिए प्रासंगिक Lagrangian को लिखा है। फ़्लोर ने विटन के मोर्स सिद्धांत के विचारों के आधार पर एक कठोर उपचार दिया है, अर्थात फ़्लोर होमोलॉजी; स्थितियोंके लिए जब सीमा की स्थिति आवधिक होने के अतिरिक्त अंतराल पर होती है, तो पथ प्रारंभिक और अंत-बिंदु दो निश्चित Lagrangian सबमनीफोल्ड पर स्थित होते हैं। इस सिद्धांत को ग्रोमोव-विटन अपरिवर्तनीय सिद्धांत के रूप में विकसित किया गया है।

एक अन्य उदाहरण होलोमॉर्फिक फ़ंक्शन कॉनफॉर्मल फील्ड थ्योरी है। हो सकता है कि उस समय इसे सख्ती से टोपोलॉजिकल क्वांटम फील्ड सिद्धांत नहीं माना गया हो क्योंकि हिल्बर्ट रिक्त स्थान अनंत आयामी हैं। अनुरूप क्षेत्र सिद्धांत भी कॉम्पैक्ट लाई समूह जी से संबंधित हैं जिसमें मौलिक चरण में लूप समूह (एलजी) का एक केंद्रीय विस्तार होता है। इनका मात्राकरण एलजी के इरेड्यूसिबल (प्रक्षेपी) अभ्यावेदन के सिद्धांत के हिल्बर्ट रिक्त स्थान का उत्पादन करता है। समूह डिफ+(एस1) अब सममित समूह का स्थान लेता है और एक महत्वपूर्ण भूमिका निभाता है। परिणाम स्वरुप , ऐसे सिद्धांतों में विभाजन कार्य जटिल कई गुना पर निर्भर करता है, इस प्रकार यह विशुद्ध रूप से सामयिक नहीं है।

डी = 2

इस स्थितियोंमें जोन्स-विटन सिद्धांत सबसे महत्वपूर्ण सिद्धांत है। यहाँ मौलिक चरण स्थान, एक बंद सतह के साथ जुड़ा हुआ है, Σ के ऊपर एक फ्लैट जी-बंडल का मोडुली स्थान है। Lagrangian चेर्न-सीमन्स सिद्धांत का एक पूर्णांक गुणक है | चेर्न-सिमन्स एक 3-मैनिफ़ोल्ड (जिसे फ़्रेम किया जाना है) पर जी-कनेक्शन का कार्य करता है। पूर्णांक एकाधिक k, जिसे स्तर कहा जाता है, सिद्धांत का एक पैरामीटर है और k → ∞ मौलिक सीमा देता है। सापेक्ष सिद्धांत उत्पन्न करने के लिए इस सिद्धांत को स्वाभाविक रूप से d = 0 सिद्धांत के साथ जोड़ा जा सकता है। विटन द्वारा विवरण का वर्णन किया गया है जो दिखाता है कि 3-गोले में एक (फ़्रेमयुक्त) लिंक के लिए विभाजन फ़ंक्शन एकता की उपयुक्त जड़ के लिए जोन्स बहुपद का मूल्य है। सिद्धांत को संबंधित साइक्लोटोमिक क्षेत्र पर परिभाषित किया जा सकता है, देखें Atiyah (1988). सीमा के साथ एक रीमैन सतह पर विचार करके, हम इसे d = 2 सिद्धांत को d = 0 से जोड़ने के अतिरिक्त d = 1 अनुरूप सिद्धांत से जोड़ सकते हैं। यह जोन्स-विटन सिद्धांत में विकसित हुआ है और गाँठ के बीच गहरे संबंधों की खोज का कारण बना है। सिद्धांत और क्वांटम क्षेत्र सिद्धांत।

डी = 3

डोनाल्डसन ने एसयू(2)-इंस्टेंटन के मॉडुलि स्पेस का उपयोग करके चिकनी 4-मैनिफोल्ड्स के पूर्णांक इनवेरिएंट को परिभाषित किया है। ये अपरिवर्तनीय दूसरे होमोलॉजी पर बहुपद हैं। इस प्रकार 4-कई गुना में एच के सममित बीजगणित से युक्त अतिरिक्त डेटा होना चाहिए2. Witten (1988a) ने एक सुपर-सिमेट्रिक लैग्रैंगियन का निर्माण किया है जो औपचारिक रूप से डोनाल्डसन सिद्धांत को पुन: प्रस्तुत करता है। विटन के सूत्र को गॉस-बोनट प्रमेय के अनंत-आयामी एनालॉग के रूप में समझा जा सकता है। बाद की तारीख में, इस सिद्धांत को और विकसित किया गया और सीबर्ग-विटन सिद्धांत बन गया। सीबर्ग-विटन गेज सिद्धांत जो एन = 2, डी = 4 गेज सिद्धांत में एसयू (2) से यू (1) को कम करता है। सिद्धांत का हैमिल्टनियन संस्करण एंड्रियास फ्लोर द्वारा 3-कई गुना पर कनेक्शन के स्थान के संदर्भ में विकसित किया गया है। फ्लोरर चेर्न-सीमन्स सिद्धांत का उपयोग करता है| विवरण के लिए देखें Atiyah (1988). Witten (1988a) ने यह भी दिखाया है कि कोई कैसे d = 3 और d = 1 सिद्धांतों को एक साथ जोड़ सकता है: यह जोन्स-विटन सिद्धांत में d = 2 और d = 0 के बीच युग्मन के समान है।

अब, टोपोलॉजिकल फील्ड सिद्धांत को एक निश्चित आयाम पर नहीं बल्कि एक ही समय में सभी आयामों पर एक फ़ैक्टर के रूप में देखा जाता है।

=== एक निश्चित स्पेसटाइम === का मामला चलो बोर्डMवह श्रेणी हो जिसके आकारिकी एम के एन-आयामी सबमनीफोल्ड हैं और जिनकी वस्तुएं ऐसे सबमेनिफोल्ड की सीमाओं के अंतरिक्ष घटकों से जुड़ी हैं। दो morphisms को समतुल्य मानते हैं यदि वे M के सबमनिफोल्ड्स के माध्यम से होमोटोपी हैं, और इसलिए भागफल श्रेणी hBord बनाते हैंM: hBord में वस्तुएँMबोर्ड की वस्तुएं हैंM, और hBord के morphismsMबोर्ड में आकारिकी के होमोटोपी तुल्यता वर्ग हैंM. एम पर एक टीक्यूएफटी एचबोर्ड से एक सममित monoidal functor हैMवेक्टर रिक्त स्थान की श्रेणी के लिए।

ध्यान दें कि सह-बोर्डवाद, यदि उनकी सीमाएं मेल खाती हैं, तो एक साथ सिल कर एक नया बोर्डवाद बना सकते हैं। यह कोबोर्डिज्म श्रेणी में आकारिकी के लिए रचना नियम है। चूंकि संरचना को संरक्षित करने के लिए फ़ैक्टरों की आवश्यकता होती है, यह कहता है कि एक साथ सिले हुए मोर्फिज्म के अनुरूप रैखिक मानचित्र प्रत्येक टुकड़े के लिए रैखिक मानचित्र की संरचना है।

2-आयामी टोपोलॉजिकल क्वांटम फील्ड सिद्धांतों की श्रेणी और कम्यूटेटिव फ्रोबेनियस बीजगणित की श्रेणी के बीच श्रेणियों की समानता है।

सभी एन-डायमेंशनल स्पेसटाइम एक साथ

पैंट की जोड़ी (गणित) एक (1+1)-आयामी सीमावाद है, जो एक 2-आयामी TQFT में एक उत्पाद या सह-उत्पाद से मेल खाती है।

सभी स्पेसटाइम पर एक साथ विचार करने के लिए, hBord को बदलना आवश्यक हैMएक बड़ी श्रेणी द्वारा। तो चलो बोर्डnबोर्डिज्म की श्रेणी हो, अर्थात वह श्रेणी जिसका रूपवाद सीमा के साथ एन-डायमेंशनल मैनिफोल्ड हो, और जिसकी वस्तुएं एन-डायमेंशनल मैनिफोल्ड की सीमाओं से जुड़े घटक हों। (ध्यान दें कि कोई भी (n−1)-विमीय कई गुना बोर्ड में एक वस्तु के रूप में प्रकट हो सकता हैn।) ऊपर के रूप में, बोर्ड में दो रूपों पर विचार करेंnसमतुल्य के रूप में यदि वे समरूप हैं, और भागफल श्रेणी hBord बनाते हैंn. किनाराnऑपरेशन के अनुसार एक मोनोइडल श्रेणी है जो दो बोर्डिज्म को उनके अलग संघ से बने बोर्डिज्म में मैप करती है। एन-डायमेंशनल मैनिफोल्ड्स पर एक TQFT तब hBord का एक फ़ंक्टर हैnवेक्टर रिक्त स्थान की श्रेणी के लिए, जो बोर्डिज्म के संघों को उनके टेन्सर उत्पाद से अलग करता है।

उदाहरण के लिए, (1 + 1)-आयामी बोर्डिज्म (1-आयामी कई गुना के बीच 2-आयामी बोर्डिज्म) के लिए, पैंट की एक जोड़ी (गणित) से जुड़ा नक्शा एक उत्पाद या प्रतिउत्पाद देता है, यह इस बात पर निर्भर करता है कि सीमा घटकों को कैसे समूहीकृत किया जाता है - जो क्रमविनिमेय या सहसम्बन्धी है, जबकि एक डिस्क से जुड़ा मानचित्र सीमा घटकों के समूहीकरण के आधार पर एक काउनिट (ट्रेस) या इकाई (स्केलर) देता है, और इस प्रकार (1+1)-आयाम TQFTs फ्रोबेनियस बीजगणित के अनुरूप हैं।

इसके अतिरिक्त, हम एक साथ 4-आयामी, 3-आयामी और 2-आयामी कई गुनाओं पर विचार कर सकते हैं, जो ऊपर दिए गए सीमाओं से संबंधित हैं, और उनसे हम पर्याप्त और महत्वपूर्ण उदाहरण प्राप्त कर सकते हैं।

बाद के समय में विकास

टोपोलॉजिकल क्वांटम फील्ड थ्योरी के विकास को देखते हुए, हमें साइबर्ग-विटन थ्योरी के लिए इसके कई अनुप्रयोगों पर विचार करना चाहिए। साइबर्ग-विटन गेज थ्योरी, टोपोलॉजिकल स्ट्रिंग थ्योरी, नॉट थ्योरी और क्वांटम फील्ड थ्योरी के बीच संबंध, और क्वांटम गाँठ अपरिवर्तनीय इसके अतिरिक्त, इसने गणित और भौतिकी दोनों में बहुत रुचि के विषय उत्पन्न किए हैं। TQFT में गैर-स्थानीय ऑपरेटरों की हालिया दिलचस्पी भी महत्वपूर्ण है (Gukov & Kapustin (2013)). यदि स्ट्रिंग सिद्धांत को मौलिक के रूप में देखा जाता है, तो गैर-स्थानीय TQFTs को गैर-भौतिक मॉडल के रूप में देखा जा सकता है जो स्थानीय स्ट्रिंग सिद्धांत को कम्प्यूटेशनल रूप से कुशल सन्निकटन प्रदान करते हैं।

Witten-type TQFTs और डायनेमिक सिस्टम

स्टोचैस्टिक (आंशिक) डिफरेंशियल इक्वेशन (एसडीई) क्वांटम अध: पतन और सुसंगतता के पैमाने से ऊपर प्रकृति में हर चीज के मॉडल के लिए आधार हैं और अनिवार्य रूप से विटेन-टाइप टीक्यूएफटी हैं। सभी एसडीई में टोपोलॉजिकल या बीआरएसटी सुपरसिमेट्री होती है, , और स्टोचैस्टिक डायनेमिक्स के ऑपरेटर प्रतिनिधित्व में बाहरी व्युत्पन्न है, जो स्टोकेस्टिक इवोल्यूशन ऑपरेटर के साथ कम्यूटेटिव है। यह सुपरसममेट्री निरंतर प्रवाह द्वारा फेज स्पेस की निरंतरता को निरंतर रखती है, और एक वैश्विक गैर-सुपरसिमेट्रिक ग्राउंड स्टेट द्वारा सुपरसिमेट्रिक स्पॉन्टेनियस ब्रेकडाउन की घटना अराजकता सिद्धांत, अशांति, गुलाबी शोर के रूप में ऐसी अच्छी तरह से स्थापित भौतिक अवधारणाओं को सम्मिलित करती है। 1/f और कर्कश शोर शोर , स्व-संगठित आलोचना आदि। किसी भी SDE के लिए सिद्धांत के सामयिक क्षेत्र को Witten-type TQFT के रूप में पहचाना जा सकता है।

यह भी देखें

संदर्भ