एडियाबेटिक प्रमेय

From Vigyanwiki
Revision as of 16:57, 10 April 2023 by alpha>Shikhav

एडियाबेटिक प्रमेय क्वांटम यांत्रिकी में एक अवधारणा है। मैक्स बोर्न और व्लादिमीर फॉक (1928) के कारण इसका मूल रूप इस प्रकार बताया गया था:

एक भौतिक प्रणाली अपनी तात्कालिक ईजेनस्टेट में बनी रहती है यदि एक दिया गया गड़बड़ी सिद्धांत (क्वांटम यांत्रिकी) उस पर धीरे-धीरे पर्याप्त रूप से कार्य कर रहा है और यदि eigenvalue और बाकी हैमिल्टनियन (क्वांटम यांत्रिकी) के स्पेक्ट्रम के बीच एक अंतर है ऑपरेटर।[1]

सरल शब्दों में, एक क्वांटम मैकेनिकल सिस्टम धीरे-धीरे बदलती बाहरी परिस्थितियों के अधीन अपने कार्यात्मक रूप को अपनाता है, लेकिन जब तेजी से बदलती परिस्थितियों के अधीन होता है तो कार्यात्मक रूप को अनुकूलित करने के लिए अपर्याप्त समय होता है, इसलिए स्थानिक संभाव्यता घनत्व अपरिवर्तित रहता है।

मधुमेह बनाम रुद्धोष्म प्रक्रियाएं

Comparison
Diabatic Adiabatic
Rapidly changing conditions prevent the system from adapting its configuration during the process, hence the spatial probability density remains unchanged. Typically there is no eigenstate of the final Hamiltonian with the same functional form as the initial state. The system ends in a linear combination of states that sum to reproduce the initial probability density. Gradually changing conditions allow the system to adapt its configuration, hence the probability density is modified by the process. If the system starts in an eigenstate of the initial Hamiltonian, it will end in the corresponding eigenstate of the final Hamiltonian.[2]

किसी शुरुआती समय में क्वांटम-मैकेनिकल सिस्टम में हैमिल्टन द्वारा दी गई ऊर्जा होती है ; प्रणाली की स्वदेशी अवस्था में है लेबल किए गए . बदलती स्थितियां हैमिल्टनियन को निरंतर तरीके से संशोधित करती हैं, जिसके परिणामस्वरूप अंतिम हैमिल्टनियन होता है कुछ समय बाद . अंतिम स्थिति तक पहुंचने के लिए सिस्टम समय-निर्भर श्रोडिंगर समीकरण के अनुसार विकसित होगा . एडियाबेटिक प्रमेय कहता है कि सिस्टम में संशोधन समय पर गंभीर रूप से निर्भर करता है जिस दौरान संशोधन होता है।

वास्तव में रुद्धोष्म प्रक्रिया के लिए हमें आवश्यकता होती है ; इस मामले में अंतिम स्थिति अंतिम हैमिल्टनियन का एक स्वदेशी होगा , संशोधित कॉन्फ़िगरेशन के साथ:

जिस हद तक दिया गया परिवर्तन एक रुद्धोष्म प्रक्रिया का अनुमान लगाता है, वह दोनों के बीच ऊर्जा पृथक्करण पर निर्भर करता है और आसन्न राज्य, और अंतराल का अनुपात के विकास की विशेषता समय-पैमाने पर एक समय-स्वतंत्र हैमिल्टनियन के लिए, , कहाँ की ऊर्जा है .

इसके विपरीत, सीमा में हमारे पास असीम रूप से तेज़, या डायबेटिक मार्ग है; राज्य का विन्यास अपरिवर्तित रहता है:

ऊपर दी गई बोर्न एंड फॉक की मूल परिभाषा में शामिल तथाकथित अंतराल की स्थिति एक आवश्यकता को संदर्भित करती है जो एक ऑपरेटर के स्पेक्ट्रम असतत गणित और पतित ऊर्जा स्तर है, जैसे कि राज्यों के क्रम में कोई अस्पष्टता नहीं है (कोई भी आसानी से स्थापित कर सकता है कि कौन सा स्वदेशी है से मेल खाती है ). 1999 में जे.ई. एव्रोन और ए. एल्गार्ट ने रुद्धोष्म प्रमेय को बिना किसी अंतराल के स्थितियों के अनुकूल बनाने के लिए इसे फिर से तैयार किया।[3]


ऊष्मप्रवैगिकी में रुद्धोष्म अवधारणा के साथ तुलना

रूद्धोष्म शब्द पारंपरिक रूप से ऊष्मप्रवैगिकी में प्रणाली और पर्यावरण के बीच ऊष्मा के आदान-प्रदान के बिना प्रक्रियाओं का वर्णन करने के लिए उपयोग किया जाता है (एडियाबेटिक प्रक्रिया देखें), अधिक सटीक रूप से ये प्रक्रियाएँ आमतौर पर ऊष्मा विनिमय के समय से अधिक तेज़ होती हैं। (उदाहरण के लिए, एक दबाव तरंग गर्मी की लहर के संबंध में रुद्धोष्म है, जो रूद्धोष्म नहीं है।) ऊष्मप्रवैगिकी के संदर्भ में रुद्धोष्म अक्सर तेज प्रक्रिया के लिए एक पर्याय के रूप में प्रयोग किया जाता है।

शास्त्रीय यांत्रिकी और क्वांटम यांत्रिकी परिभाषा[4] एक अर्धस्थैतिक प्रक्रिया की ऊष्मप्रवैगिकी अवधारणा के बजाय करीब है, जो ऐसी प्रक्रियाएं हैं जो लगभग हमेशा संतुलन में होती हैं (अर्थात जो आंतरिक ऊर्जा विनिमय अंतःक्रियाओं के समय के पैमाने से धीमी होती हैं, अर्थात् एक सामान्य वायुमंडलीय ताप तरंग अर्ध-स्थैतिक होती है और एक दबाव तरंग होती है) नहीं)। यांत्रिकी के संदर्भ में एडियाबेटिक को अक्सर धीमी प्रक्रिया के पर्याय के रूप में प्रयोग किया जाता है।

उदाहरण के लिए क्वांटम दुनिया में एडियाबेटिक का अर्थ है कि इलेक्ट्रॉनों और फोटॉन की बातचीत का समय स्तर इलेक्ट्रॉनों और फोटॉन प्रसार के औसत समय के पैमाने के संबंध में बहुत तेज या लगभग तात्कालिक है। इसलिए, हम इलेक्ट्रॉनों और फोटॉनों के निरंतर प्रसार के एक टुकड़े के रूप में बातचीत को मॉडल कर सकते हैं (यानी संतुलन पर राज्य) प्लस राज्यों के बीच एक क्वांटम कूद (यानी तात्कालिक)।

इस अनुमानी संदर्भ में एडियाबेटिक प्रमेय अनिवार्य रूप से बताता है कि क्वांटम कूद को प्राथमिकता से टाला जाता है और सिस्टम राज्य और क्वांटम संख्याओं को संरक्षित करने की कोशिश करता है।[5] एडियाबेटिक की क्वांटम मैकेनिकल अवधारणा स्थिरोष्म अपरिवर्तनीय से संबंधित है, यह अक्सर पुराने क्वांटम सिद्धांत में प्रयोग किया जाता है और गर्मी विनिमय के साथ इसका कोई सीधा संबंध नहीं है।

उदाहरण प्रणाली

सरल लोलक

एक उदाहरण के रूप में, एक लंबवत विमान में दोलन करने वाले लंगर पर विचार करें। यदि समर्थन को स्थानांतरित किया जाता है, तो पेंडुलम के दोलन का तरीका बदल जाएगा। यदि समर्थन पर्याप्त रूप से धीरे-धीरे चलता है, तो समर्थन के सापेक्ष पेंडुलम की गति अपरिवर्तित रहेगी। बाहरी परिस्थितियों में क्रमिक परिवर्तन प्रणाली को अनुकूल बनाने की अनुमति देता है, जैसे कि यह अपने प्रारंभिक चरित्र को बनाए रखता है। विस्तृत शास्त्रीय उदाहरण एडियाबेटिक इनवेरिएंट # क्लासिकल मैकेनिक्स - एक्शन वेरिएबल्स पेज और यहां पर उपलब्ध है।[6]


क्वांटम हार्मोनिक ऑसिलेटर

चित्र 1. संभाव्यता घनत्व में परिवर्तन, , एक जमीनी अवस्था क्वांटम हार्मोनिक ऑसिलेटर की, वसंत स्थिरांक में रुद्धोष्म वृद्धि के कारण।

एक पेंडुलम की शास्त्रीय भौतिकी प्रकृति में रुद्धोष्म प्रमेय के प्रभावों का पूर्ण विवरण शामिल नहीं है। एक और उदाहरण के रूप में एक क्वांटम हार्मोनिक ऑसिलेटर को वसंत स्थिरांक के रूप में लें बढ़ जाती है। शास्त्रीय रूप से यह स्प्रिंग की कठोरता को बढ़ाने के बराबर है; क्वांटम-यंत्रवत् प्रभाव प्रणाली हैमिल्टनियन (क्वांटम यांत्रिकी) में संभावित ऊर्जा वक्र का संकुचन है।

अगर रुद्धोष्म रूप से बढ़ाया जाता है फिर समय पर प्रणाली तात्कालिक ईजेनस्टेट में होगा वर्तमान हैमिल्टनियन का , के प्रारंभिक eigenstate के अनुरूप . एक क्वांटम संख्या द्वारा वर्णित क्वांटम हार्मोनिक ऑसिलेटर जैसी प्रणाली के विशेष मामले के लिए, इसका मतलब है कि क्वांटम संख्या अपरिवर्तित रहेगी। चित्र 1 दिखाता है कि कैसे एक हार्मोनिक ऑसिलेटर, शुरू में अपनी जमीनी अवस्था में, , जमीनी अवस्था में रहता है क्योंकि संभावित ऊर्जा वक्र संकुचित होता है; धीरे-धीरे बदलती परिस्थितियों के अनुकूल राज्य का कार्यात्मक रूप।

तेजी से बढ़े हुए वसंत स्थिरांक के लिए, प्रणाली एक मधुमेह प्रक्रिया से गुजरती है जिसमें सिस्टम के पास अपने कार्यात्मक रूप को बदलती परिस्थितियों के अनुकूल बनाने का समय नहीं है। जबकि अंतिम अवस्था प्रारंभिक अवस्था के समान दिखनी चाहिए लुप्त होती समय अवधि में होने वाली प्रक्रिया के लिए, नए हैमिल्टनियन का कोई स्वदेशी नहीं है, , जो प्रारंभिक अवस्था जैसा दिखता है। अंतिम अवस्था के कई अलग-अलग स्वदेशी राज्यों के एक रैखिक सुपरपोजिशन से बना है जो प्रारंभिक अवस्था के रूप को पुन: पेश करने का योग है।

वक्र क्रॉसिंग से बचा

चित्रा 2. एक बाहरी चुंबकीय क्षेत्र के अधीन दो-स्तरीय प्रणाली में एक बचा हुआ ऊर्जा-स्तर क्रॉसिंग। मधुमेह राज्यों की ऊर्जा पर ध्यान दें, और और हेमिल्टनियन के eigenvalues, eigenstates की ऊर्जा दे रही है और (एडियाबेटिक स्टेट्स)। (वास्तव में, और इस तस्वीर में स्विच किया जाना चाहिए।)

अधिक व्यापक रूप से लागू उदाहरण के लिए, बाहरी चुंबकीय क्षेत्र के अधीन 2-ऊर्जा स्तर के परमाणु पर विचार करें।[7] राज्यों, लेबल किया गया और ब्रा-केट संकेतन का उपयोग करते हुए, परमाणु अज़ीमुथल क्वांटम संख्या के रूप में सोचा जा सकता है | कोणीय-संवेग अवस्थाएँ, प्रत्येक एक विशेष ज्यामिति के साथ। जिन कारणों से यह स्पष्ट हो जाएगा कि इन राज्यों को अब से डायबिटिक राज्यों के रूप में संदर्भित किया जाएगा। सिस्टम वेवफंक्शन को डायबिटिक राज्यों के एक रैखिक संयोजन के रूप में दर्शाया जा सकता है:

अनुपस्थित क्षेत्र के साथ, डायबिटिक राज्यों का ऊर्जावान पृथक्करण बराबर है ; राज्य की ऊर्जा बढ़ते चुंबकीय क्षेत्र (एक निम्न-क्षेत्र-खोज राज्य) के साथ बढ़ता है, जबकि राज्य की ऊर्जा बढ़ते चुंबकीय क्षेत्र के साथ घटता है (एक उच्च क्षेत्र की मांग वाला राज्य)। चुंबकीय-क्षेत्र की निर्भरता को रैखिक मानते हुए, लागू क्षेत्र के साथ सिस्टम के लिए हैमिल्टनियन मैट्रिक्स लिखा जा सकता है

कहाँ परमाणु का चुंबकीय क्षण है, जिसे दो मधुमेह अवस्थाओं के लिए समान माना जाता है, और दो राज्यों के बीच कुछ समय-स्वतंत्र कोणीय गति युग्मन है। विकर्ण तत्व डायबिटिक राज्यों की ऊर्जा हैं ( और ), हालांकि, के रूप में एक विकर्ण मैट्रिक्स नहीं है, यह स्पष्ट है कि ये राज्य नए हैमिल्टनियन के स्वदेशी नहीं हैं जिसमें चुंबकीय क्षेत्र का योगदान शामिल है।

मैट्रिक्स के eigenvectors सिस्टम के स्वदेशी हैं, जिन्हें हम लेबल करेंगे और इसी eigenvalues ​​​​के साथ

यह जानना महत्वपूर्ण है कि eigenvalues और सिस्टम ऊर्जा के किसी भी व्यक्तिगत माप के लिए केवल अनुमत आउटपुट हैं, जबकि डायबेटिक ऊर्जा और डायबिटिक राज्यों में सिस्टम की ऊर्जा के लिए अपेक्षित मूल्यों के अनुरूप और .

चित्र 2 चुंबकीय क्षेत्र के मान पर डायबेटिक और एडियाबेटिक ऊर्जा की निर्भरता को दर्शाता है; ध्यान दें कि गैर-शून्य युग्मन के लिए हैमिल्टन के eigenvalues ​​​​डीजेनरेट ऊर्जा स्तर नहीं हो सकते हैं, और इस प्रकार हमारे पास क्रॉसिंग से बचा जाता है। यदि कोई परमाणु प्रारंभ में अवस्था में है शून्य चुंबकीय क्षेत्र में (लाल वक्र पर, सबसे बाईं ओर), चुंबकीय क्षेत्र में रुद्धोष्म वृद्धि यह सुनिश्चित करेगा कि सिस्टम हैमिल्टनियन के एक देश में बना रहे पूरी प्रक्रिया के दौरान (लाल वक्र का अनुसरण करता है)। चुंबकीय क्षेत्र में डायबेटिक वृद्धि यह सुनिश्चित करेगा कि सिस्टम डायबेटिक पथ (बिंदीदार नीली रेखा) का अनुसरण करता है, जैसे कि सिस्टम राज्य में संक्रमण से गुजरता है . परिमित चुंबकीय क्षेत्र के लिए कई दरें दोनों में से किसी एक में सिस्टम को खोजने की एक सीमित संभावना होगी। इन संभावनाओं की गणना करने के तरीकों के लिए रुद्धोष्म मार्ग संभावनाओं की गणना करना देखें।

परमाणुओं या अणुओं की आबादी में ऊर्जा-राज्य वितरण के नियंत्रण के लिए परमाणु भौतिकी और आणविक भौतिकी में ये परिणाम अत्यंत महत्वपूर्ण हैं।

गणितीय कथन

धीरे-धीरे बदलते हैमिल्टनियन के तहत तात्कालिक eigenstates के साथ और इसी ऊर्जा , एक क्वांटम प्रणाली प्रारंभिक अवस्था से विकसित होती है

अंतिम अवस्था तक
जहां गुणांक चरण के परिवर्तन से गुजरते हैं
गतिशील चरण के साथ
और ज्यामितीय चरण
विशेष रूप से, , इसलिए यदि सिस्टम की स्वदेशी अवस्था में शुरू होता है , यह की स्वदेशी स्थिति में रहता है विकास के दौरान केवल चरण परिवर्तन के साथ।

प्रमाण


उदाहरण अनुप्रयोग

अक्सर एक ठोस क्रिस्टल को स्वतंत्र वैलेंस इलेक्ट्रॉनों के एक सेट के रूप में तैयार किया जाता है, जो आयनों की एक कठोर जाली द्वारा उत्पन्न पूरी तरह से आवधिक क्षमता में चलती है। एडियाबेटिक प्रमेय के साथ हम इसके बजाय बोर्न-ओपेनहाइमर सन्निकटन के रूप में क्रिस्टल में वैलेंस इलेक्ट्रॉनों की गति और आयनों की थर्मल गति को भी शामिल कर सकते हैं।[16] यह कई परिघटनाओं के दायरे में व्याख्या करता है:

== डायबेटिक बनाम एडियाबेटिक पैसेज == के लिए स्थितियां प्राप्त करना

अब हम और अधिक कठोर विश्लेषण करेंगे।[17] समय पर सिस्टम की जितना राज्य, ब्रा-केट नोटेशन का उपयोग करना लिखा जा सकता है

जहां स्थानिक वेवफंक्शन पहले की ओर इशारा किया गया है, स्थिति ऑपरेटर के आइजेनस्टेट्स पर राज्य वेक्टर का प्रक्षेपण है

सीमित मामलों की जांच करना शिक्षाप्रद है, जिसमें बहुत बड़ा (एडियाबेटिक, या क्रमिक परिवर्तन) और बहुत छोटा (डायबिटिक, या अचानक परिवर्तन) है।

प्रारंभिक मूल्य से निरंतर परिवर्तन के दौर से गुजर रही हैमिल्टनियन प्रणाली पर विचार करें , समय पर , एक अंतिम मूल्य के लिए , समय पर , कहाँ . सिस्टम के विकास को श्रोडिंगर चित्र में टाइम-इवोल्यूशन ऑपरेटर द्वारा वर्णित किया जा सकता है, जिसे अभिन्न समीकरण द्वारा परिभाषित किया गया है

जो श्रोडिंगर समीकरण के बराबर है।

साथ ही प्रारंभिक स्थिति . सिस्टम तरंग क्रिया के ज्ञान को देखते हुए , बाद के समय तक प्रणाली का विकास का प्रयोग कर प्राप्त किया जा सकता है

किसी दी गई प्रक्रिया की रुद्धोष्मता निर्धारित करने की समस्या की निर्भरता स्थापित करने के बराबर है पर .

किसी दी गई प्रक्रिया के लिए रुद्धोष्म सन्निकटन की वैधता निर्धारित करने के लिए, कोई भी उस स्थिति के अलावा किसी अन्य राज्य में प्रणाली को खोजने की संभावना की गणना कर सकता है जिसमें यह शुरू हुआ था। ब्रा-केट नोटेशन का उपयोग करना और परिभाषा का उपयोग करना , अपने पास:

हम विस्तार कर सकते हैं

गड़बड़ी सिद्धांत में हम सिर्फ पहले दो शब्दों को ले सकते हैं और उन्हें हमारे समीकरण में स्थानापन्न कर सकते हैं , यह पहचानते हुए

सिस्टम हैमिल्टनियन है, अंतराल पर औसत , अपने पास:

उत्पादों का विस्तार करने और उपयुक्त रद्दीकरण करने के बाद, हमारे पास ये बचे हैं:

दे रही है

कहाँ ब्याज के अंतराल पर हैमिल्टनियन औसत प्रणाली का मूल माध्य वर्ग विचलन है।

अचानक सन्निकटन तब मान्य होता है जब (जिस अवस्था में सिस्टम को शुरू किया गया है, उसके अलावा किसी अन्य राज्य में खोजने की संभावना शून्य के करीब पहुंचती है), इस प्रकार वैधता की स्थिति दी जाती है

जो हाइजेनबर्ग अनिश्चितता सिद्धांत#ऊर्जा-समय अनिश्चितता सिद्धांत|हाइजेनबर्ग अनिश्चितता सिद्धांत का समय-ऊर्जा रूप का एक बयान है।

मधुमेह मार्ग

सीमा में हमारे पास असीम रूप से तेज़, या डायबेटिक मार्ग है:

प्रणाली का कार्यात्मक रूप अपरिवर्तित रहता है:

इसे कभी-कभी अचानक सन्निकटन के रूप में जाना जाता है। किसी दिए गए प्रक्रिया के लिए सन्निकटन की वैधता की संभावना की विशेषता हो सकती है कि सिस्टम की स्थिति अपरिवर्तित बनी हुई है:


रुद्धोष्म मार्ग

सीमा में हमारे पास असीम रूप से धीमा, या रुद्धोष्म मार्ग है। प्रणाली विकसित होती है, बदलती परिस्थितियों के लिए अपने स्वरूप को अपनाती है,

यदि सिस्टम प्रारंभ में एक ईजेनस्टेट में है , एक अवधि के बाद यह इसी eigenstate में पारित हो जाएगा .

इसे एडियाबेटिक सन्निकटन के रूप में जाना जाता है। किसी दिए गए प्रक्रिया के लिए सन्निकटन की वैधता इस संभावना से निर्धारित की जा सकती है कि सिस्टम की अंतिम स्थिति प्रारंभिक अवस्था से अलग है:


रूद्धोष्म मार्ग संभावनाओं की गणना करना

लैंडौ-जेनर फॉर्मूला

1932 में रुद्धोष्म संक्रमण संभावनाओं की गणना की समस्या का एक विश्लेषणात्मक समाधान लेव लैंडौ और क्लेरेंस जेनर द्वारा अलग से प्रकाशित किया गया था।[18] एक रैखिक रूप से बदलते गड़बड़ी के विशेष मामले के लिए जिसमें समय-भिन्न घटक प्रासंगिक राज्यों को जोड़े नहीं करता है (इसलिए मधुमेह हैमिल्टनियन मैट्रिक्स में युग्मन समय से स्वतंत्र है)।

इस दृष्टिकोण में योग्यता का प्रमुख आंकड़ा लैंडौ-जेनर वेग है:

कहाँ गड़बड़ी चर (विद्युत या चुंबकीय क्षेत्र, आणविक बंधन-लंबाई, या सिस्टम के लिए कोई अन्य गड़बड़ी) है, और और दो डायबिटिक (क्रॉसिंग) अवस्थाओं की ऊर्जाएँ हैं। एक बड़ा एक बड़े मधुमेह संक्रमण की संभावना और इसके विपरीत परिणाम।

लैंडौ-जेनर सूत्र का प्रयोग करके प्रायिकता, , एक मधुमेह संक्रमण द्वारा दिया जाता है


संख्यात्मक दृष्टिकोण

डायबिटिक अवस्थाओं के बीच गड़बड़ी चर या समय-निर्भर युग्मन में एक गैर-रैखिक परिवर्तन से जुड़े संक्रमण के लिए, सिस्टम डायनेमिक्स के लिए गति के समीकरणों को विश्लेषणात्मक रूप से हल नहीं किया जा सकता है। संख्यात्मक साधारण अंतर समीकरणों की विस्तृत विविधता में से एक का उपयोग करके मधुमेह संक्रमण की संभावना अभी भी प्राप्त की जा सकती है।

हल किए जाने वाले समीकरणों को समय-निर्भर श्रोडिंगर समीकरण से प्राप्त किया जा सकता है:

कहाँ रुद्धोष्म स्थिति आयाम युक्त एक कॉलम वेक्टर है, समय पर निर्भर रूद्धोष्म हैमिल्टनियन है,[7]और ओवरडॉट एक समय व्युत्पन्न का प्रतिनिधित्व करता है।

संक्रमण के बाद राज्य के आयामों के मूल्यों के साथ उपयोग की जाने वाली प्रारंभिक स्थितियों की तुलना मधुमेह संक्रमण संभावना प्राप्त कर सकती है। विशेष रूप से, दो-राज्य प्रणाली के लिए:

के साथ शुरू हुई एक प्रणाली के लिए .

यह भी देखें

संदर्भ

  1. M. Born and V. A. Fock (1928). "एडियाबेटिक प्रमेय का प्रमाण". Zeitschrift für Physik A. 51 (3–4): 165–180. Bibcode:1928ZPhy...51..165B. doi:10.1007/BF01343193. S2CID 122149514.
  2. T. Kato (1950). "On the Adiabatic Theorem of Quantum Mechanics". Journal of the Physical Society of Japan. 5 (6): 435–439. Bibcode:1950JPSJ....5..435K. doi:10.1143/JPSJ.5.435.
  3. J. E. Avron and A. Elgart (1999). "गैप स्थिति के बिना स्थिरोष्म प्रमेय". Communications in Mathematical Physics. 203 (2): 445–463. arXiv:math-ph/9805022. Bibcode:1999CMaPh.203..445A. doi:10.1007/s002200050620. S2CID 14294926.
  4. Griffiths, David J. (2005). "10". क्वांटम यांत्रिकी का परिचय. Pearson Prentice Hall. ISBN 0-13-111892-7.
  5. Barton Zwiebach (Spring 2018). "L15.2 Classical adiabatic invariant". MIT 8.06 Quantum Physics III. Archived from the original on 2021-12-21.
  6. Barton Zwiebach (Spring 2018). "Classical analog: oscillator with slowly varying frequency". MIT 8.06 Quantum Physics III. Archived from the original on 2021-12-21.
  7. 7.0 7.1 S. Stenholm (1994). "सरल प्रणालियों की क्वांटम गतिशीलता". The 44th Scottish Universities Summer School in Physics: 267–313.
  8. Sakurai, J. J.; Napolitano, Jim (2020-09-17). Modern Quantum Mechanics (3 ed.). Cambridge University Press. doi:10.1017/9781108587280. ISBN 978-1-108-58728-0.
  9. Sakurai, J. J.; Napolitano, Jim (2020-09-17). Modern Quantum Mechanics (3 ed.). Cambridge University Press. doi:10.1017/9781108587280. ISBN 978-1-108-58728-0.
  10. Zwiebach, Barton (Spring 2018). "L16.1 Quantum adiabatic theorem stated". MIT 8.06 Quantum Physics III. Archived from the original on 2021-12-21.
  11. "MIT 8.06 Quantum Physics III".
  12. Zwiebach, Barton (Spring 2018). "L16.1 Quantum adiabatic theorem stated". MIT 8.06 Quantum Physics III. Archived from the original on 2021-12-21.
  13. "MIT 8.06 Quantum Physics III".
  14. Bernevig, B. Andrei; Hughes, Taylor L. (2013). Topological insulators and Topological superconductors. Princeton university press. pp. Ch. 1.
  15. Haldane. "Nobel Lecture" (PDF).
  16. © Carlo E. Bottani (2017–2018). ठोस अवस्था भौतिकी व्याख्यान नोट्स. pp. 64–67.
  17. Messiah, Albert (1999). "XVII". क्वांटम यांत्रिकी. Dover Publications. ISBN 0-486-40924-4.
  18. C. Zener (1932). "ऊर्जा स्तरों का गैर-एडियाबेटिक क्रॉसिंग". Proceedings of the Royal Society of London, Series A. 137 (6): 692–702. Bibcode:1932RSPSA.137..696Z. doi:10.1098/rspa.1932.0165. JSTOR 96038.