अज़ीमुथल क्वांटम संख्या

From Vigyanwiki
हाइड्रोजन परमाणु के परमाणु कक्षीय तरंग कार्य। मुख्य क्वांटम संख्या (n) प्रत्येक पंक्ति के दाईं ओर है और अज़ीमुथल क्वांटम संख्या (ℓ) को प्रत्येक स्तंभ के शीर्ष पर अक्षर द्वारा निरूपित किया जाता है।

अज़ीमुथल क्वांटम संख्या एक परमाणु कक्षीय के लिए एक क्वांटम संख्या है जो इसके कोणीय गति संचालक को निर्धारित करती है और कक्षीय के आकार का वर्णन करती है। विक्ट: अज़ीमुथल क्वांटम संख्या क्वांटम संख्याओं के समुच्चय का दूसरा भाग है जो इलेक्ट्रॉन की अद्वितीय क्वांटम स्थिति का वर्णन करता है (अन्य प्रमुख क्वांटम संख्या, चुंबकीय क्वांटम संख्या और स्पिन क्वांटम संख्या हैं)। इसे कक्षीय कोणीय गति क्वांटम संख्या, कक्षीय क्वांटम संख्या, सहायक क्वांटम संख्या, या दूसरी क्वांटम संख्या के रूप में भी जाना जाता है, और इसे ℓ (उच्चारण ell ) के रूप में दर्शाया गया है।

व्युत्पत्ति

परमाणु के इलेक्ट्रॉनों की ऊर्जा अवस्थाओं से जुड़े चार क्वांटम नंबर हैं: n, ℓ, m, और ms. ये एक परमाणु में एकल इलेक्ट्रॉन की पूर्ण अद्वितीय क्वांटम अवस्था को निर्दिष्ट करते हैं, और इसकी तरंग क्रिया या कक्षीय बनाते हैं। तरंग कार्य प्राप्त करने के लिए हल करते समय श्रोडिंगर समीकरण तीन समीकरणों में कम हो जाता है जो पहले तीन क्वांटम संख्याओं की ओर ले जाता है। इसलिए, पहले तीन क्वांटम संख्याओं के समीकरण आपस में जुड़े हुए हैं। जैसा कि नीचे दिखाया गया है, तरंग समीकरण के ध्रुवीय भाग के समाधान में अज़ीमुथल क्वांटम संख्या उत्पन्न हुई, गोलाकार समन्वय प्रणाली पर निर्भर है, जो सामान्यतः गोलाकार समरूपता की कुछ झलक वाले मॉडल के साथ सबसे अच्छा काम करता है।

क्वांटम यांत्रिक कक्षीय कोणीय गति का चित्रण।

एक परमाणु इलेक्ट्रॉन का कोणीय संवेग संचालक, L, इसकी क्वांटम संख्या ℓ से निम्नलिखित समीकरण से संबंधित है:

जहां ħ घटी हुई प्लांक नियतांक, 'L2 है कक्षीय कोणीय संवेग संचालक है और इलेक्ट्रॉन की तरंग क्रिया है। क्वांटम संख्या ℓ सदैव एक गैर-ऋणात्मक पूर्णांक होता है: 0, 1, 2, 3, आदि। 'L' का कोई वास्तविक अर्थ नहीं है अतिरिक्त इसके कि इसका उपयोग कोणीय संवेग संचालक के रूप में किया जाता है। कोणीय गति का उल्लेख करते समय, केवल क्वांटम संख्या ℓ का उपयोग करना उत्तम होता है।

परमाणु कक्षीय में विशिष्ट आकार होते हैं जिन्हें अक्षरों द्वारा निरूपित किया जाता है। उदाहरण में, अक्षर s, p, और d (एक स्पेक्ट्रोस्कोपिक संकेतन ) परमाणु कक्षीय के आकार का वर्णन करते हैं।

उनके तरंगों के कार्य गोलाकार हार्मोनिक का रूप लेते हैं, और इसलिए संबंधित लीजेंड्रे बहुपद द्वारा वर्णित हैं। ℓ के विभिन्न मानो से संबंधित विभिन्न कक्षाओं को कभी-कभी 'उपकोश' कहा जाता है, और लोअरकेस लैटिन अक्षर (ऐतिहासिक कारणों से चुने गए) द्वारा संदर्भित किया जाता है:

दिगंशीय क्वांटम संख्या के लिए क्वांटम उपकोश
अज़ीमुथल

संख्या (ℓ)

ऐतिहासिक

पत्र

अधिकतम

इलेक्ट्रॉनों

ऐतिहासिक

नाम

आकार
0 s 2 तीक्ष्ण गोलाकार
1 p 6 सिद्धांत तीन डम्बल-आकार के ध्रुवीय-संरेखित कक्षक; x, y, और z (+ और - अक्ष) के प्रत्येक ध्रुव पर एक पालि
2 d 10 प्रसार नौ डंबेल और एक डोनट (या "अद्वितीय आकार या 1" गोलाकार हार्मोनिक्स, तीसरी पंक्ति केंद्र की यह तस्वीर देखें)
3 f 14 मौलिक "अद्वितीय आकार या 2" (गोलाकार हार्मोनिक्स की यह तस्वीर देखें, निचला पंक्ति केंद्र)
4 g 18
5 h 22
6 i 26
f उप-खोल के बाद के अक्षर वर्णमाला क्रम में अक्षर f का अनुसरण करते हैं, अक्षर j और पहले से उपयोग किए गए को छोड़कर।

विभिन्न कोणीय संवेग अवस्थाओं में से प्रत्येक 2(2ℓ + 1) इलेक्ट्रॉन ले सकता है। ऐसा इसलिए है क्योंकि तीसरी क्वांटम संख्या m (जिसे z-अक्ष पर कोणीय संवेग सदिश के कोणीय संवेग परिमाणीकरण प्रक्षेपण के रूप में शिथिल माना जा सकता है) पूर्णांक इकाइयों में -ℓ से ℓ तक चलता है, और इसलिए 2ℓ + 1 संभावित स्थितियाँ हैं। प्रत्येक अलग n, ℓ, m कक्षीय दो इलेक्ट्रॉनों द्वारा विरोधी स्पिन के साथ अधिकृत कर लिया जा सकता है (क्वांटम संख्या ms = ±12द्वारा दिया गया), कुल मिलाकर 2(2ℓ + 1) इलेक्ट्रॉन दे रहा है। तालिका में दिए गए से अधिक ℓ वाले कक्षीय पूरी तरह से स्वीकार्य हैं, किन्तु ये मान अब तक खोजे गए सभी परमाणुओं को आवरण करते हैं।

मुख्य क्वांटम संख्या n के दिए गए मान के लिए, ℓ के संभावित मान 0 से लेकर n − 1 तक हो सकते हैं ; इसलिए n = 1 इलेक्ट्रॉन आवरण में केवल एक उपकोश होता है और केवल 2 इलेक्ट्रॉन आवरण होता है, n = 2 आवरण में एक s और ap उपकोश होता है और यह कुल मिलाकर 8 इलेक्ट्रॉन ले सकता है, the n = 3 खोल में s, p, और d उपकोश होते हैं और इसमें अधिकतम 18 इलेक्ट्रॉन होते हैं, इत्यादि।

एक हाइड्रोजन जैसा परमाणु सरलीकृत एक-इलेक्ट्रॉन मॉडल का परिणाम अकेले मुख्य संख्या के आधार पर ऊर्जा स्तर में होता है। अधिक जटिल परमाणुओं में ये ऊर्जा स्तर सभी n > 1 के लिए ऊर्जा स्तर विभाजन करते हैं , उच्च ℓ के स्तरो को निम्न ℓ के स्तरो के ऊपर रखते है । उदाहरण के लिए, 2p की ऊर्जा 2s से अधिक है, 3d की ऊर्जा 3p से अधिक है, जो बदले में 3s से ऊपर है, आदि। यह प्रभाव अंततः आवर्त सारणी के ब्लॉक (आवर्त सारणी) बनाता है। किसी भी ज्ञात परमाणु के पास समतल अवस्था में तीन ('f') से ℓ अधिक इलेक्ट्रॉन नहीं होता है।

कोणीय गति क्वांटम संख्या, ℓ, नाभिक के माध्यम से जाने वाले प्लानर नोड्स की संख्या नियंत्रित करती है। एक प्लानर नोड को विद्युत चुम्बकीय तरंग में शिखर और गर्त के मध्य बिंदु के रूप में वर्णित किया जा सकता है, जिसमें शून्य परिमाण है। s कक्षीय में, कोई नोड न्यूक्लियस के माध्यम से नहीं जाता है, इसलिए संबंधित अज़ीमुथल क्वांटम संख्या ℓ का मान 0 होता है। 'p' कक्षीय में, नोड न्यूक्लियस को पार करता है और इसलिए ℓ का मान 1 होता है। का मान . होता है।

N के मान के आधार पर, कोणीय संवेग क्वांटम संख्या ℓ और निम्न श्रृंखला है। सूचीबद्ध तरंग दैर्ध्य एक हाइड्रोजन परमाणु के लिए हैं:

, लाइमैन श्रृंखला (पराबैंगनी)
, बामर श्रृंखला (दृश्यमान)
, पास्चेन श्रृंखला|रिट्ज-पास्चेन श्रृंखला (अवरक्तके पास)
, ब्रैकेट श्रृंखला (अवरक्तया सामान्यतः उपयोग की जाने वाली उपखंड योजना| लघु-तरंग दैर्ध्य अवरक्त)
, Pfund श्रृंखला (अवरक्तया सामान्य रूप से प्रयुक्त उप-विभाजन योजना | मध्य-तरंग दैर्ध्य अवरक्त)।

परिमाणित कोणीय संवेग का जोड़

एक मात्रात्मक कुल कोणीय गति को देखते हुए जो दो अलग-अलग परिमाणित कोणीय संवेगों और ,का योग है

क्वांटम संख्या इसके परिमाण से जुड़ा हो सकता है को पूर्णांक चरणों में

जहाँ और क्वांटम संख्याएँ व्यक्तिगत कोणीय संवेग के परिमाण के अनुरूप होती हैं।

परमाणु में एक इलेक्ट्रॉन की कुल कोणीय गति

कुल कोणीय गति जे (बैंगनी), कक्षीय एल (नीला), और स्पिन एस (हरा) के वेक्टर शंकु। कोणीय संवेग घटकों को मापने के बीच क्वांटम अनिश्चितता के कारण शंकु उत्पन्न होते हैं (परमाणु का वेक्टर मॉडल देखें)।

परमाणु में स्पिन-कक्षा परस्पर क्रिया के कारण, कक्षीय कोणीय गति हैमिल्टनियन (क्वांटम यांत्रिकी) के साथ कम्यूटेटर नहीं है, न ही स्पिन (भौतिकी)। इसलिए ये समय के साथ बदलते हैं। चूँकि कुल कोणीय संवेग J एक-इलेक्ट्रॉन हैमिल्टनियन के साथ संचार करता है और इसलिए स्थिर है। J द्वारा परिभाषित किया गया है

एल कोणीय गति संचालक और S स्पिन है। कुल कोणीय गति समान कोणीय गति संचालक या कम्यूटेशन संबंधों को संतुष्ट करती है, अर्थात्

जिससे निम्नानुसार है

जहां Jx, Jy, और Jz. के लिए उपथित है।

प्रणाली का वर्णन करने वाली क्वांटम संख्याएँ, जो समय के साथ स्थिर हैं, अब j और mj, है | जो तरंग क्रिया पर J की क्रिया के माध्यम से परिभाषित किया गया है

जिससे j कुल कोणीय गति के मानदंड से संबंधित हो और mj निर्दिष्ट अक्ष के साथ इसके प्रक्षेपण के लिए। सापेक्षतावादी क्वांटम रसायन विज्ञान के लिए जे संख्या का विशेष महत्व है, जो अधिकांशतः विस्तारित_आवर्त सारणी या इलेक्ट्रॉन_विन्यास में उपलेख में दिखाई देता है।

किसी भी कोणीय संवेग संचालक के साथ, अन्य अक्षों के साथ 'J' के प्रक्षेपण को Jz के साथ सह-परिभाषित नहीं किया जा सकता है, क्योंकि वे आवागमन नहीं करते हैं।

नए और पुराने क्वांटम नंबरों के बीच संबंध

j और mj, क्वांटम अवस्था की समता (भौतिकी) के साथ, तीन क्वांटम संख्याओं ℓ, m और ms (निर्दिष्ट अक्ष के साथ स्पिन (भौतिकी) का प्रक्षेपण) को प्रतिस्थापित करते हैं।। पूर्व क्वांटम संख्याएँ बाद वाले से संबंधित हो सकती हैं।

इसके अतिरिक्त, j, s, mj और समता के आइजन वैक्टर, जो हैमिल्टनियन के आइजन वैक्टर भी हैं, ℓ, s, m और ms के ईजेनवेक्टरों के रैखिक संयोजन हैं

कोणीय संवेग क्वांटम संख्याओं की सूची

  • आंतरिक (या स्पिन) कोणीय गति क्वांटम संख्या, या बस स्पिन क्वांटम संख्या
  • कक्षीय कोणीय गति क्वांटम संख्या (इस लेख का विषय)
  • चुंबकीय क्वांटम संख्या, कक्षीय संवेग क्वांटम संख्या से संबंधित
  • कुल कोणीय गति क्वांटम संख्या

इतिहास

अजीमुथल क्वांटम संख्या को बोहर मॉडल से लिया गया था, और अर्नोल्ड सोमरफेल्ड द्वारा प्रस्तुत किया गया था।[1] बोर मॉडल अर्नेस्ट रदरफोर्ड परमाणु मॉडल के संयोजन में परमाणु की स्पेक्ट्रोस्कोपी से प्राप्त किया गया था। न्यूनतम क्वांटम स्तर का कोणीय संवेग शून्य पाया गया है। शून्य कोणीय संवेग वाली कक्षाओं को एक आयाम में दोलन करने वाले आवेशों के रूप में माना जाता था और इसलिए उन्हें पेंडुलम कक्षाओं के रूप में वर्णित किया जाता था, किन्तु वे प्रकृति में नहीं पाए जाते थे।[2] तीन-आयामों में कक्षाएँ बिना किसी नोड (भौतिकी) के नाभिक को पार किए बिना गोलाकार हो जाती हैं, एक स्किपिंग रस्सी के समान (सबसे कम-ऊर्जा अवस्था में) जो बड़े वृत्त में दोलन करती है।

यह भी देखें

संदर्भ

  1. Eisberg, Robert (1974). परमाणुओं, अणुओं, ठोस, नाभिक और कणों की क्वांटम भौतिकी. New York: John Wiley & Sons Inc. pp. 114–117. ISBN 978-0-471-23464-7.
  2. R.B. Lindsay (1927). "परमाणु मॉडल में "पेंडुलम" कक्षाओं पर ध्यान दें". Proc. Natl. Acad. Sci. 13 (6): 413–419. Bibcode:1927PNAS...13..413L. doi:10.1073/pnas.13.6.413. PMC 1085028. PMID 16587189.


बाहरी संबंध