ब्रोवर फिक्स्ड-पॉइंट प्रमेय

From Vigyanwiki

ब्रौवर का निश्चित-बिंदु प्रमेय टोपोलॉजी में एक निश्चित-बिंदु प्रमेय है, जिसका नामकरण लुइट्ज़ेन एगबर्टस जन ब्रोवर के नाम पर किया गया है। यह बताता है कि किसी भी निरंतर कार्य के लिए एकसघनता उत्तल सेट को मापने के लिए एक बिंदु जैसे कि । निरंतर कार्यों के लिए है एक बंद अंतराल से से स्वयं का वास्तविक संख्या में या एक बंद डिस्क से का स्वयं से कार्य करना, ब्रोवर के प्रमेय का सबसे सरलतम रूप है। उत्तल संकुचित सबसेट से निरंतर कार्यों के लिए उत्तरार्द्ध की तुलना में यूक्लिडियन स्पेस अधिक सामान्य रूप है।

आंशिक रूप से गणित के कई क्षेत्रों में इसके उपयोग के कारण ब्रोवर का निश्चित बिंदु प्रमेय  सैकड़ो अन्य निश्चित बिंदु प्रमेयो के मध्य सर्वाधिक प्रसिद्ध है। अपने मूल क्षेत्र में, जॉर्डन वक्र प्रमेय, बालों वाली गेंद प्रमेय, आयाम का व्युत्क्रम और बोरसुक-उलम प्रमेय के साथ ही यह युक्लेडियन स्पेस टोपोलॉजी की विशेस्ता वाले प्रमेयो में से एक है ।[1] यह इसे टोपोलॉजी के मूलभूत प्रमेयों में एक स्थान देता है।[2] इस प्रमेय का उपयोग अवकल समीकरणों के बारे में गहरे परिणाम साबित करने के लिए भी किया जाता है और अवकल ज्यामिति पर अधिकांश परिचयात्मक पाठ्यक्रमों में सम्मलित किया जाता है।यह क्रीड़ा सिद्धांत जैसे असंभावित क्षेत्रों में प्रकट होता है। अर्थशास्त्र में, ब्रौवर की निश्चित-बिंदु प्रमेय और इसका विस्तार, काकुटानी निश्चित-बिंदु प्रमेय, 1950 के दशक में अर्थशास्त्र नोबेल पुरस्कार विजेता केनेथ एरो और जेरार्ड डेब्रू द्वारा विकसित बाजार अर्थव्यवस्थाओं में सामान्य संतुलन के अस्तित्व के प्रमाण में एक केंद्रीय भूमिका निभाते हैं। .

फ़्रांसिसी गणितज्ञों हेनरी पॉइनकेयर और चार्ल्स एमिल पिकार्ड के द्वारा अवकल समीकरणों पर कार्य को ध्यान में रखते हुए प्रमेय का सबसे पहले अध्ययन किया गया था। पॉइंकेयर-बेंडिक्ससन प्रमेय जैसे परिणाम साबित करने के लिए टोपोलॉजिकल विधियों के उपयोग की आवश्यकता होती है। 19वीं शताब्दी के अंत में यह काम प्रमेय के कई क्रमिक संस्करणों के रूप में खुल गया। n-डायमेंशनल क्लोज्ड बॉल को अलग-अलग मापने के कथन को पहली बार 1910 में जैक्स हैडमार्ड ने सिद्ध किया था[3] और 1911 में ब्रोवर द्वारा निरंतर मानचित्रण के सामान्य घटना को सिद्ध किया गया [4]


कथन

प्रमेय के कई सूत्र हैं, यह इसके उपयोग और इसके सामान्यीकरण की परिमाण के सन्दर्भ पर निर्भर करता है। सबसे सरलतम निम्नानुसार दिया गया है:

समतल में
एक बंद सेट से प्रत्येक निरंतर कार्य (टोपोलॉजी) में कम से कम एक निश्चित बिंदु होता है।[5]

यह एक विवेकाधीन परिमित आयाम के लिए सामान्यीकृत किया जा सकता है:

यूक्लिडियन स्पेस में
यूक्लिडियन स्पेस की एक बंद गेंद से प्रत्येक निरंतर कार्य में एक निश्चित बिंदु होता है।[6]

थोड़ा और सामान्य संस्करण इस प्रकार है:[7]

उत्तल कॉम्पैक्ट समुच्चय
यूक्लिडियन स्पेस के उत्तल कॉम्पैक्ट उपसमुच्चय K से लेकर K तक हर निरंतर कार्य में एक निश्चित बिंदु होता है।[8]

एक और भी सामान्य रूप एक अलग नाम के द्वारा जाना जाता है:

स्काउडर निश्चित बिंदु प्रमेय
एक बैनक स्पेस के उत्तल कॉम्पैक्ट उपसमुच्चय K से K तक प्रत्येक निरंतर कार्य में एक निश्चित बिंदु होता है।[9]


पूर्व शर्तों का महत्व

प्रमेय केवल उन फलनों के लिए है जो एंडोमोर्फिज्म हैं (फलन जो डोमेन और कोडोमेन के समान समुच्चय हैं) और उन समुच्चयो के लिए जो कॉम्पैक्ट (इस प्रकार, विशेष रूप से, बंधे और बंद) और उत्तल (या होमोमोर्फिज्म से उत्तल) है निम्नलिखित उदाहरण बताते हैं कि पूर्व-शर्तें क्यों महत्वपूर्ण हैं।

एक एंडोमोर्फिज्म के रूप में फलन f

डोमेन [-1,1] के साथ फलन पर विचार करे। फलन का परिसर [0,2] है। इस प्रकार, f एक एंडोमोर्फिज्म नहीं है।

सीमाबद्धता

फलन पर विचार करे

जो से एक सतत फलन है । चूंकि यह हर बिंदु को दाईं ओर स्थानांतरित करता है, इसलिए इसका कोई निश्चित बिंदु नहीं हो सकता। स्पेस उत्तल और बंद है, लेकिन बद्ध नहीं है।

बंद स्तिथि

फलन पर विचार करे

जो मुक्त अंतराल (-1,1) से स्वयं तक एक सतत फलन है। चूंकि x = 1 अंतराल का हिस्सा नहीं है, f(x) = x का कोई निश्चित बिंदु नहीं है। स्पेस (−1,1) उत्तल और घिरा हुआ है, लेकिन बंद नहीं है। दूसरी तरफ, फलन f का बंद अंतराल [−1,1] के लिए एक निश्चित बिंदु है, अर्थात् f(1) = 1।

उत्तलता

बीएफपीटी के लिए उत्तलता अत्यधिक आवश्यक नहीं है। क्योंकि सम्मलित गुण (निरंतरता, एक निश्चित बिंदु होने की वजह से) होमोमोर्फिज्म के अनुसार अपरिवर्तनीय हैं, बीएफपीटी उन रूपों के बराबर है जिनमें डोमेन को एक बंद इकाई बॉल का होना आवश्यक है। समान कारण से यह प्रत्येक समुच्चय जो एक बंद बॉल के लिए होमोमॉर्फिक है के लिए लागु होता है (और इसलिए बंद सेट, बाउंडेड, जुड़ा हुआ स्थान ,बिना छिद्र का इत्यादि सम्मलित है )।

निम्नलिखित उदाहरण से पता चलता है कि बीएफपीटी छेद वाले डोमेन के लिए काम नहीं करता है। फलन पर विचार करे, जो इकाई वृत्त से स्वयं तक एक सतत कार्य है। चूंकि इकाई वृत्त के किसी भी बिंदु के लिए -x≠x है, f का कोई निश्चित बिंदु नहीं है। अनुरूप उदाहरण एन-आयामी क्षेत्र (या कोई सममित डोमेन जिसमें मूल सम्मलित नहीं है) के लिए काम करता है। यूनिट सर्कल बंद और घिरा हुआ है, परन्तु इसमें एक छिद्र है (और इसलिए यह उत्तल नहीं है)। फलन f इकाई डिस्क के लिए एक निश्चित बिंदु है, क्योकि ये इसी से उत्पन्न होता है  ।

छिद्र-मुक्त डोमेन के लिए बीएफपीटी का एक औपचारिक सामान्यीकरण लेफ्सेटज़ फिक्स्ड-पॉइंट प्रमेय से प्राप्त किया जा सकता है।[10]


टिप्पणियाँ

इस प्रमेय में फलन का द्विभाजित या फिर विशिस्ट होना आवश्यक नहीं है।  


चित्र

प्रमेय में वास्तविक दुनिया के कई उदाहरण हैं। यहां कुछ उदाहरण दिए गए हैं।

  1. समान आकार के ग्राफ पेपर की दो पन्ने लें, उन पर समन्वय प्रणाली के साथ, टेबल पर समतल बिछाएं और दूसरे को (बिना चीर-फाड़ या फाड़े) समेट लें और इसे किसी भी तरह से पहले के ऊपर रखें। झुर्रीदार कागज समतल वाले के बाहर नहीं पहुंचता। तब झुर्रीदार पन्ने का कम से कम एक बिंदु होगा जो समतल पन्ने के संबंधित बिंदु (अर्थात समान निर्देशांक वाला बिंदु) के ठीक ऊपर स्थित होगा। यह ब्रौवर के प्रमेय के n = 2 मामले का एक परिणाम है जो निरंतर मानचित्र पर लागू होता है जो झुर्रीदार पन्ने के प्रत्येक बिंदु के निर्देशांक को उसके ठीक नीचे समतल पन्ने के बिंदु के निर्देशांक प्रदान करता है।
  2. किसी देश का एक साधारण मानचित्र लें, और मान लें कि वह मानचित्र उस देश के अंदर एक मेज पर रखा हुआ है। मानचित्र पर हमेशा एक आप यहां हैं बिंदु होगा जो देश में उसी बिंदु का प्रतिनिधित्व करता है।
  3. तीन आयामों में ब्रोवर फिक्स्ड-पॉइंट प्रमेय का एक परिणाम यह है कि, चाहे आप एक गिलास में एक स्वादिष्ट कॉकटेल को कितना भी हिलाएं (या मिल्क शेक के बारे में सोचें), जब तरल को स्थिर अवस्था में आना होगा, तरल में कुछ बिंदु होगा यह मानते हुए कि प्रत्येक बिंदु की अंतिम स्थिति अपनी मूल स्थिति का एक निरंतर फलन है, कि ग्लॉस हिलाने के बाद तरल मूल रूप से इसके द्वारा लिए गए स्थान के भीतर समाहित है, यह मानते हुए ग्लास में ठीक उसी स्थान पर समाप्त होता है, जैसा कि आपने कोई कार्य करने से पहले पाया था, तथा कांच (और हिलाई हुई सतह का आकार) एक उत्तल आयतन बनाए रखता है। एक कॉकटेल को हिलाना, हिलाया नहीं जाना उत्तलता की स्थिति में गलत सिद्ध हो जाता है (झटकों को एक ढक्कन के नीचे खाली हेडस्पेस में गैर-उत्तल जड़त्वीय रोकथाम की एक गतिशील श्रृंखला के रूप में परिभाषित किया जाता है)। उस स्थिति में, प्रमेय लागू नहीं होगा, और इस प्रकार तरल स्वभाव के सभी बिंदु मूल अवस्था से संभावित रूप से विस्थापित हो जाते हैं।[citation needed]

सहज दृष्टिकोण

ब्रूवर को दिया गया स्पष्टीकरण

माना जाता है कि प्रमेय की उत्पत्ति एक कप गोरमेट कॉफी के ब्रौवर के अवलोकन से हुई है।[11] यदि कोई चीनी की गांठ को घोलने के लिए हिलाता है, तो ऐसा प्रतीत होता है कि हमेशा गतिहीन बिंदु होता है। उन्होंने निष्कर्ष निकाला कि किसी भी समय, सतह पर एक बिंदु है जो गतिमान नहीं है।[12] निश्चित बिंदु अनिवार्य रूप से वह बिंदु नहीं है जो गतिहीन प्रतीत होता है, क्योंकि विक्षोभ का केंद्र थोड़ा हिलता है।परिणाम सहज नहीं है, क्योंकि एक और निश्चित बिंदु दिखाई देने पर मूल निश्चित बिंदु गतिमान हो सकता है।

ब्रोवर ने कहा है की : मैं इस शानदार परिणाम को अलग-अलग बना सकता हूं, मैं एक क्षैतिज शीट लेता हूं, और एक दूसरा समान जिसे मैं समेटता हूं, चपटा करता हूं और दूसरे पर रखता हूं। तब झुर्रीदार पन्ना का एक बिंदु उसी स्थान पर होता है जैसे दूसरी शीट पर होता है।[12]ब्रौवर सिलवटों और झुर्रियों को हटाए बिना अपनी चादर को सपाट लोहे की तरह चपटा कर देता है। कॉफी कप उदाहरण के विपरीत, झुर्रीदार पन्ना उदाहरण भी दर्शाता है कि एक से अधिक निश्चित बिंदु स्थित हो सकते हैं। यह ब्रोवर के परिणाम को अन्य निश्चित-बिंदु प्रमेयों से अलग करता है, जैसे कि स्टीफन बानाच, जो अद्वितीयता का आश्वासन देता है।

एक विमीय प्रकरण

Théorème-de-Brouwer-dim-1.svg

एक विमीय में, परिणाम सहज और सिद्ध करने में आसान है। सतत फलन f को बंद अंतराल [a, b] पर परिभाषित किया गया है और उसी अंतराल में स्थान लेता है। यह कहना कि इस फ़ंक्शन का एक निश्चित बिंदु है, यह कहने के बराबर है कि इसका ग्राफ़ (दाईं ओर की आकृति में गहरा हरा) समान अंतराल [a, b] पर परिभाषित फ़ंक्शन को काटता है जो x से x (हल्का हरा) मापता है।

सहज रूप से, वर्ग के बाएँ किनारे से दाएँ किनारे तक कोई भी निरंतर रेखा आवश्यक रूप से हरे रंग के विकर्ण को काटती है। इसे सिद्ध करने के लिए, फलन g पर विचार करें जो x को f(x) − x से मापता है। यह a पर ≥ 0 और b पर ≤ 0 है। मध्यवर्ती मान प्रमेय के अनुसार, g का [a, b] में एक फलन का मूल है; यह शून्य एक निश्चित बिंदु है।

कहा जाता है कि ब्रोवर ने इसे इस प्रकार व्यक्त किया: सतह की जांच करने के बजाय, हम प्रमेय को स्ट्रिंग के टुकड़े के बारे में सिद्ध करेंगे। स्ट्रिंग को बिना मुड़ी हुई अवस्था में शुरू करें, फिर इसे दोबारा मोड़ दे । हम दोबारा मोड़ी गयी स्ट्रिंग को चपटा करें। स्ट्रिंग के एक बिंदु ने बिना मुड़ी हुई स्ट्रिंग पर अपनी मूल स्थिति के संबंध में अपनी स्थिति नहीं बदलती है।[12]


इतिहास

ब्रौवर निश्चित बिंदु प्रमेय बीजगणितीय टोपोलॉजी की शुरुआती उपलब्धियों में से एक था, और यह अधिक सामान्य निश्चित बिंदु प्रमेयों का आधार है जो कार्यात्मक विश्लेषण में महत्वपूर्ण हैं। कथन n = 3 पहली बार 1904 में पियर्स बोहल द्वारा सिद्ध किया गया था (फुर्र दे रिने युन्द एंगेवैनदते माथेमैटिक नामक पत्रिका में  प्रकाशित)।[13] इसे बाद में लुइट्ज़ेन एगबर्टस जान ब्रोवर एल द्वारा 1909 में सिद्ध किया गया था।1910 में जैक्स हैडमार्ड ने सामान्य कथनो को सिद्ध किया,[3]और उसी वर्ष ब्रोवर को एक अलग प्रमाण मिला।[4] चूँकि ये प्रारंभिक प्रमाण सभी रचनात्मक प्रमाण थे | हालांकि रचनावाद (गणित) के अर्थ में एक निश्चित बिंदु का अस्तित्व रचनात्मक नहीं है, ब्रोवर के प्रमेय द्वारा निश्चित अनुमानित सिद्धांत निश्चित बिंदुओं के प्रकारो के नाम से जाना जाता है।[14][15]


प्रागितिहास

एक असीमित क्षेत्र में प्रवाह के लिए, या एक छेद वाले क्षेत्र में, प्रमेय लागू नहीं होता है।
प्रमेय किसी भी डिस्क के आकार के क्षेत्र पर प्रयुक्त होता है, जहां यह निश्चित बिंदु के अस्तित्व का अस्वासन देता है।

ब्रोवर के निश्चित बिंदु प्रमेय के प्रागितिहास को समझने के लिए अवकल समीकरणों को ध्यान देने की आवश्यक्ता है। 19 वीं सदी के अंत में, पुरानी समस्या[16] सौर मंडल की स्थिरता गणितीय समुदाय के ध्यान में लौट आई।[17]

इसके समाधान के लिए नए तरीकों की आवश्यकता थी। जैसा कि तीन-पिंड की समस्या पर कार्य करने वाले हेनरी पोंकारे ने उल्लेख किया है, एक सटीक समाधान खोजने की कोई उम्मीद नहीं है: हमें तीन-पिंड की समस्या की कठोरता और साधारणतया सभी समस्याओं के बारे में विचार देने के लिए कुछ भी अधिक उचित नहीं है। डायनेमिक्स जहां कोई समान अभिन्न नहीं है और बोहलिन श्रृंखला विचलन करती है।[18] उन्होंने यह भी कहा कि एक अनुमानित समाधान की खोज अधिक कुशल नहीं है: जितना अधिक हम सटीक सन्निकटन प्राप्त करना चाहते हैं, उतना ही अधिक परिणाम एक बढ़ती हुई अशुद्धि की ओर बढ़ जाएगा।[19] उन्होंने एक कप कॉफी में सतह की गति के समान एक प्रश्न का अध्ययन किया। सामान्य रूप से, हम एक निरंतर प्रवाह (गणित) द्वारा अनुप्राणित सतह पर प्रक्षेपवक्र के बारे में क्या कह सकते हैं?[20] पोनकारे ने पाया कि उत्तर उस क्षेत्र में पाया जा सकता है जिसे अब हम प्रक्षेपवक्र वाले क्षेत्र में टोपोलॉजी गुण कहते हैं। यदि यह क्षेत्र सघन स्थान है, अर्थात बंद समूहऔर बंधा हुआ समूह दोनों, तो प्रक्षेपवक्र या तो स्थिर हो जाता है, या यह एक सीमा चक्र तक पहुंच जाता है।[21] पोंकारे और आगे बढ़े; यदि क्षेत्र डिस्क के समान प्रकार का है, जैसा कि कॉफी के कप के स्थिति में है, तो निश्चित रूप से एक निश्चित बिंदु होना चाहिए। यह निश्चित बिंदु उन सभी कार्यों के अंतर्गत अपरिवर्तनीय है जो मूल सतह के प्रत्येक बिंदु से इसकी स्थिति को थोड़े समय के अंतराल t के बाद जोड़ते हैं। यदि क्षेत्र एक गोलाकार पट्टी है, या यह बंद नहीं है,[22] तो यह आवश्यक नहीं है।

अवकल समीकरणों को बेहतर ढंग से समझने के लिए गणित की एक नई शाखा का जन्म हुआ। पॉइनकेयर ने इसे एनालिसिस साइटस कहा है। फ्रांसीसी एनसाइक्लोपीडिया यूनिवर्सलिस इसे उस शाखा के रूप में परिभाषित करता है जो किसी वस्तु के गुणों का इलाज करता है जो अपरिवर्तनीय है। यदि यह किसी भी निरंतर प्रकार से बिना फाडे विकृत होता है।[23] 1886 में, पोंकारे ने एक परिणाम सिद्ध किया जो ब्रोवर के निश्चित-बिंदु प्रमेय के समान है,[24] हालांकि इस लेख के विषय के साथ संबंध अभी तक स्पष्ट नहीं हुआ था।[25] थोड़ी देर बाद, उन्होंने विश्लेषण साइटस को बेहतर ढंग से समझने के लिए मौलिक उपकरणों में से एक विकसित किया, जिसे अब मौलिक समूह या कभी-कभी पोंकारे समूह के रूप में जाना जाता है।[26] इस पद्धति का उपयोग चर्चा के अंतर्गत प्रमेय के एक बहुत ही संक्षिप्त प्रमाण के लिए किया जा सकता है पोनकारे की पद्धति चार्ल्स एमिल पिकार्ड के अनुरूप थी, जो उनके समकालीन गणितज्ञ थे जिन्होंने कॉची-लिप्सचिट्ज़ प्रमेय को सामान्यीकृत किया था।[27] पिकार्ड का दृष्टिकोण एक परिणाम पर आधारित है जिसे बाद में बानाच फिक्स्ड-पॉइंट प्रमेय द्वारा औपचारिक रूप दिया गया है , जिसका नाम स्टीफन बानाच के नाम पर रखा गया है। प्रान्त के सामयिक गुणों के अतिरिक्त, यह प्रमेय इस तथ्य का उपयोग करता है कि विचाराधीन कार्य एक सघन मानचित्रण है।

पहला प्रमाण

जैक्स हैडमार्ड ने अपने विचारों को औपचारिक रूप देने में ब्रोवर की मदद की।

20वीं सदी की प्रारम्भ में, विश्लेषण विपरीत स्थान किसी का ध्यान नहीं गया है। चूँकि, इस आलेख में बताई गई प्रमेय के बराबर प्रमेय की आवश्यकता अभी तक स्पष्ट नहीं थी। लातवियाई गणितज्ञ पियर्स बोहल ने अंतर समीकरणों के अध्ययन के लिए सांस्थितिकीय विधियों को क्रियान्वित किया है।[28] 1904 में उन्होंने हमारे प्रमेय के त्रि-आयामी सन्दर्भों को सिद्ध किया है,[13] परन्तु उनके प्रकाशन पर ध्यान नहीं दिया गया है।[29]

यह ब्रौवर था, अंत में, जिसने प्रमेय को श्रेष्ठता का प्रथम अधिकार दिया है। उनके लक्ष्य पोंकारे से भिन्न थे। यह गणितज्ञ गणित की आधार, विशेष प्रकार से गणितीय तर्क और टोपोलॉजी से प्रेरित था। उनकी प्रारंभिक रुझान हिल्बर्ट की पांचवीं समस्या को सिद्ध करने के प्रयास में थी।[30] 1909 में, पेरिस की यात्रा के समय, उनकी मुलाकात हेनरी पोंकारे, जैक्स हैडमार्ड और एमिल बोरेल से हुई। भविष्य में होने वाले बातचीत यूक्लिडियन स्पेस की सही समझ के महत्व के ब्रोवर को प्रोत्साहित किया, और हैडमार्ड के साथ पत्रों के उपयोगी आदान-प्रदान की उत्पत्ति थी। अगले चार वर्षों तक, उन्होंने इस प्रश्न पर विशेष प्रमेयों के प्रमाण पर ध्यान केंद्रित किया है। 1912 में उन्होंने द्वि-आयामी क्षेत्र के लिए हेरी बॉल प्रमेय को सिद्ध किया, साथ ही इस तथ्य को भी सिद्ध किया कि द्वि-आयामी गेंद से लेकर स्वयं तक प्रत्येक निरंतर मानचित्र का निश्चित बिंदु होता है।[31] अपने आप में ये दो परिणाम वास्तव में नए नहीं थे। जैसा कि हैडमार्ड ने देखा, पोंकारे ने बालों वाली गेंद प्रमेय के बराबर एक प्रमेय दिखाया था।[32] ब्रौवर के दृष्टिकोण का क्रांतिकारी परिणाम वर्तमान में ही विकसित उपकरण जैसे होमोटॉपी, पोंकारे समूह की अंतर्निहित अवधारणा का उनका व्यवस्थित उपयोग था। अगले वर्ष में, हैडमर्ड ने प्रमेय को स्वेच्छाकारी परिमित आयाम पर बातचीत के अंतर्गत सामान्यीकृत किया गया है, परन्तु उन्होंने विभिन्न प्रकारों को नियोजित किया है। हंस फ्रायडेंथल संबंधित आधारों पर निम्नानुसार टिप्पणी करते हैं: ब्रोवर के क्रांतिकारी प्रकारों के सामान में, हैडमर्ड के लोग बहुत पारंपरिक थे, परन्तु ब्रोवर के विचारों के जन्म में हैडमार्ड की का सिद्धांत एक धाय की तरह महत्वपूर्ण भूमिका निभाया है।[33] ब्रोवर के दृष्टिकोण ने अपना फल दिया, और 1910 में उन्हें प्रमाण भी मिला जो किसी भी परिमित आयाम के लिए मान्य था,[4]साथ ही अन्य प्रमुख प्रमेय जैसे कि आयाम का व्युत्क्रम हैं।[34] इस कार्य के संदर्भ में, ब्रौवर ने स्वेच्छारी आयाम के लिए जॉर्डन वक्र प्रमेय को भी सामान्यीकृत किया और निरंतर मानचित्रण की डिग्री से जुड़े गुणों को स्थापित किया है।[35] गणित की इस शाखा, मुख्य प्रकार से पॉइनकेयर द्वारा परिकल्पित और ब्रौवर द्वारा विकसित, ने अपना नाम बदल दिया है। 1930 के दशक में, विश्लेषण स्थल बीजगणितीय टोपोलॉजी बन गया है।[36]


रिसेप्शन

जॉन फोर्ब्स नैश ने एक संतुलन रणनीति प्रोफ़ाइल के अस्तित्व को साबित करने के लिए गेम थ्योरी में प्रमेय का इस्तेमाल किया।

प्रमेय ने एक से अत्यधिक प्रकारों से अपना मूल्य सिद्ध किया है। 20वीं शताब्दी के समय कई निश्चित-बिंदु प्रमेय विकसित किए गए थे, और यहां तक ​​कि गणित की शाखा को निश्चित-बिंदु सिद्धांत कहा जाता है।[37]

ब्रौवर प्रमेय संभवतः सबसे महत्वपूर्ण है।[38] यह टोपोलॉजिकल मैनिफोल्ड्स के टोपोलॉजी पर मूलभूत प्रमेयों में से एक है और अक्सर जॉर्डन वक्र प्रमेय जैसे अन्य महत्वपूर्ण परिणामों को साबित करने के लिए प्रयोग किया जाता है।[39] अधिक या कम संकुचन मानचित्रण कार्यों के लिए निश्चित-बिंदु प्रमेय के अलावा, कई ऐसे हैं जो प्रत्यक्ष या अप्रत्यक्ष रूप से चर्चा के परिणाम से सामने आए हैं। यूक्लिडियन अंतरिक्ष की एक बंद गेंद से इसकी सीमा तक एक सतत नक्शा सीमा पर पहचान नहीं हो सकता। इसी तरह, बोरसुक-उलम प्रमेय कहता है कि एन-आयामी क्षेत्र से 'आर' तक एक सतत नक्शाn में एंटीपोडल बिंदुओं की एक जोड़ी होती है जो एक ही बिंदु पर मैप की जाती हैं। परिमित-आयामी मामले में, 1926 से Lefschetz नियत-बिंदु प्रमेय निश्चित बिंदुओं की गणना के लिए एक विधि प्रदान करता है। 1930 में, Brouwer के निश्चित-बिंदु प्रमेय को Banach रिक्त स्थान के लिए सामान्यीकृत किया गया था।[40] इस सामान्यीकरण को अनंत-आयामी स्थानों में निश्चित-बिंदु प्रमेय के रूप में जाना जाता है। शाउडर की निश्चित-बिंदु प्रमेय, एस. काकुटानी द्वारा सेट-वैल्यूड फ़ंक्शन|सेट-वैल्यू फ़ंक्शन के लिए सामान्यीकृत परिणाम।[41] एक टोपोलॉजी के बाहर प्रमेय और इसके रूपों से भी मिलता है। इसका उपयोग हार्टमैन-ग्रोबमैन प्रमेय को साबित करने के लिए किया जा सकता है, जो निश्चित संतुलन के पास कुछ अंतर समीकरणों के गुणात्मक व्यवहार का वर्णन करता है। इसी प्रकार, केंद्रीय सीमा प्रमेय के प्रमाण के लिए ब्रोवर के प्रमेय का उपयोग किया जाता है। कुछ आंशिक अंतर समीकरणों के समाधान के लिए प्रमेय को अस्तित्व प्रमाण में भी पाया जा सकता है।[42] अन्य क्षेत्रों को भी छुआ जाता है। गेम थ्योरी में, जॉन फोर्ब्स नैश ने यह साबित करने के लिए प्रमेय का इस्तेमाल किया कि हेक्स (बोर्ड गेम) के खेल में सफेद के लिए जीतने की रणनीति है।[43] अर्थशास्त्र में, पी. बिच बताते हैं कि प्रमेय के कुछ सामान्यीकरण से पता चलता है कि इसका उपयोग गेम थ्योरी में कुछ शास्त्रीय समस्याओं और आम तौर पर संतुलन (होटेलिंग का नियम), वित्तीय संतुलन और अपूर्ण बाजारों के लिए सहायक है।[44] ब्रौवर की हस्ती विशेष रूप से उनके सांस्थितिकीय कार्य के कारण नहीं है। उनके महान सामयिक प्रमेय के प्रमाण रचनात्मक प्रमाण हैं,[45] और ब्रोवर के इस पर असंतोष ने आंशिक रूप से उन्हें रचनावाद (गणित) के विचार को स्पष्ट करने के लिए प्रेरित किया। वह गणित को औपचारिक रूप देने के एक तरीके के प्रवर्तक और उत्साही रक्षक बन गए, जिसे अंतर्ज्ञानवादी तर्क के रूप में जाना जाता है, जिसने उस समय निर्धारित सिद्धांत के खिलाफ एक स्टैंड बनाया था।[46] ब्रोवर ने निश्चित-बिंदु प्रमेय के अपने मूल प्रमाण को अस्वीकार कर दिया। एक निश्चित बिंदु का अनुमान लगाने वाला पहला एल्गोरिथम हर्बर्ट स्कार्फ द्वारा प्रस्तावित किया गया था।[47] स्कार्फ के एल्गोरिदम का एक सूक्ष्म पहलू यह है कि यह एक बिंदु पाता है जो है almost fixed एक फ़ंक्शन एफ द्वारा, लेकिन सामान्य रूप से एक बिंदु नहीं मिल सकता है जो वास्तविक निश्चित बिंदु के करीब है। गणितीय भाषा में, यदि ε को बहुत छोटा चुना गया है, स्कार्फ के एल्गोरिथ्म का उपयोग बिंदु x को खोजने के लिए किया जा सकता है जैसे कि f(x) x के बहुत करीब है, अर्थात, . लेकिन स्कार्फ के एल्गोरिथ्म का उपयोग बिंदु x को खोजने के लिए नहीं किया जा सकता है जैसे कि x एक निश्चित बिंदु के बहुत करीब है: हम गारंटी नहीं दे सकते कहाँ अक्सर यह बाद की स्थिति एक निश्चित बिंदु का अनुमान लगाने वाले अनौपचारिक वाक्यांश का अर्थ है[citation needed].

सबूत की रूपरेखा

अंश का उपयोग करके एक प्रमाण

ब्रौवर का मूल 1911 का प्रमाण एक निरंतर मानचित्रण की डिग्री की धारणा पर निर्भर करता है, जो विभेदक टोपोलॉजी में विचारों से उपजा है। प्रमाण के कई आधुनिक अभिलेख साहित्य में पाए जा सकते हैं, विशेष रूप से मिलनर (1965).[48][49]माना की बंद इकाई बॉल को निरूपित करें मूल पर केन्द्रित है। संकुचित करने के लिए माना कि निरन्तर अवकलनीय है। एक नियमित मूल्य एक बिन्दु है जैसे कि जेकोबियन मैट्रिक्स और निर्धारक की पूर्वकल्पना केप्रत्येक बिंदु p पर एकल नहीं है। विशेष रूप से, व्युत्क्रम कार्य प्रमेय द्वारा, प्रत्येक बिंदु की पूर्वकल्पना में निहित है (आंतरिक भाग ।अंश का एक नियमित मूल्य पर के जैकोबियन निर्धारक के संकेतों के योग के रूप में परिभाषित किया गया है के पूर्वापेक्षाओं पर के अंतर्गत :

डिग्री, सामान्यतया यह दर्शा रही है की, p के चारों ओर प्राइमेज f का एक छोटे से खुले समुच्चय पर रखे गए पन्नो की संख्या, विपरीत दिशा में गिने जाने वाली पन्नो के साथ होती है। इस प्रकार यह उच्च आयामों के लिए वाइंडिंग संख्या का सामान्यीकरण है।

डिग्री होमोटॉपी इनवेरियन की निर्देशों को संतुष्ट करती है: माना और दो लगातार अलग-अलग कार्य हो, और के लिए . मान लीजिए कि बिंदु , सभी t के लिए का नियमित मान है। तब होता है।  

यदि की सीमा का कोई निश्चित बिंदु नहीं है ,तब फलन

अच्छे से परिभाषित है, और

तत्समक फलन से समरूपता को परिभाषित करता है।विशेषतः, तत्समक फलन मूल में डिग्री एक है, इसलिए मूल में डिग्री एक भी है। जिस कारण से, प्रीइमेज खाली नहीं है। के तत्त्व वास्तविक फलन के निश्चित बिंदु के रूप में होते है।

डिग्री की परिभाषा को च के एकवचन मूल्यों और फिर निरंतर कार्यों तक विस्तारित किया जाना चाहिए। समरूपता सिद्धांत का अधिक आधुनिक आगमन डिग्री के निर्माण को सरल करता है, और इसलिए यह साहित्य में एक मानक प्रमाण बन गया है।

हेयरी बॉल प्रमेय का उपयोग करके सिद्ध करना

हेयरी बॉल प्रमेय के अनुसार इकाई क्षेत्र पर S एक विषम-आयामी यूक्लिडियन स्पेस में, कहीं नहीं गायब होने वाला निरंतर स्पर्शरेखा सदिश क्षेत्र w पर S नहीं है। (स्पर्श स्थिति का अर्थ है कि w(x) ⋅ x = 0 प्रत्येक इकाई वेक्टर के लिए x।) कभी-कभी प्रमेय को इस कथन द्वारा व्यक्त किया जाता है कि ग्लोब पर हमेशा एक जगह होती है जिसमें हवा नहीं होती है। हेयरी बॉल प्रमेय का एक प्रारंभिक प्रमाण Milnor (1978)के सिद्धांत में पाया जा सकता है।  

वास्तव में, पहले मान लीजिए w निरंतर अवकलनीय है। स्केलिंग करके, यह माना जा सकता है w एक सतत अवकलनीय इकाई स्पर्शरेखा सदिश S है। इसे रेडियल रूप से A का S एक छोटे गोलाकार खोल तक बढ़ाया जा सकता है। t के लिए पर्याप्त रूप से छोटा, एक नियमित संगणना से पता चलता है कि मैपिंग ft(x) = t x + w(x) एक संकुचन मानचित्रण है A और इसकी छवि का आयतन एक बहुपद t है । दूसरी ओर, संकुचन मानचित्रण के रूप में, ft के होमोमोर्फिज्म तक ही S पर सीमित होना चाहिए (1 + t2)½</उप> S और A पर (1 + t2)½</उप> A. यह एक विरोधाभास देता है, क्योंकि यदि आयाम {{mvar|n}यूक्लिडियन स्थान का } विषम है, (1 + t2)n/2 बहुपद नहीं है।

अगर w केवल एक निरंतर इकाई स्पर्शरेखा सदिश है S, Weierstrass सन्निकटन प्रमेय द्वारा, इसे एक बहुपद मानचित्र द्वारा समान रूप से अनुमानित किया जा सकता है u का A यूक्लिडियन अंतरिक्ष में। टेंगेंट स्पेस पर ऑर्थोगोनल प्रोजेक्शन द्वारा दिया गया है v(x) = u(x) - u(x) ⋅ x. इस प्रकार v बहुपद है और कहीं गायब नहीं हो रहा है A; निर्माण द्वारा v/||v|| एक चिकनी इकाई स्पर्शरेखा सदिश क्षेत्र है S, एक विरोधाभास।

बालों वाली गेंद प्रमेय का निरंतर संस्करण अब ब्रौवर निश्चित बिंदु प्रमेय साबित करने के लिए उपयोग किया जा सकता है। पहले मान लीजिए n अजीब है। यदि कोई निश्चित-बिंदु-मुक्त निरंतर स्व-मानचित्रण होता f बंद इकाई गेंद की B की n-आयामी यूक्लिडियन स्थान V, तय करना

तब से f का कोई निश्चित बिंदु नहीं है, यह इस प्रकार है, के लिए x के इंटीरियर (टोपोलॉजी) में B, वेक्टर w(x) शून्य नहीं है; और के लिए x में S, स्केलर उत्पाद
xw(x) = 1 – xf(x) सख्ती से सकारात्मक है। मूल से n-आयामी अंतरिक्ष यूक्लिडियन अंतरिक्ष V, एक नया सहायक बनाएं
(n + 1)-विमीय स्थान W = V x R, निर्देशांक के साथ y = (x, t). तय करना

निर्माण द्वारा X के इकाई क्षेत्र पर एक सतत सदिश क्षेत्र है W, स्पर्शरेखा की स्थिति को संतुष्ट करना yX(y) = 0। इसके अलावा, X(y) कहीं गायब नहीं है (क्योंकि, अगर x का मानदंड 1 है, तो xw(x) शून्य नहीं है; जबकि अगर x का मानदंड सख्ती से 1 से कम है, तो t और w(x) दोनों शून्य नहीं हैं)। यह विरोधाभास निश्चित बिंदु प्रमेय को सिद्ध करता है जब n अजीब है। के लिए n यहां तक ​​कि, निश्चित बिंदु प्रमेय को बंद इकाई गेंद पर लागू किया जा सकता है B में n + 1 आयाम और मानचित्रण F(x,y) = (f(x), 0). इस प्रमाण का लाभ यह है कि यह केवल प्रारंभिक तकनीकों का उपयोग करता है; बोरसुक-उलम प्रमेय जैसे अधिक सामान्य परिणामों के लिए बीजगणितीय टोपोलॉजी से उपकरणों की आवश्यकता होती है।[50]


===समरूपता या कोहोलॉजी === का उपयोग करते हुए एक प्रमाण सबूत अवलोकन का उपयोग करता है कि एन-डिस्क डी की सीमा (टोपोलॉजी)n एस हैn−1, (n − 1)-गोला।

रिट्रेक्शन एफ का चित्रण

मान लीजिए, विरोधाभास के लिए, कि एक सतत कार्य f : DnDn का कोई निश्चित बिंदु नहीं है। इसका अर्थ है कि, D में प्रत्येक बिंदु x के लिएn, बिंदु x और f(x) भिन्न हैं। क्योंकि वे अलग-अलग हैं, डी में प्रत्येक बिंदु एक्स के लिएn, हम f(x) से x तक एक अद्वितीय किरण का निर्माण कर सकते हैं और किरण का अनुसरण तब तक कर सकते हैं जब तक कि यह सीमा S को काट न देn−1 (उदाहरण देखें)। इस प्रतिच्छेदन बिंदु F(x) को कॉल करके, हम एक फ़ंक्शन F : D परिभाषित करते हैंn → एसn−1 डिस्क में प्रत्येक बिंदु को सीमा पर उसके संबंधित चौराहे बिंदु पर भेज रहा है। एक विशेष मामले के रूप में, जब भी x स्वयं सीमा पर होता है, तो प्रतिच्छेदन बिंदु F(x) x होना चाहिए।

नतीजतन, एफ एक विशेष प्रकार का निरंतर कार्य है जिसे रिट्रेक्शन (टोपोलॉजी) के रूप में जाना जाता है: कोडोमेन का हर बिंदु (इस मामले में एसn−1) F का एक निश्चित बिंदु है।

सहज रूप से ऐसा प्रतीत नहीं होता है कि डी की वापसी हो सकती हैn S परn−1, और मामले में n = 1, असंभवता अधिक बुनियादी है, क्योंकि S0 (यानी, बंद अंतराल डी के अंत बिंदु1) कनेक्ट भी नहीं है। मामला n = 2 कम स्पष्ट है, लेकिन संबंधित स्थानों के मौलिक समूहों को शामिल करते हुए बुनियादी तर्कों का उपयोग करके सिद्ध किया जा सकता है: प्रत्यावर्तन डी के मौलिक समूह से विशेषण समूह समरूपता को प्रेरित करेगा।2 एस के लिए1, लेकिन बाद वाला समूह Z के लिए समरूप है जबकि पहला समूह तुच्छ है, इसलिए यह असंभव है। मामला n = 2 गैर-लुप्त वेक्टर क्षेत्रों के बारे में एक प्रमेय के आधार पर विरोधाभास द्वारा भी सिद्ध किया जा सकता है।

n > 2 के लिए, हालांकि, प्रत्यावर्तन की असंभवता को साबित करना अधिक कठिन है। होमोलॉजी (गणित) का उपयोग करने का एक तरीका है: समरूपता एचn−1(डीn) तुच्छ है, जबकि Hn−1(एसn−1) अनंत चक्रीय समूह है। इससे पता चलता है कि प्रत्यावर्तन असंभव है, क्योंकि फिर से प्रत्यावर्तन बाद वाले समूह से पूर्व समूह के लिए एक इंजेक्शन समूह समरूपता को प्रेरित करेगा।

यूक्लिडियन अंतरिक्ष ई के खुले उपसमुच्चय के डॉ कहलमज गर्भाशय का उपयोग करके एक वापसी की असंभवता भी दिखायी जा सकती हैएन. n ≥ 2 के लिए, U = E की डी रम कोहोलॉजीn - (0) डिग्री 0 और n - 1 में एक आयामी है, और अन्यथा गायब हो जाता है। यदि एक प्रत्यावर्तन अस्तित्व में है, तो यू को संविदात्मक होना होगा और एन -1 डिग्री में इसके डी राम कोहोलॉजी को गायब होना होगा, एक विरोधाभास।[51]


स्टोक्स के प्रमेय का प्रयोग करके एक उपपत्ति

समरूपता का उपयोग करते हुए निरंतर नक्शों के लिए ब्रोवर के निश्चित-बिंदु प्रमेय के प्रमाण के रूप में, यह साबित करने के लिए कम किया जाता है कि कोई निरंतर प्रत्यावर्तन नहीं होता है F गेंद से B इसकी सीमा ∂ परB. ऐसे में यह माना जा सकता है F चिकना है, क्योंकि इसे वीयरस्ट्रैस सन्निकटन प्रमेय का उपयोग करके या पर्याप्त रूप से छोटे समर्थन और अभिन्न एक (यानी शमन करनेवाला) के गैर-नकारात्मक चिकनी टक्कर कार्यों के साथ कनवल्शन द्वारा अनुमानित किया जा सकता है। अगर ω स्टोक्स के प्रमेय द्वारा सीमा पर एक आयतन रूप है,

एक विरोधाभास दे रहा है।[52][53] अधिक आम तौर पर, यह दर्शाता है कि किसी भी गैर-खाली चिकनी उन्मुख कॉम्पैक्ट मैनिफोल्ड से कोई चिकनी वापसी नहीं होती है M इसकी सीमा पर। स्टोक्स के प्रमेय का उपयोग करने वाला प्रमाण होमोलॉजी का उपयोग करने वाले प्रमाण से निकटता से संबंधित है, क्योंकि रूप ω डी रम कोहोलॉजी उत्पन्न करता है Hn-1(∂M) जो समरूपी समूह के लिए समरूपी है Hn-1(∂M) डी रम कोहोलॉजी द्वारा#डी राम की प्रमेय|दे राम की प्रमेय।[54]


एक संयोजन प्रमाण

स्पर्नर लेम्मा का उपयोग करके BFPT को सिद्ध किया जा सकता है। अब हम विशेष मामले के लिए सबूत की रूपरेखा देते हैं जिसमें एफ मानक संकेतन से एक फ़ंक्शन है, खुद को, कहाँ

हर बिंदु के लिए भी इसलिए उनके निर्देशांकों का योग बराबर है:

इसलिए, कबूतर सिद्धांत द्वारा, हर किसी के लिए एक सूचकांक होना चाहिए ऐसा कि वें का समन्वय से अधिक या उसके बराबर है f के अंतर्गत इसकी छवि के निर्देशांक:

इसके अलावा, अगर के के-आयामी उप-चेहरे पर स्थित है फिर उसी तर्क से, index में से चुना जा सकता है k + 1 निर्देशांक जो इस उप-चेहरे पर शून्य नहीं हैं।

अब हम इस तथ्य का उपयोग स्पर्नर रंग बनाने के लिए करते हैं। के हर त्रिभुज के लिए हर शीर्ष का रंग एक सूचकांक है ऐसा है कि रचना के अनुसार, यह एक स्पर्नर रंग है। इसलिए, स्पर्नर की लेम्मा द्वारा, एक एन-डायमेंशनल सिम्प्लेक्स है, जिसके कोने पूरे सेट के साथ रंगीन हैं n + 1 उपलब्ध रंग।

चूँकि f निरंतर है, इस सिम्प्लेक्स को एक मनमाने ढंग से सूक्ष्म त्रिकोण का चयन करके मनमाने ढंग से छोटा बनाया जा सकता है। इसलिए, एक बिंदु होना चाहिए जो सभी निर्देशांकों में लेबलिंग शर्त को पूरा करता है: सभी के लिए क्योंकि के निर्देशांक का योग और समान होना चाहिए, ये सभी असमानताएँ वास्तव में समानताएँ होनी चाहिए। लेकिन इसका मतलब यह है कि:

वह है, का निश्चित बिन्दु है


=== हिर्श === द्वारा एक प्रमाण अलग-अलग वापसी की असंभवता के आधार पर मॉरिस हिर्श द्वारा एक त्वरित प्रमाण भी है। अप्रत्यक्ष प्रमाण यह देखते हुए शुरू होता है कि मानचित्र f को एक बिंदु को ठीक न करने की संपत्ति को बनाए रखते हुए एक चिकने मानचित्र द्वारा अनुमानित किया जा सकता है; यह Weierstrass सन्निकटन प्रमेय का उपयोग करके या चिकनी टक्कर कार्यों के साथ कनवल्शन द्वारा किया जा सकता है। एक तो ऊपर के रूप में एक वापसी को परिभाषित करता है जो अब अलग-अलग होना चाहिए। सार्ड के प्रमेय के अनुसार इस तरह के प्रत्यावर्तन का एक गैर-एकवचन मूल्य होना चाहिए, जो सीमा के प्रतिबंध के लिए गैर-एकवचन भी है (जो कि केवल पहचान है)। इस प्रकार उलटा छवि सीमा के साथ 1-कई गुना होगी। बाउंड्री में कम से कम दो अंतिम बिंदु शामिल होने चाहिए, दोनों को मूल गेंद की बाउंड्री पर होना चाहिए-जो एक वापसी में असंभव है।[55] आर. ब्रूस केलॉग, टीएन-यीन ली, और जेम्स ए. यॉर्क ने हिर्श के प्रमाण को एक संगणनीयता प्रमाण में बदल दिया, यह देखते हुए कि निश्चित बिंदुओं को छोड़कर हर जगह वास्तव में वापस लेना परिभाषित किया गया है।[56] लगभग किसी भी बिंदु के लिए, क्यू, सीमा पर, (यह मानते हुए कि यह एक निश्चित बिंदु नहीं है) ऊपर उल्लिखित सीमा के साथ कई गुना मौजूद है और एकमात्र संभावना यह है कि यह क्यू से एक निश्चित बिंदु तक ले जाती है। क्यू से निश्चित बिंदु तक इस तरह के पथ का पालन करना एक आसान संख्यात्मक कार्य है, इसलिए विधि अनिवार्य रूप से गणना योग्य है।[57] ने संकल्पनात्मक रूप से होमोटॉपी प्रूफ का एक समान पथ-अनुवर्ती संस्करण दिया जो विभिन्न प्रकार की संबंधित समस्याओं तक फैला हुआ है।

उन्मुख क्षेत्र का प्रयोग करते हुए एक प्रमाण

पूर्ववर्ती सबूत की भिन्नता सार्ड के प्रमेय को नियोजित नहीं करती है, और निम्नानुसार जाती है। अगर एक चिकनी वापसी है, एक चिकनी विकृति पर विचार करता है और सुचारू कार्य

समाकल के चिह्न के अंतर्गत अंतर करना यह जाँचना कठिन नहीं हैφ(t) = 0 सभी t के लिए, इसलिए φ एक स्थिर कार्य है, जो एक विरोधाभास है क्योंकि φ(0) गेंद का n-आयामी आयतन है, जबकि φ(1) शून्य है। ज्यामितीय विचार यह है कि φ(t) g का उन्मुख क्षेत्र हैt(B) (अर्थात, g के माध्यम से गेंद की छवि का Lebesgue मापt, बहुलता और अभिविन्यास को ध्यान में रखते हुए), और स्थिर रहना चाहिए (क्योंकि यह एक आयामी मामले में बहुत स्पष्ट है)। दूसरी ओर, पैरामीटर टी के रूप में 0 से 1 नक्शा जी पास होता हैt लगातार गेंद के पहचान मानचित्र से रिट्रैक्शन r में रूपांतरित होता है, जो एक विरोधाभास है क्योंकि पहचान का उन्मुख क्षेत्र गेंद के आयतन के साथ मेल खाता है, जबकि r का उन्मुख क्षेत्र आवश्यक रूप से 0 है, जैसा कि इसकी छवि गेंद की सीमा है, अशक्त माप का एक सेट।[58]


=== खेल हेक्स === का उपयोग कर एक सबूत डेविड गेल द्वारा दिया गया एक बिल्कुल अलग प्रमाण हेक्स (बोर्ड गेम) के खेल पर आधारित है। हेक्स के बारे में मूल प्रमेय, जो पहले जॉन नैश द्वारा सिद्ध किया गया था, यह है कि हेक्स का कोई भी गेम ड्रा में समाप्त नहीं हो सकता है; पहले खिलाड़ी के पास हमेशा जीतने की रणनीति होती है (हालांकि यह प्रमेय गैर-रचनात्मक है, और 10 x 10 या अधिक आयामों के बोर्ड आकार के लिए स्पष्ट रणनीतियों को पूरी तरह से विकसित नहीं किया गया है)। यह आयाम 2 के लिए ब्रौवर फिक्स्ड-पॉइंट प्रमेय के बराबर निकला। हेक्स के एन-आयामी संस्करणों पर विचार करके, कोई सामान्य रूप से साबित कर सकता है कि ब्रौवर का प्रमेय हेक्स के लिए निर्धारक प्रमेय के बराबर है।[59]


Lefschetz निश्चित-बिंदु प्रमेय का उपयोग करके एक प्रमाण

Lefschetz निश्चित-बिंदु प्रमेय का कहना है कि यदि एक परिमित साधारण परिसर B से निरंतर मानचित्र f में केवल अलग-अलग निश्चित बिंदु हैं, तो गुणकों के साथ गिने गए निश्चित बिंदुओं की संख्या (जो ऋणात्मक हो सकती है) Lefschetz संख्या के बराबर है

और विशेष रूप से यदि Lefschetz संख्या गैर-शून्य है तो f का एक निश्चित बिंदु होना चाहिए। अगर बी एक गेंद है (या अधिक आम तौर पर सिकुड़ा जा सकता है) तो लेफ्शेट्ज़ संख्या एक है क्योंकि केवल गैर-शून्य साधारण समरूपता समूह है: और f इस समूह पर तत्समक के रूप में कार्य करता है, इसलिए f का एक निश्चित बिंदु है।[60][61]


एक कमजोर तार्किक प्रणाली में एक प्रमाण

उलटे गणित में, ब्रौवर के प्रमेय को प्रणाली कमजोर कोनिग लेम्मा में सिद्ध किया जा सकता है|WKL0, और इसके विपरीत बेस सिस्टम पर रिवर्स मैथमेटिक्स|RCA0एक वर्ग के लिए ब्रौवर के प्रमेय का तात्पर्य कमजोर कोनिग लेम्मा से है, इसलिए यह ब्रौवर के प्रमेय की ताकत का सटीक विवरण देता है।

सामान्यीकरण

ब्रौवर निश्चित-बिंदु प्रमेय अत्यधिक सामान्य निश्चित-बिंदु प्रमेयों का प्रारंभिक बिंदु बनाता है।

अनंत आयामों के लिए सीधा सामान्यीकरण, अर्थात यूक्लिडियन स्पेस के स्थान पर हिल्बर्ट स्पेस की इकाई गेंद का उपयोग करना सही नहीं है। यहां मुख्य समस्या यह है कि अनंत-आयामी हिल्बर्ट स्पेस की इकाई गेंदें सघन स्थान नहीं हैं। उदाहरण के लिए, हिल्बर्ट स्पेस एलपी स्पेस ℓ2 वर्ग-संकलन योग्य वास्तविक (या जटिल) क्रम, मानचित्र पर विचार करें f : ℓ2 → ℓ2 जो ℓ2 की बंद इकाई गेंद से अनुक्रम (yn) द्वारा परिभाषित अनुक्रम (xn) भेजता है।

यह जाँचना कठिन नहीं है कि यह मानचित्र निरंतर है, इसकी इमेज ℓ2 के इकाई क्षेत्र में है, परन्तु इसका कोई निश्चित बिंदु नहीं है।

ब्रौवर निश्चित-बिंदु प्रमेय के अनंत आयामी स्पेस के सामान्यीकरण इसलिए सभी में किसी प्रकार की सघनता धारणा सम्मिलित है, और अधिकांशतः उत्तल समूह की धारणा भी सम्मिलित है। इन प्रमेयों की चर्चा के लिए अनंत-आयामी स्थानों में निश्चित-बिंदु प्रमेय देखना अनिवार्य है।

स्पेस के बड़े वर्ग के लिए परिमित-आयामी सामान्यीकरण भी है: यदि परिमित रूप से कई श्रृंखला योग्य निरंतरता का प्रोडक्ट है, फिर प्रत्येक निरंतर कार्य निश्चित बिंदु है,[62] जहां श्रृंखला योग्य सातत्य (सामान्य तौर पर परन्तु इस कथन में जरूरी नहीं कि मीट्रिक स्थान) सघन स्पेस हॉसडॉर्फ स्पेस है, जिसमें हर खुले कवर में परिमित खुला शोधन होता है , ऐसा है कि और केवल अगर . श्रृंखला योग्य निरंतरता के उदाहरणों में कॉम्पैक्ट कनेक्टेड लीनियरली ऑर्डर किए गए स्थान और विशेष रूप से वास्तविक संख्याओं के बंद अंतराल शामिल हैं।

काकुटानी निश्चित बिंदु प्रमेय ब्रोवर निश्चित बिंदु प्रमेय को एक अलग दिशा में सामान्यीकृत करता है: यह आर में रहता हैn, लेकिन ऊपरी अर्ध-निरंतर सेट-वैल्यू फ़ंक्शंस (फ़ंक्शन जो सेट के प्रत्येक बिंदु को सेट का एक सबसेट असाइन करते हैं) पर विचार करता है। इसमें सेट की कॉम्पैक्टनेस और उत्तलता की भी आवश्यकता होती है।

Lefschetz निश्चित-बिंदु प्रमेय (लगभग) स्वैच्छिक कॉम्पैक्ट टोपोलॉजिकल रिक्त स्थान पर लागू होता है, और एकवचन होमोलॉजी के संदर्भ में एक शर्त देता है जो निश्चित बिंदुओं के अस्तित्व की गारंटी देता है; डी के मामले में किसी भी मानचित्र के लिए यह स्थिति तुच्छ रूप से संतुष्ट हैएन.

समतुल्य परिणाम

There are several fixed-point theorems which come in three equivalent variants: an algebraic topology variant, a combinatorial variant and a set-covering variant. Each variant can be proved separately using totally different arguments, but each variant can also be reduced to the other variants in its row. Additionally, each result in the top row can be deduced from the one below it in the same column.[63]

Algebraic topology Combinatorics Set covering
Brouwer fixed-point theorem Sperner's lemma Knaster–Kuratowski–Mazurkiewicz lemma
Borsuk–Ulam theorem Tucker's lemma Lusternik–Schnirelmann theorem

यह भी देखें

टिप्पणियाँ

  1. See page 15 of: D. Leborgne Calcul différentiel et géométrie Puf (1982) ISBN 2-13-037495-6
  2. More exactly, according to Encyclopédie Universalis: Il en a démontré l'un des plus beaux théorèmes, le théorème du point fixe, dont les applications et généralisations, de la théorie des jeux aux équations différentielles, se sont révélées fondamentales. Luizen Brouwer by G. Sabbagh
  3. 3.0 3.1 Jacques Hadamard: Note sur quelques applications de l’indice de Kronecker in Jules Tannery: Introduction à la théorie des fonctions d’une variable (Volume 2), 2nd edition, A. Hermann & Fils, Paris 1910, pp. 437–477 (French)
  4. 4.0 4.1 4.2 Brouwer, L. E. J. (1911). "Über Abbildungen von Mannigfaltigkeiten". Mathematische Annalen (in Deutsch). 71: 97–115. doi:10.1007/BF01456931. S2CID 177796823.
  5. D. Violette Applications du lemme de Sperner pour les triangles Bulletin AMQ, V. XLVI N° 4, (2006) p 17. Archived June 8, 2011, at the Wayback Machine
  6. Page 15 of: D. Leborgne Calcul différentiel et géométrie Puf (1982) ISBN 2-13-037495-6.
  7. This version follows directly from the previous one because every convex compact subset of a Euclidean space is homeomorphic to a closed ball of the same dimension as the subset; see Florenzano, Monique (2003). General Equilibrium Analysis: Existence and Optimality Properties of Equilibria. Springer. p. 7. ISBN 9781402075124. Retrieved 2016-03-08.
  8. V. & F. Bayart Point fixe, et théorèmes du point fixe on Bibmath.net. Archived December 26, 2008, at the Wayback Machine
  9. C. Minazzo K. Rider Théorèmes du Point Fixe et Applications aux Equations Différentielles Archived 2018-04-04 at the Wayback Machine Université de Nice-Sophia Antipolis.
  10. Belk, Jim. "Why is convexity a requirement for Brouwer fixed points?". Math StackExchange. Retrieved 22 May 2015.
  11. The interest of this anecdote rests in its intuitive and didactic character, but its accuracy is dubious. As the history section shows, the origin of the theorem is not Brouwer's work. More than 20 years earlier Henri Poincaré had proved an equivalent result, and 5 years before Brouwer P. Bohl had proved the three-dimensional case.
  12. 12.0 12.1 12.2 This citation comes originally from a television broadcast: Archimède, Arte, 21 septembre 1999
  13. 13.0 13.1 Bohl, P. (1904). "Über die Bewegung eines mechanischen Systems in der Nähe einer Gleichgewichtslage". J. Reine Angew. Math. 127 (3/4): 179–276.
  14. Karamardian, Stephan (1977). Fixed points: algorithms and applications. New York: Academic Press. ISBN 978-0-12-398050-2.
  15. Istrăţescu, Vasile (1981). निश्चित बिंदु सिद्धांत. Dordrecht-Boston, Mass.: D. Reidel Publishing Co. ISBN 978-90-277-1224-0.
  16. See F. Brechenmacher L'identité algébrique d'une pratique portée par la discussion sur l'équation à l'aide de laquelle on détermine les inégalités séculaires des planètes CNRS Fédération de Recherche Mathématique du Nord-Pas-de-Calais
  17. Henri Poincaré won the King of Sweden's mathematical competition in 1889 for his work on the related three-body problem: Jacques Tits Célébrations nationales 2004 Site du Ministère Culture et Communication
  18. Henri Poincaré Les méthodes nouvelles de la mécanique céleste T Gauthier-Villars, Vol 3 p 389 (1892) new edition Paris: Blanchard, 1987.
  19. Quotation from Henri Poincaré taken from: P. A. Miquel La catégorie de désordre Archived 2016-03-03 at the Wayback Machine, on the website of l'Association roumaine des chercheurs francophones en sciences humaines
  20. This question was studied in: Poincaré, H. (1886). "Sur les courbes définies par les équations différentielles". Journal de Mathématiques Pures et Appliquées. 2 (4): 167–244.
  21. This follows from the Poincaré–Bendixson theorem.
  22. Multiplication by 1/2 on ]0, 1[2 has no fixed point.
  23. "concerne les propriétés invariantes d'une figure lorsqu’on la déforme de manière continue quelconque, sans déchirure (par exemple, dans le cas de la déformation de la sphère, les propriétés corrélatives des objets tracés sur sa surface". From C. Houzel M. Paty Poincaré, Henri (1854–1912) Archived 2010-10-08 at the Wayback Machine Encyclopædia Universalis Albin Michel, Paris, 1999, p. 696–706
  24. Poincaré's theorem is stated in: V. I. Istratescu Fixed Point Theory an Introduction Kluwer Academic Publishers (réédition de 2001) p 113 ISBN 1-4020-0301-3
  25. Voitsekhovskii, M.I. (2001) [1994], "Brouwer theorem", Encyclopedia of Mathematics, EMS Press, ISBN 1-4020-0609-8
  26. Dieudonné, Jean (1989). A History of Algebraic and Differential Topology, 1900–1960. Boston: Birkhäuser. pp. 17–24. ISBN 978-0-8176-3388-2.
  27. See for example: Émile Picard Sur l'application des méthodes d'approximations successives à l'étude de certaines équations différentielles ordinaires Archived 2011-07-16 at the Wayback Machine Journal de Mathématiques p 217 (1893)
  28. J. J. O'Connor E. F. Robertson Piers Bohl
  29. Myskis, A. D.; Rabinovic, I. M. (1955). "Первое доказательство теоремы о неподвижной точке при непрерывном отображении шара в себя, данное латышским математиком П.Г.Болем" [The first proof of a fixed-point theorem for a continuous mapping of a sphere into itself, given by the Latvian mathematician P. G. Bohl]. Успехи математических наук (in русский). 10 (3): 188–192.
  30. J. J. O'Connor E. F. Robertson Luitzen Egbertus Jan Brouwer
  31. Freudenthal, Hans (1975). "ब्रौवर के इनएडिटा के अनुसार, आधुनिक टोपोलॉजी का उद्गम स्थल". Historia Mathematica. 2 (4): 495–502 [p. 495]. doi:10.1016/0315-0860(75)90111-1.
  32. Freudenthal, Hans (1975). "ब्रौवर के इनएडिटा के अनुसार, आधुनिक टोपोलॉजी का उद्गम स्थल". Historia Mathematica. 2 (4): 495–502 [p. 495]. doi:10.1016/0315-0860(75)90111-1. ... cette dernière propriété, bien que sous des hypothèses plus grossières, ait été démontré par H. Poincaré
  33. Freudenthal, Hans (1975). "ब्रौवर के इनएडिटा के अनुसार, आधुनिक टोपोलॉजी का उद्गम स्थल". Historia Mathematica. 2 (4): 495–502 [p. 501]. doi:10.1016/0315-0860(75)90111-1.
  34. If an open subset of a manifold is homeomorphic to an open subset of a Euclidean space of dimension n, and if p is a positive integer other than n, then the open set is never homeomorphic to an open subset of a Euclidean space of dimension p.
  35. J. J. O'Connor E. F. Robertson Luitzen Egbertus Jan Brouwer.
  36. The term algebraic topology first appeared 1931 under the pen of David van Dantzig: J. Miller Topological algebra on the site Earliest Known Uses of Some of the Words of Mathematics (2007)
  37. V. I. Istratescu Fixed Point Theory. An Introduction Kluwer Academic Publishers (new edition 2001) ISBN 1-4020-0301-3.
  38. "... Brouwer's fixed point theorem, perhaps the most important fixed point theorem." p xiii V. I. Istratescu Fixed Point Theory an Introduction Kluwer Academic Publishers (new edition 2001) ISBN 1-4020-0301-3.
  39. E.g.: S. Greenwood J. Cao Brouwer’s Fixed Point Theorem and the Jordan Curve Theorem University of Auckland, New Zealand.
  40. Schauder, J. (1930). "Der Fixpunktsatz in Funktionsräumen". Studia Mathematica. 2: 171–180. doi:10.4064/sm-2-1-171-180.
  41. Kakutani, S. (1941). "ब्राउवर के निश्चित बिंदु प्रमेय का एक सामान्यीकरण". Duke Mathematical Journal. 8 (3): 457–459. doi:10.1215/S0012-7094-41-00838-4.
  42. These examples are taken from: F. Boyer Théorèmes de point fixe et applications CMI Université Paul Cézanne (2008–2009) Archived copy at WebCite (August 1, 2010).
  43. For context and references see the article Hex (board game).
  44. P. Bich Une extension discontinue du théorème du point fixe de Schauder, et quelques applications en économie Archived June 11, 2011, at the Wayback Machine Institut Henri Poincaré, Paris (2007)
  45. For a long explanation, see: Dubucs, J. P. (1988). "L. J. E. Brouwer : Topologie et constructivisme". Revue d'Histoire des Sciences. 41 (2): 133–155. doi:10.3406/rhs.1988.4094.
  46. Later it would be shown that the formalism that was combatted by Brouwer can also serve to formalise intuitionism, with some modifications. For further details see constructive set theory.
  47. H. Scarf found the first algorithmic proof: Voitsekhovskii, M.I. (2001) [1994], "Brouwer theorem", Encyclopedia of Mathematics, EMS Press, ISBN 1-4020-0609-8.
  48. Milnor 1965, pp. 1–19
  49. Teschl, Gerald (2019). "10. The Brouwer mapping degree". रेखीय और अरैखिक कार्यात्मक विश्लेषण में विषय (PDF). Graduate Studies in Mathematics. American Mathematical Society. Archived (PDF) from the original on 2022-10-09. Retrieved 1 February 2022.
  50. Milnor 1978
  51. Madsen & Tornehave 1997, pp. 39–48
  52. Boothby 1971
  53. Boothby 1986
  54. Dieudonné 1982
  55. Hirsch 1988
  56. Kellogg, Li & Yorke 1976.
  57. Chow, Mallet-Paret & Yorke 1978.
  58. Kulpa 1989
  59. David Gale (1979). "हेक्स और ब्रोवर फिक्स्ड-प्वाइंट प्रमेय का खेल". The American Mathematical Monthly. 86 (10): 818–827. doi:10.2307/2320146. JSTOR 2320146.
  60. Hilton & Wylie 1960
  61. Spanier 1966
  62. Eldon Dyer (1956). "एक निश्चित बिंदु प्रमेय". Proceedings of the American Mathematical Society. 7 (4): 662–672. doi:10.1090/S0002-9939-1956-0078693-4.
  63. Nyman, Kathryn L.; Su, Francis Edward (2013), "A Borsuk–Ulam equivalent that directly implies Sperner's lemma", The American Mathematical Monthly, 120 (4): 346–354, doi:10.4169/amer.math.monthly.120.04.346, JSTOR 10.4169/amer.math.monthly.120.04.346, MR 3035127


संदर्भ


बाहरी संबंध