आंतरिक ऊर्जा
| Internal energy | |
|---|---|
सामान्य प्रतीक | U |
| Si इकाई | J |
| SI आधार इकाइयाँ में | m2⋅kg/s2 |
अन्य मात्राओं से व्युत्पत्तियां | |
| थर्मोडायनामिक्स |
|---|
ऊष्मप्रवैगिकी प्रणाली की आंतरिक ऊर्जा उसके अंदर निहित ऊर्जा है। थर्मोडायनामिक प्रणाली में आंतरिक ऊर्जा स्थिर होती है। यह दी गई आंतरिक स्थिति में प्रणाली का निर्माण करने के लिए आवश्यक ऊर्जा है। इसमें पूर्ण प्रणाली की गति की गतिज ऊर्जा सम्मिलित नहीं है, लेकिन इसमें प्रणाली के आतंरिक कणों की गतिज ऊर्जा सम्मिलित है। यह प्रणाली की ऊर्जा के लाभ और हानि का हिसाब रखता है जो इसकी आंतरिक स्थिति में परिवर्तन के कारण होते हैं।[1][2] आंतरिक ऊर्जा को सीधे नहीं मापा जा सकता है। इसे मानक राज्य द्वारा परिभाषित संदर्भ शून्य से अंतर के रूप में मापा जाता है। अंतर थर्मोडायनामिक प्रक्रियाओं द्वारा निर्धारित किया जाता है जो प्रणाली को संदर्भ स्थिति और ब्याज की दी गई स्थिति के मध्य ले जाते हैं।
आंतरिक ऊर्जागहन और व्यापक गुण है। थर्मोडायनामिक प्रक्रियाएं जो आंतरिक ऊर्जा को परिभाषित करती हैं, वे हैं पदार्थ का स्थानांतरण, या ऊर्जा का ऊष्मा के रूप में, या कार्य (ऊष्मप्रवैगिकी) के रूप में।[3] इन प्रक्रियाओं को प्रणाली के व्यापक चर, जैसे एन्ट्रॉपी, वॉल्यूम और रासायनिक संरचना में परिवर्तन द्वारा मापा जाता है। प्रणाली की सभी आंतरिक ऊर्जाओं पर विचार करना प्रायः आवश्यक नहीं होता है, उदाहरण के लिए, इसके घटक पदार्थ की स्थिर विश्राम द्रव्यमान ऊर्जा। जब अभेद्य युक्त दीवारों द्वारा पदार्थ के स्थानांतरण को रोका जाता है, तो प्रणाली को बंद प्रणाली कहा जाता है और थर्मोडायनामिक्स का प्रथम नियम आंतरिक ऊर्जा में परिवर्तन को परिभाषित करता है क्योंकि प्रणाली में गर्मी के रूप में जोड़ा गया ऊर्जा और थर्मोडायनामिक कार्य के मध्य भिन्नता होती है। इसके आसपास की प्रणाली यदि युक्त दीवारें न तो पदार्थ और न ही ऊर्जा से निकलती हैं, तो प्रणाली को अलग-थलग कहा जाता है और इसकी आंतरिक ऊर्जा नहीं परिवर्तित हो सकती है।
इसके अन्य परिभाषित व्यापक राज्य चर के साथ, आंतरिक ऊर्जा प्रणाली की संपूर्ण थर्मोडायनामिक ज्ञानको व्यक्त करती है, और एन्ट्रॉपी के समान प्रतिनिधित्व है, उन व्यापक राज्य चर के कार्डिनल राज्य कार्यों दोनों।[4]इस प्रकार, इसका मूल्य केवल प्रणाली की वर्तमान स्थिति पर निर्भर करता है, न कि कई संभावित प्रक्रियाओं में से विशेष विकल्प पर जिसके द्वारा ऊर्जा प्रणाली से या प्रणाली से निकल सकती है। यह थर्मोडायनामिक क्षमता है। सूक्ष्म रूप से, आंतरिक ऊर्जा का अनुवाद (भौतिकी) , घूर्णन, और दोलन से प्रणाली के कणों की सूक्ष्म गति की गतिज ऊर्जा और रासायनिक बंधनों सहित सूक्ष्म बलों से जुड़ी संभावित ऊर्जा के संदर्भ में किया जा सकता है।
इकाइयों की अंतर्राष्ट्रीय प्रणाली (एसआई) में ऊर्जा की इकाई जूल (J) है। इकाई J/kg वाले द्रव्यमान के सापेक्ष आंतरिक ऊर्जा विशिष्ट आंतरिक ऊर्जा है। इकाई J/मोल (इकाई) के साथ पदार्थ की मात्रा के सापेक्ष संबंधित मात्रा मोलर आंतरिक ऊर्जा है।[5]
मुख्य कार्य
प्रणाली की आंतरिक ऊर्जा इसकी एन्ट्रॉपी एस, इसकी मात्रा वी और इसके बड़े कणों की संख्या पर निर्भर करती है: U(S,V,{Nj}). यह ऊर्जा प्रतिनिधित्व में प्रणाली के ऊष्मप्रवैगिकी को व्यक्त करता है। राज्य समारोह के रूप में, इसके तर्क राज्य के विशेष रूप से व्यापक चर हैं। आंतरिक ऊर्जा के साथ, थर्मोडायनामिक प्रणाली की स्थिति का अन्य कार्डिनल कार्य इसकी एन्ट्रापी है, फ़ंक्शन के रूप में, S(U,V,{Nj}), राज्य के व्यापक चर की सूची में, सिवाय एन्ट्रापी के, S, सूची में आंतरिक ऊर्जा द्वारा प्रतिस्थापित किया जाता है, U. यह एन्ट्रापी प्रतिनिधित्व को व्यक्त करता है।[4][6][7] प्रत्येक कार्डिनल फ़ंक्शन अपने प्रत्येक प्राकृतिक या विहित चर का मोनोटोनिक फ़ंक्शन होता है। प्रत्येक अपनी विशेषता या मौलिक समीकरण प्रदान करता है, उदाहरण के लिए U = U(S,V,{Nj}), जो अपने आप में प्रणाली के बारे में सभी थर्मोडायनामिक जानकारी समाहित करता है। दो कार्डिनल कार्यों के लिए मौलिक समीकरणों को सैद्धांतिक रूप से हल करके परस्पर बदला जा सकता है, उदाहरण के लिए, U = U(S,V,{Nj}) के लिये S, पाने के लिए और S = S(U,V,{Nj}).
इसके विपरीत, अन्य थर्मोडायनामिक क्षमता और मासीयू कार्यों के लिए मौलिक समीकरण प्राप्त करने के लिए लीजेंड्रे ट्रांसफॉर्म आवश्यक हैं। केवल व्यापक राज्य चर के समारोह के रूप में एन्ट्रापी, मासीयू कार्यों की पीढ़ी के लिए राज्य का मात्र कार्डिनल फ़ंक्शन है। यह अपने आप में 'मासीयू समारोह ' के रूप में निर्दिष्ट नहीं है, चूँकि तर्कसंगत रूप से इसे 'थर्मोडायनामिक क्षमता' शब्द के अनुरूप माना जा सकता है, जिसमें आंतरिक ऊर्जा सम्मिलित है।[6][8][9] वास्तविक और व्यावहारिक प्रणालियों के लिए, मौलिक समीकरणों की स्पष्ट अभिव्यक्ति हमेशा अनुपलब्ध होती है, लेकिन कार्यात्मक संबंध सिद्धांत रूप में सम्मिलित होते हैं। औपचारिक, सिद्धांत रूप में, थर्मोडायनामिक्स की समझ के लिए उनमें से जोड़तोड़ मूल्यवान हैं।
विवरण और परिभाषा
आंतरिक ऊर्जा प्रणाली की दी गई स्थिति का निर्धारण प्रणाली की मानक स्थिति के सापेक्ष निर्धारित किया जाता है, ऊर्जा के मैक्रोस्कोपिक हस्तांतरण को जोड़कर जो संदर्भ राज्य से दिए गए राज्य में राज्य के परिवर्तन के साथ होता है:
जहाँ पे दिए गए राज्य की आंतरिक ऊर्जा और संदर्भ राज्य की आंतरिक ऊर्जा के मध्य अंतर को दर्शाता है, और यह संदर्भ राज्य से दिए गए राज्य के चरणों में प्रणाली में स्थानांतरित विभिन्न ऊर्जाएं हैं। यह संदर्भ राज्य से प्रणाली की दी गई स्थिति बनाने के लिए आवश्यक ऊर्जा है। गैर-सापेक्ष सूक्ष्म दृष्टिकोण से, इसे सूक्ष्म संभावित ऊर्जा में विभाजित किया जा सकता है, , और सूक्ष्म गतिज ऊर्जा, , अवयव:
प्रणाली की सूक्ष्म गतिज ऊर्जा केंद्र-द्रव्यमान फ्रेम के संबंध में प्रणाली के सभी कणों की गति के योग के रूप में उत्पन्न होती है, चाहे वह परमाणुओं, अणुओं, परमाणु नाभिक, इलेक्ट्रॉनों या अन्य कणों की गति हो। सूक्ष्म संभावित ऊर्जा बीजीय योगात्मक घटक रासायनिक ऊर्जा और परमाणु संभावित ऊर्जा कण बंधन, और प्रणाली के भीतर भौतिक बल क्षेत्र हैं, जैसे कि आंतरिक इलेक्ट्रोस्टैटिक प्रेरण इलेक्ट्रिक या चुंबकत्व द्विध्रुवीय क्षण (भौतिकी), साथ ही साथ ऊर्जा ठोस (तनाव (भौतिकी) -स्ट्रेन (सामग्री विज्ञान)) के विरूपण (इंजीनियरिंग) की। आमतौर पर, सूक्ष्म गतिज और संभावित ऊर्जाओं में विभाजन मैक्रोस्कोपिक थर्मोडायनामिक्स के पछ से बाहर है।
आंतरिक ऊर्जा में गति या संपूर्ण रूप से प्रणाली की स्थिति के कारण ऊर्जा सम्मिलित नहीं होती है। दूसरे शब्दों में, यह बाहरी गुरुत्वाकर्षण, इलेक्ट्रोस्टाटिक्स , या इलेक्ट्रोमैग्नेटिक्स क्षेत्र (भौतिकी) में गति या स्थान के कारण शरीर की किसी भी गतिज या संभावित ऊर्जा को बाहर कर देता है। चूँक, इसमें क्षेत्र के साथ वस्तु की स्वतंत्रता की आंतरिक डिग्री के युग्मन के कारण ऊर्जा में ऐसे क्षेत्र का योगदान सम्मिलित है। ऐसे विषय में, क्षेत्र को अतिरिक्त बाहरी पैरामीटर के रूप में वस्तु के थर्मोडायनामिक विवरण में सम्मिलित किया जाता है।
ऊष्मप्रवैगिकी या इंजीनियरिंग में व्यावहारिक विचारों के लिए, नमूना प्रणाली की सम्पूर्ण आंतरिक ऊर्जा से संबंधित सभी ऊर्जाओं पर विचार करना शायद ही कभी आवश्यक, सुविधाजनक, और न ही संभव है, जैसे कि द्रव्यमान की तुल्यता द्वारा दी गई ऊर्जा। आमतौर पर, विवरण में केवल अध्ययन के तहत प्रणाली के लिए प्रासंगिक घटक सम्मिलित होते हैं। वास्तव में, विचाराधीन अधिकांश प्रणालियों में, विशेष रूप से ऊष्मागतिकी के माध्यम से, सम्पूर्ण आंतरिक ऊर्जा की गणना करना असंभव है।[10] इसलिए, आंतरिक ऊर्जा के लिए सुविधाजनक शून्य संदर्भ बिंदु चुना जा सकता है।
आंतरिक ऊर्जा व्यापक चर है: यह प्रणाली के आकार पर या इसमें सम्मिलित पदार्थ की मात्रा पर निर्भर करता है।
निरपेक्ष शून्य से अधिक किसी भी तापमान पर, सूक्ष्म स्थितिज ऊर्जा और गतिज ऊर्जा लगातार दूसरे में परिवर्तित हो जाती हैं, लेकिन पृथक प्रणाली (cf. तालिका) में योग स्थिर रहता है। ऊष्मप्रवैगिकी के शास्त्रीय चित्र में, गतिज ऊर्जा शून्य तापमान पर विलुप्त हो जाती है और आंतरिक ऊर्जा विशुद्ध रूप से संभावित ऊर्जा होती है। चूँकि, क्वांटम यांत्रिकी ने प्रदर्शित किया है कि शून्य तापमान पर भी कण गति की अवशिष्ट ऊर्जा, शून्य बिंदु ऊर्जा बनाए रखते हैं। निरपेक्ष शून्य पर प्रणाली केवल अपनी क्वांटम-मैकेनिकल ग्राउंड अवस्था में होती है, जो सबसे कम ऊर्जा अवस्था उपलब्ध होती है। निरपेक्ष शून्य पर दी गई रचना की प्रणाली ने अपनी न्यूनतम प्राप्य एन्ट्रापी प्राप्त कर ली है।
आंतरिक ऊर्जा का सूक्ष्म गतिज ऊर्जा भाग निकाय के तापमान को जन्म देता है। सांख्यिकीय यांत्रिकी व्यक्तिगत कणों की छद्म-यादृच्छिक गतिज ऊर्जा को प्रणाली में सम्मिलित कणों के पूर्ण समूह की औसत गतिज ऊर्जा से संबंधित करता है। इसके अलावा, यह माध्य सूक्ष्म गतिज ऊर्जा को मैक्रोस्कोपिक रूप से देखे गए अनुभवजन्य संपत्ति से संबंधित करता है जिसे प्रणाली के तापमान के रूप में व्यक्त किया जाता है। जबकि तापमान गहन उपाय है, यह ऊर्जा प्रणाली की व्यापक संपत्ति के रूप में अवधारणा को व्यक्त करती है, जिसे प्रायः थर्मल ऊर्जा के रूप में जाना जाता है,[11][12] तापमान और तापीय ऊर्जा के मध्य स्केलिंग गुण प्रणाली का एन्ट्रापी परिवर्तन है।
सांख्यिकीय यांत्रिकी किसी भी प्रणाली को के समूह में सांख्यिकीय रूप से वितरित करने के लिए मानता है माइक्रोस्टेट (सांख्यिकीय यांत्रिकी) । प्रणाली में जो ऊष्मा भंडार के साथ थर्मोडायनामिक संपर्क संतुलन में है, प्रत्येक माइक्रोस्टेट में ऊर्जा होती है और संभावना के साथ जुड़ा हुआ है . आंतरिक ऊर्जा प्रणाली की सम्पूर्ण ऊर्जा का औसत मूल्य है, यानी, सभी माइक्रोस्टेट ऊर्जाओं का योग, प्रत्येक की घटना की संभावना से भारित:
यह ऊर्जा संरक्षण के नियम की सांख्यिकीय अभिव्यक्ति है।
|
आंतरिक ऊर्जा परिवर्तन
ऊष्मप्रवैगिकी मुख्य रूप से आंतरिक ऊर्जा में परिवर्तन से संबंधित है .
बंद प्रणाली के लिए, पदार्थ स्थानांतरण को छोड़कर, आंतरिक ऊर्जा में परिवर्तन गर्मी हस्तांतरण के कारण होते हैं और काम के कारण (ऊष्मप्रवैगिकी) प्रणाली द्वारा अपने परिवेश में किया जाता है।[note 1] तदनुसार, आंतरिक ऊर्जा परिवर्तन प्रक्रिया के लिए लिखा जा सकता है
बंद प्रणाली की आंतरिक ऊर्जा में परिवर्तन का दूसरा प्रकार का तंत्र अपने परिवेश पर कार्य (ऊष्मप्रवैगिकी) करने में है। ऐसा काम केवल यांत्रिक हो सकता है, जैसे कि जब प्रणाली पिस्टन को चलाने के लिए फैलता है, या, उदाहरण के लिए, जब प्रणाली अपने विद्युत ध्रुवीकरण को बदलता है ताकि आसपास के विद्युत क्षेत्र में परिवर्तन हो सके।
यदि प्रणाली बंद नहीं होता है, तो तीसरा तंत्र जो आंतरिक ऊर्जा को बढ़ा सकता है, वह है प्रणाली में पदार्थ का स्थानांतरण। यह वृद्धि, गर्मी और काम के घटकों में विभाजित नहीं किया जा सकता है।[3]यदि प्रणाली को भौतिक रूप से इस तरह से स्थापित किया गया है कि गर्मी हस्तांतरण और वह काम करता है जो पदार्थों के हस्तांतरण से अलग और स्वतंत्र है, तो ऊर्जा के हस्तांतरण आंतरिक ऊर्जा को परिवर्तन करने के लिए जोड़ते हैं:
आदर्श गैस की आंतरिक ऊर्जा
ऊष्मप्रवैगिकी प्रायः शिक्षण उद्देश्यों के लिए आदर्श गैस की अवधारणा का उपयोग करती है, और कार्य प्रणालियों के लिए सन्निकटन के रूप में आदर्श गैस में बिंदु वस्तु के रूप में माने जाने वाले कण होते हैं जो केवल लोचदार टकरावों से बातचीत करते हैं और मात्रा भरते हैं जैसे कि टकराव के मध्य उनका औसत मुक्त पथ उनके व्यास से बहुत बड़ा होता है। इस तरह की प्रणालियाँ हीलियम और अन्य महान गैसों जैसे मोनोएटोमिक गैसों का अनुमान लगाती हैं। आदर्श गैस के लिए गतिज ऊर्जा में केवल व्यक्तिगत परमाणुओं की अनुवाद (भौतिकी) ऊर्जा होती है। परमाणुक कणों में स्वतंत्रता की घूर्णी या कंपन डिग्री नहीं होती है, और बहुत उच्च तापमान को छोड़कर उच्च ऊर्जा के लिए ऊर्जा स्तर नहीं होते हैं।
इसलिए, आदर्श गैस की आंतरिक ऊर्जा पूरी तरह से उसके तापमान (और गैस कणों की संख्या) पर निर्भर करती है: . यह अन्य थर्मोडायनामिक मात्राओं जैसे दबाव या घनत्व पर निर्भर नहीं है।
आदर्श गैस की आंतरिक ऊर्जा उसके द्रव्यमान (मोलों की संख्या) के समानुपाती होती है और इसके तापमान के लिए
कहाँ पे गैस की दाढ़ ताप क्षमता (स्थिर आयतन पर) है। आदर्श गैस के लिए स्थिर है। किसी भी गैस की आंतरिक ऊर्जा (आदर्श या नहीं) को तीन व्यापक गुणों के फलन के रूप में लिखा जा सकता है , , (एन्ट्रापी, आयतन, द्रव्यमान) निम्नलिखित तरीके से [13]
कहाँ पे मनमाना सकारात्मक स्थिरांक है और जहां गैस स्थिरांक है। यह आसानी से देखा जाता है कि तीन चरों का रैखिक रूप से सजातीय कार्य है (अर्थात, यह इन चरों में व्यापक है), और यह कि यह कमजोर रूप से उत्तल कार्य है। तापमान और दबाव को व्युत्पन्न होने के बारे में जानना
आदर्श गैस कानून तुरंत अनुसरण करता है।
बंद थर्मोडायनामिक प्रणाली की आंतरिक ऊर्जा
आंतरिक ऊर्जा में परिवर्तन के सभी घटकों का उपरोक्त योग मानता है कि सकारात्मक ऊर्जा प्रणाली में गर्मी या उसके आसपास के प्रणाली द्वारा किए गए कार्य के नकारात्मक को दर्शाती है।[note 1]
इस संबंध को प्रत्येक पद के अंतरों का उपयोग करके अपरिमित शब्दों में व्यक्त किया जा सकता है, चूँकि केवल आंतरिक ऊर्जा हीसटीक अंतर है।[14]: 33 बंद प्रणाली के लिए, केवल गर्मी और कार्य के रूप में स्थानान्तरण के साथ, आंतरिक ऊर्जा में परिवर्तन होता है
ऊष्मप्रवैगिकी के पहले नियम को व्यक्त करना। इसे अन्य थर्मोडायनामिक मापदंडों के संदर्भ में व्यक्त किया जा सकता है। प्रत्येक पद गहन चर ( सामान्यीकृत बल) और इसके संयुग्म चर (ऊष्मप्रवैगिकी) अनंतिम व्यापक चर ( सामान्यीकृत विस्थापन) से बना है।
उदाहरण के लिए, प्रणाली द्वारा किया गया यांत्रिक कार्य दबाव से संबंधित हो सकता है और आयतन (ऊष्मप्रवैगिकी) परिवर्तन . दबाव गहन सामान्यीकृत बल है, जबकि मात्रा परिवर्तन व्यापक सामान्यीकृत विस्थापन है:
यह काम की दिशा को परिभाषित करता है, , सकारात्मक शब्द द्वारा इंगित कार्य प्रणाली से परिवेश में ऊर्जा हस्तांतरण होना।[note 1]गर्मी हस्तांतरण की दिशा लेना काम कर रहे तरल पदार्थ में होना और प्रतिवर्ती प्रक्रिया (ऊष्मप्रवैगिकी) मानते हुए, गर्मी है
कहाँ पे तापमान को दर्शाता है, और एन्ट्रापी को दर्शाता है।
आंतरिक ऊर्जा में परिवर्तन हो जाता है
तापमान और आयतन के कारण परिवर्तन
तापमान और आयतन में परिवर्तन के लिए आंतरिक ऊर्जा में परिवर्तन से संबंधित अभिव्यक्ति है
|
(1) |
यह उपयोगी है यदि राज्य का समीकरण ज्ञात हो।
आदर्श गैस के विषय में, हम यह प्राप्त कर सकते हैं कि अर्थात् आदर्श गैस की आंतरिक ऊर्जा को फलन के रूप में लिखा जा सकता है जो केवल तापमान पर निर्भर करता है।
तापमान और आयतन में परिवर्तन के लिए आंतरिक ऊर्जा में परिवर्तन से संबंधित अभिव्यक्ति है
राज्य का समीकरण आदर्श गैस नियम है
दबाव के लिए हल करें:
आंतरिक ऊर्जा अभिव्यक्ति में बदलें:
तापमान के संबंध में दबाव का व्युत्पन्न लें:
बदलने के:
और सरल करें:
ज़ाहिर करना के अनुसार तथा , शब्द
मौलिक थर्मोडायनामिक संबंध में प्रतिस्थापित किया गया है
यह देता है
शब्द विशिष्ट ऊष्मा क्षमता है#संकुचित पिंडों की ऊष्मा क्षमता का आंशिक व्युत्पन्न इसके संबंध में यदि राज्य का समीकरण ज्ञात हो तो मूल्यांकन किया जा सकता है। मौलिक थर्मोडायनामिक संबंध से, यह निम्नानुसार है कि हेल्महोल्ट्ज़ मुक्त ऊर्जा का अंतर द्वारा दिया गया है
के दूसरे डेरिवेटिव की समरूपता इसके संबंध में तथा मैक्सवेल संबंध उत्पन्न करता है:
यह उपरोक्त अभिव्यक्ति देता है।
तापमान और दबाव के कारण परिवर्तन
तरल पदार्थ या ठोस पर विचार करते समय, तापमान और दबाव के संदर्भ में अभिव्यक्ति सामान्यतः अधिक उपयोगी होती है:
जहां यह माना जाता है कि निरंतर दबाव पर ताप क्षमता विशिष्ट तापों के मध्य स्थिर मात्रा में ताप क्षमता के मध्य संबंध है
स्थिर आयतन पर तापमान के संबंध में दबाव का आंशिक व्युत्पन्न थर्मल विस्तार के गुणांक के रूप में व्यक्त किया जा सकता है
और इज़ोटेर्मल संपीड्यता
लेखन से
|
(2) |
और dV को शून्य के बराबर करना और dP/dT के अनुपात को हल करना। यह देता है {{NumBlk||Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Expected [, ;!_#%$&], [a-zA-Z], or [{}|] but "ब" found.in 1:105"): \left(\frac{\partial P}{\partial T}\right)_{V}= -\frac{\left(\frac{\partial V}{\partial T}\right)_{P}}{\बाएं(\frac{\आंशिक वी}{\आंशिक पी}\दाएं)_{टी}}= \frac{\alpha}{\beta_{T}}. </गणित>|{{EquationRef|3}}}} प्रतिस्थापन ({{EquationNote|2}}) तथा ({{EquationNote|3}}) में ({{EquationNote|1}}) उपरोक्त अभिव्यक्ति देता है। {{hidden end}} === स्थिर तापमान पर आयतन के कारण परिवर्तन === [[ आंतरिक दबाव ]] को स्थिर तापमान पर आयतन के संबंध में आंतरिक ऊर्जा के [[ आंशिक व्युत्पन्न ]] के रूप में परिभाषित किया गया है: :<math> \pi _T = \left ( \frac{\partial U}{\partial V} \right )_T.
बहु-घटक प्रणालियों की आंतरिक ऊर्जा
This section does not cite any sources. (November 2015) (Learn how and when to remove this template message) |
एन्ट्रापी को शामिल करने के अलावा और मात्रा आंतरिक ऊर्जा के संदर्भ में, एक प्रणाली को अक्सर कणों या रासायनिक प्रजातियों की संख्या के संदर्भ में भी वर्णित किया जाता है:
कहाँ पे प्रकार के घटकों की दाढ़ राशि हैं प्रणाली में। आंतरिक ऊर्जा व्यापक चरों का एक व्यापक परिवर्तनशील फलन है , , और मात्रा , आंतरिक ऊर्जा को पहली डिग्री के रैखिक रूप से सजातीय कार्य के रूप में लिखा जा सकता है:[15]
कहाँ पे प्रणाली के विकास का वर्णन करने वाला एक कारक है। अंतर आंतरिक ऊर्जा के रूप में लिखा जा सकता है
जो तापमान दिखाता है (या परिभाषित करता है) का आंशिक व्युत्पन्न होना एन्ट्रापी के संबंध में और दबाव आयतन के संबंध में समान व्युत्पन्न का ऋणात्मक होना ,
और जहां गुणांक प्रकार के घटकों के लिए रासायनिक क्षमता एं हैं प्रणाली में। रासायनिक क्षमता को संरचना में भिन्नता के संबंध में ऊर्जा के आंशिक व्युत्पन्न के रूप में परिभाषित किया गया है:
रचना के संयुग्म चर के रूप में , रासायनिक क्षमताएं गहन और व्यापक गुण हैं, आंतरिक रूप से प्रणाली की गुणात्मक प्रकृति की विशेषता है, और इसकी सीमा के समानुपाती नहीं है। स्थिर की शर्तों के तहत तथा , की व्यापक प्रकृति के कारण और इसके स्वतंत्र चर, सजातीय फलन का उपयोग करते हुए|यूलर के समांगी फलन प्रमेय, अंतर एकीकृत किया जा सकता है और आंतरिक ऊर्जा के लिए एक अभिव्यक्ति उत्पन्न करता है:
प्रणाली की संरचना का योग गिब्स मुक्त ऊर्जा है:
जो स्थिर तापमान और दबाव पर सिस्टम की संरचना को बदलने से उत्पन्न होता है। एकल घटक प्रणाली के लिए, रासायनिक क्षमता पदार्थ की प्रति मात्रा में गिब्स ऊर्जा के बराबर होती है, अर्थात कण या मोल के लिए इकाई की मूल परिभाषा के अनुसार .
लोचदार माध्यम में आंतरिक ऊर्जा
एक लोच (भौतिकी) माध्यम के लिए आंतरिक ऊर्जा की यांत्रिक ऊर्जा अवधि को तनाव (भौतिकी) के रूप में व्यक्त किया जाता है और तनाव लोचदार प्रक्रियाओं में शामिल। टेंसर के लिए आइंस्टीन संकेतन में, दोहराए गए सूचकांकों पर योग के साथ, यूनिट वॉल्यूम के लिए, इनफिनिटिमल स्टेटमेंट है
आंतरिक ऊर्जा के लिए यूलर की प्रमेय पैदावार:[16]
रैखिक रूप से लोचदार सामग्री के लिए, तनाव तनाव से संबंधित है
जहां माध्यम के चौथे क्रम के लोचदार निरंतर टेंसर के घटक हैं।
लोचदार विकृतियाँ, जैसे ध्वनि , किसी पिंड से होकर गुजरना, या मैक्रोस्कोपिक आंतरिक आंदोलन या अशांत गति के अन्य रूप ऐसे राज्य बनाते हैं जब सिस्टम थर्मोडायनामिक संतुलन में नहीं होता है। जबकि गति की ऐसी ऊर्जाएं जारी रहती हैं, वे प्रणाली की कुल ऊर्जा में योगदान करती हैं; थर्मोडायनामिक आंतरिक ऊर्जा केवल तभी संबंधित होती है जब ऐसी गतियां समाप्त हो जाती हैं।
इतिहास
जेम्स प्रेस्कॉट जूल ने गर्मी, काम और तापमान के बीच संबंधों का अध्ययन किया। उन्होंने देखा कि एक तरल में घर्षण, जैसे कि पैडल व्हील द्वारा काम के साथ इसके आंदोलन के कारण, इसके तापमान में वृद्धि हुई, जिसे उन्होंने गर्मी की मात्रा का उत्पादन करने के रूप में वर्णित किया। आधुनिक इकाइयों में व्यक्त, उन्होंने पाया कि c. एक किलोग्राम पानी का तापमान एक डिग्री सेल्सियस बढ़ाने के लिए 4186 जूल ऊर्जा की आवश्यकता थी।[17]
टिप्पणियाँ
- ↑ 1.0 1.1 1.2 This article uses the sign convention of the mechanical work as usually defined in physics, which is different from the convention used in chemistry. In chemistry, work performed by the system against the environment, e.g., a system expansion, is negative, while in physics this is taken to be positive.
यह भी देखें
- उष्मामिति
- तापीय धारिता
- ऊर्जा
- ऊष्मप्रवैगिकी समीकरण
- ऊष्मप्रवैगिकी क्षमता
- गिब्स फ्री एनर्जी
- हेल्महोल्ट्ज़ मुक्त ऊर्जा
संदर्भ
- ↑ Crawford, F. H. (1963), pp. 106–107.
- ↑ Haase, R. (1971), pp. 24–28.
- ↑ 3.0 3.1 Born, M. (1949), Appendix 8, pp. 146–149.
- ↑ 4.0 4.1 Tschoegl, N.W. (2000), p. 17.
- ↑ International Union of Pure and Applied Chemistry. Physical and Biophysical Chemistry Division (2007). Quantities, units, and symbols in physical chemistry (PDF) (3rd ed.). Cambridge, UK: RSC Pub. ISBN 978-1-84755-788-9. OCLC 232639283.
- ↑ 6.0 6.1 Callen, H.B. (1960/1985), Chapter 5.
- ↑ Münster, A. (1970), p. 6.
- ↑ Münster, A. (1970), Chapter 3.
- ↑ Bailyn, M. (1994), pp. 206–209.
- ↑ I. Klotz, R. Rosenberg, Chemical Thermodynamics - Basic Concepts and Methods, 7th ed., Wiley (2008), p.39
- ↑ Leland, T. W. Jr., Mansoori, G. A., pp. 15, 16.
- ↑ Thermal energy – Hyperphysics.
- ↑ van Gool, W.; Bruggink, J.J.C., eds. (1985). Energy and time in the economic and physical sciences. North-Holland. pp. 41–56. ISBN 978-0444877482.
- ↑ Adkins, C. J. (Clement John) (1983). Equilibrium thermodynamics (3rd ed.). Cambridge [Cambridgeshire]: Cambridge University Press. ISBN 0-521-25445-0. OCLC 9132054.
- ↑ Landau, Lev Davidovich; Lifshit︠s︡, Evgeniĭ Mikhaĭlovich; Pitaevskiĭ, Lev Petrovich; Sykes, John Bradbury; Kearsley, M. J. (1980). Statistical physics. Oxford. p. 70. ISBN 0-08-023039-3. OCLC 3932994.
{{cite book}}: CS1 maint: location missing publisher (link) - ↑ Landau & Lifshitz 1986, p. 8.
- ↑ Joule, J.P. (1850). "On the Mechanical Equivalent of Heat". Philosophical Transactions of the Royal Society. 140: 61–82. doi:10.1098/rstl.1850.0004.
उद्धृत संदर्भों की ग्रंथ सूची
- एडकिंस, सी.जे. (1968/1975)। इक्विलिब्रियम थर्मोडायनामिक्स, दूसरा संस्करण, मैकग्रा-हिल, लंदन, ISBN 0-07-084057-1.
- बैलिन, एम। (1994)। थर्मोडायनामिक्स का एक सर्वेक्षण, अमेरिकन इंस्टीट्यूट ऑफ फिजिक्स प्रेस, न्यूयॉर्क, ISBN 0-88318-797-3.
- मैक्स बॉर्न | बॉर्न, एम। (1949)। नेचुरल फिलॉसफी ऑफ कॉज एंड चांस, ऑक्सफोर्ड यूनिवर्सिटी प्रेस, लंदन।
- कॉलन, एच.बी. (1960/1985), थर्मोडायनामिक्स और थर्मोस्टैटिस्टिक्स का एक परिचय, (पहला संस्करण 1960), दूसरा संस्करण 1985, जॉन विले एंड संस, न्यूयॉर्क, ISBN 0-471-86256-8.
- क्रॉफर्ड, एफ.एच. (1963)। हीट, थर्मोडायनामिक्स और स्टैटिस्टिकल फिजिक्स, रूपर्ट हार्ट-डेविस, लंदन, हरकोर्ट, ब्रेस एंड वर्ल्ड, इंक।
- हासे, आर। (1971)। मौलिक कानूनों का सर्वेक्षण, ऊष्मागतिकी का अध्याय 1, खंड 1 के पृष्ठ 1-97, संस्करण। डब्ल्यू जोस्ट, भौतिक रसायन विज्ञान के। एक उन्नत ग्रंथ, एड। एच. आयरिंग, डी. हेंडरसन, डब्ल्यू. जोस्ट, अकादमिक प्रेस, न्यूयॉर्क, एलसीएन 73-117081।
- Thomas W. Leland Jr., G. A. Mansoori (ed.), Basic Principles of Classical and Statistical Thermodynamics (PDF).
- Landau, L. D.; Lifshitz, E. M. (1986). Theory of Elasticity (Course of Theoretical Physics Volume 7). (Translated from Russian by J. B. Sykes and W. H. Reid) (Third ed.). Boston, MA: Butterworth Heinemann. ISBN 978-0-7506-2633-0.
- मुंस्टर, ए। (1970), क्लासिकल थर्मोडायनामिक्स, ई.एस. हैल्बरस्टैड द्वारा अनुवादित, विले-इंटरसाइंस, लंदन, ISBN 0-471-62430-6.
- मैक्स प्लैंक | प्लैंक, एम।, (1923/1927)। थर्मोडायनामिक्स पर ग्रंथ, ए ओग द्वारा अनुवादित, तीसरा अंग्रेजी संस्करण, लॉन्गमैन | लॉन्गमैन, ग्रीन एंड कंपनी, लंदन।
- त्सोएगल, एन.डब्ल्यू. (2000)। संतुलन और स्थिर-राज्य थर्मोडायनामिक्स के मूल सिद्धांत, एल्सेवियर, एम्स्टर्डम, ISBN 0-444-50426-5.
इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची
- गर्मी
- राज्य समारोह
- ऊष्मप्रवैगिकी का पहला नियम
- रासायनिक बन्ध
- रोटेशन
- कंपन
- जौल
- तिल (इकाई)
- पल (भौतिकी)
- आकर्षण-शक्ति
- तनाव (सामग्री विज्ञान)
- अलग निकाय
- परम शुन्य
- अर्थ
- अव्यक्त गर्मी
- मुक्त पथ मतलब
- नोबल गैस
- बहुत छोता
- वॉल्यूम (ऊष्मप्रवैगिकी)
- स्थिति के समीकरण
- विशिष्ट ऊष्माओं के बीच संबंध
- ताप विस्तार प्रसार गुणांक
- दबाव
- थर्मोडायनामिक समीकरण
- थर्मोडायनामिक क्षमता
ग्रन्थसूची
- Alberty, R. A. (2001). "Use of Legendre transforms in chemical thermodynamics" (PDF). Pure Appl. Chem. 73 (8): 1349–1380. doi:10.1351/pac200173081349. S2CID 98264934.
- Lewis, Gilbert Newton; Randall, Merle: Revised by Pitzer, Kenneth S. & Brewer, Leo (1961). Thermodynamics (2nd ed.). New York, NY USA: McGraw-Hill Book Co. ISBN 978-0-07-113809-3.
{{cite book}}: CS1 maint: multiple names: authors list (link)