लैगुएरे बहुपद

From Vigyanwiki
Revision as of 23:01, 16 March 2023 by alpha>Poonam Singh
File:Complex color plot of the Laguerre polynomial L n(x) with n as -1 divided by 9 and x as z to the power of 4 from -2-2i to 2+2i.svg
लैगुएरे बहुपद L n(x) के जटिल रंग प्लॉट को -1 के रूप में विभाजित किया गया 9 और x के रूप में z से 4 की घात -2-2i से 2+2i तक

गणित में, एडमंड लैगुएरे (1834-1886) के नाम पर लैगुएरे बहुपद, मुख्य रूप से लैगुएरे के अंतर समीकरण के मान को प्रदर्शित करता हैं:

जो द्वितीय कोटि के रेखीय अवकल समीकरण को प्रदर्शित करता हैं। इस प्रकार यदि n गैर-ऋणात्मक पूर्णांक हो तब इस समीकरण का केवल ऐकक मान होता है। कभी-कभी लैगुएरे बहुपद नाम का उपयोग मान प्राप्त करने के लिए किया जाता है
जहाँ n गैर-ऋणात्मक पूर्णांक है।


इस प्रकार इन्हें सामान्यीकृत लैगुएरे बहुपद भी नाम दिया गया है, जैसा कि यहाँ पर इसका उपयोग करके दिखाया गया हैं। (वैकल्पिक रूप से जुड़े लैगुएरे बहुपद या, संभवतः ही कभी सोनिन बहुपद उनके आविष्कार के बाद निकोलाई याकोवलेविच सोनिन का उपयोग किया था।[1]

अधिक सामान्य लैगुएरे फ़ंक्शन के कुछ मान होते है, इस प्रकार जब n आवश्यक रूप से गैर-ऋणात्मक पूर्णांक नहीं होते हैं। तब लैगुएरे बहुपदों का उपयोग गॉसियन चतुर्भुज के रूप में संख्यात्मक रूप से पूर्णांकों की गणना करने के लिए किया जाता है।

ये बहुपद सामान्यतः L0L1, …, बहुपद अनुक्रम द्वारा निरूपित होते हैं जिसे रॉड्रिक्स सूत्र द्वारा परिभाषित किया जा सकता है,
निम्नलिखित खंड के बंद प्रारूप का कम उपयोग किया जाता हैं। वे आंतरिक उत्पाद के संबंध में ओर्थोगोनल बहुपद को प्रकट करते हैं।
लैगुएरे बहुपदों का क्रम n! Ln शेफ़र अनुक्रम है,
कॉम्बिनेटरिक्स में किश्ती बहुपद कमोबेश लैगुएरे बहुपद के समान हैं, इस प्रकार वैरियेबल के प्राथमिक परिवर्तन तक इसे आगे के ट्रिकोमी-कार्लिट्ज़ बहुपद के रूप में उपयोग किया जाता हैं।
एक इलेक्ट्रॉन परमाणु के लिए श्रोडिंगर समीकरण के मान के रेडियल भाग में लैगुएरे बहुपद क्वांटम यांत्रिकी में उत्पन्न होते हैं। वे फेज स्पेस सूत्र साधारण हार्मोनिक ऑसिलेटर में ऑसिलेटर प्रणाली के स्टैटिक विग्नर फंक्शन्स को भी वर्णन करते हैं। इस प्रकार मोर्स क्षमता और क्वांटम हार्मोनिक ऑसिलेटर उदाहरण के क्वांटम यांत्रिकी में प्रवेश करते हैं, जिसे 3 डी आइसोट्रोपिक हार्मोनिक ऑसिलेटर के रूप में प्रदर्शित किया जाता हैं। भौतिक विज्ञान कभी-कभी लैगुएरे बहुपदों के लिए परिभाषा का उपयोग करते हैं जो n! के गुणक द्वारा यहां उपयोग की गई परिभाषा से बड़ी होती है। (इसी प्रकार कुछ भौतिक विज्ञान तथाकथित संबंधित लैगुएरे बहुपदों की कुछ भिन्न परिभाषाओं का उपयोग करते हैं।)

पहले कुछ बहुपद

ये पहले कुछ लैगुएरे बहुपद हैं:

n
0
1
2
3
4
5
6
n
Error creating thumbnail:
पहले छह लैगुएरे बहुपद।

रिकर्सिव डेफिनिशन, क्लोज्ड फॉर्म और जनरेटिंग फंक्शन

पहले दो बहुपदों को परिभाषित करते हुए लैगुएरे बहुपदों को पुनरावर्ती रूप से भी परिभाषित किया जा सकता है

और फिर किसी भी के लिए निम्नलिखित ओर्थोगोनल बहुपद पुनरावृत्ति संबंधों का उपयोग करना k ≥ 1:
इसी प्रकार आगे के मान इस प्रकार होंगे।
कुछ सीमा तक प्राप्त होने वाले मानों से उत्पन्न होने वाली समस्याओं के मान में विशेष रूप से कुछ मान उपयोगी होते हैं:
इस प्रकार यह क्लोज्ड प्रारूप को प्रदर्शित करते हैं।
इनके लिए जनरेटिंग फ़ंक्शन भी इसी प्रकार है,
ऋणात्मक सूचकांक के बहुपदों को धनात्मक सूचकांक वाले लोगों का उपयोग करके व्यक्त किया जा सकता है:

बाइनरी फ़ंक्शंस से संबंध

बाइनरी विस्तार से संबंधित कार्यों का उपयोग करके लैगुएरे बहुपदों को सेट करने की विधि है :

यहाँ
साथ में माना जाता हैं।
यहाँ A007814 है और A347204 का सामान्यीकरण है।

सामान्यीकृत लैगुएरे बहुपद

वास्तविक α का मान प्राप्त करने के लिए अंतर समीकरण के बहुपद मान सेट किया जाता हैं।[2]

सामान्यीकृत लैगुएरे बहुपद कहलाते हैं, या संबंधित लैगुएरे बहुपद कहलाते हैं।
पहले दो बहुपदों को परिभाषित करते हुए सामान्यीकृत लेगुएरे बहुपदों को पुनरावर्ती रूप से भी परिभाषित किया जा सकता है
और फिर किसी भी के लिए निम्नलिखित ओर्थोगोनल बहुपद पुनरावृत्ति संबंधों का उपयोग करता हैं जिसके लिए k ≥ 1 का मान सेट किया जाता हैं:
सरल लैगुएरे बहुपद विशेष स्थितियाँ हैं जहाँ पर α = 0 सामान्यीकृत लैगुएरे बहुपद हैं:
उनके लिए रोड्रिग्स सूत्र है
उनके लिए जनरेटिंग फंक्शन है

Error creating thumbnail:
पहले कुछ सामान्यीकृत लैगुएरे बहुपद, Ln(k)(x)

सामान्यीकृत लैगुएरे बहुपद के स्पष्ट उदाहरण और गुण

  • लैगुएरे फ़ंक्शंस को संगम हाइपरज्यामितीय फंक्शन और कुमेर के परिवर्तन के रूप में परिभाषित किया गया है[3]
    जहाँ सामान्यीकृत द्विपद गुणांक है। जिसमें n पूर्णांक होते है जो फ़ंक्शन डिग्री के बहुपद n तक कम हो जाता है, इसकी वैकल्पिक अभिव्यक्ति भी की जाती है[4]
    कंफ्लुएंट हाइपरज्यामेट्रिक फ़ंक्शन के संदर्भ में या दूसरा फ़ंक्शन उपयोग में लाया जाता हैं।
  • डिग्री के इन सामान्यीकृत लैगुएरे बहुपदों के लिए बंद रूप n है[5]
    लीबनिज नियम (सामान्यीकृत उत्पाद नियम) लागू करके प्राप्त किया गया जाता हैं, रोड्रिग्स के फार्मूले से उत्पाद के विभेदन के लिए लाइबनिज की प्रमेय होती हैं।
  • लैगुएरे बहुपदों में विभेदक संकारक प्रतिनिधित्व होता है, जो बहुत निकट से संबंधित हर्मिट बहुपदों की तरह होता है। अर्थात् और अंतर ऑपरेटर पर विचार करें, तब का मान होता हैं।
  • पहले कुछ सामान्यीकृत लैगुएरे बहुपद हैं:
  • अग्रणी पद का गुणांक है (−1)n/n!;
  • स्थिर पद, जिसका मान 0 है, है
  • यदि α गैर-ऋणात्मक है, तो Ln(α) में n वास्तविक संख्या होती हैं, फ़ंक्शन का धनात्मक रूट (ध्यान दें कि स्टर्म श्रृंखला है), जो सभी अंतराल (गणित) में हैं
  • इसमें से बड़े मान के लिए बहुपदों का स्पर्शोन्मुख मान n होता हैं, किन्तु α और x > 0, द्वारा दिया गया है [6][7] और संक्षेप में
    जहाँ बेसेल फ़ंक्शन असिम्प्टोटिक रूप है।

एक समोच्च अभिन्न के रूप में

ऊपर निर्दिष्ट जनरेटिंग फ़ंक्शन को देखते हुए, बहुपदों को समोच्च अभिन्न के रूप में व्यक्त किया जा सकता है

जहां समोच्च 1 पर आवश्यक विलक्षणता को बंद किए बिना वामावर्त दिशा में बार मूल को घेरता है

पुनरावृत्ति संबंध

लैगुएरे बहुपदों के लिए अतिरिक्त सूत्र:[8]

लैगुएरे के बहुपद पुनरावर्तन संबंधों को संतुष्ट करते हैं
विशेष रूप से
और
या
इसके अतिरिक्त
उनका उपयोग चार 3-बिंदु-नियमों को प्राप्त करने के लिए किया जा सकता है