लैगुएरे बहुपद

From Vigyanwiki
Revision as of 16:54, 3 March 2023 by alpha>Indicwiki (Created page with "File:Complex color plot of the Laguerre polynomial L n(x) with n as -1 divided by 9 and x as z to the power of 4 from -2-2i to 2+2i.svg|alt=Complex color plot of the Laguerr...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
File:Complex color plot of the Laguerre polynomial L n(x) with n as -1 divided by 9 and x as z to the power of 4 from -2-2i to 2+2i.svg
लैगुएरे बहुपद L n(x) के जटिल रंग प्लॉट को -1 के रूप में विभाजित किया गया 9 और x के रूप में z से 4 की घात -2-2i से 2+2i तक

गणित में, एडमंड लागुएरे (1834-1886) के नाम पर लैगुएरे बहुपद, लैगुएरे के अंतर समीकरण के समाधान हैं:

जो एक द्वितीय कोटि का रेखीय अवकल समीकरण है। इस समीकरण का केवल एकवचन समाधान है यदि n एक गैर-ऋणात्मक पूर्णांक है।

कभी-कभी लैगुएरे बहुपद नाम का उपयोग समाधान के लिए किया जाता है

कहाँ n अभी भी एक गैर-ऋणात्मक पूर्णांक है। फिर उन्हें सामान्यीकृत लैगुएरे बहुपद भी नाम दिया गया है, जैसा कि यहां किया जाएगा (वैकल्पिक रूप से जुड़े लैगुएरे बहुपद या, शायद ही कभी, सोनिन बहुपद, उनके आविष्कारक के बाद[1] निकोलाई याकोवलेविच सोनिन)।

अधिक आम तौर पर, लैगुएरे फ़ंक्शन एक समाधान होता है जब n आवश्यक रूप से एक गैर-ऋणात्मक पूर्णांक नहीं है।

लैगुएरे बहुपदों का उपयोग गॉसियन चतुर्भुज के रूप में संख्यात्मक रूप से पूर्णांकों की गणना करने के लिए किया जाता है

ये बहुपद, आमतौर पर निरूपित होते हैं L0L1, …, एक बहुपद अनुक्रम है जिसे रोड्रिग्स सूत्र#रॉड्रिक्स सूत्र द्वारा परिभाषित किया जा सकता है,

निम्नलिखित खंड के बंद रूप को कम करना।

वे एक आंतरिक उत्पाद के संबंध में ओर्थोगोनल बहुपद हैं

लैगुएरे बहुपदों का क्रम n! Ln एक शेफ़र अनुक्रम है,
कॉम्बिनेटरिक्स में किश्ती बहुपद कमोबेश लैगुएरे बहुपद के समान हैं, चर के प्राथमिक परिवर्तन तक। आगे ट्रिकोमी-कार्लिट्ज़ बहुपद देखें।

एक-इलेक्ट्रॉन परमाणु के लिए श्रोडिंगर समीकरण के समाधान के रेडियल भाग में लैगुएरे बहुपद क्वांटम यांत्रिकी में उत्पन्न होते हैं। वे फेज स्पेस फॉर्म्युलेशन # सिंपल हार्मोनिक ऑसिलेटर में ऑसिलेटर सिस्टम के स्टैटिक विग्नर फंक्शन्स का भी वर्णन करते हैं। वे आगे मोर्स क्षमता और क्वांटम हार्मोनिक ऑसिलेटर # उदाहरण के क्वांटम यांत्रिकी में प्रवेश करते हैं: 3 डी आइसोट्रोपिक हार्मोनिक ऑसिलेटर।

भौतिक विज्ञानी कभी-कभी लैगुएरे बहुपदों के लिए एक परिभाषा का उपयोग करते हैं जो n! के गुणक द्वारा यहां उपयोग की गई परिभाषा से बड़ी होती है। (इसी तरह, कुछ भौतिक विज्ञानी तथाकथित संबंधित लैगुएरे बहुपदों की कुछ भिन्न परिभाषाओं का उपयोग कर सकते हैं।)

पहले कुछ बहुपद

ये पहले कुछ लैगुएरे बहुपद हैं:

n
0
1
2
3
4
5
6
n
File:Laguerre poly.svg
पहले छह लैगुएरे बहुपद।

रिकर्सिव डेफिनिशन, क्लोज्ड फॉर्म और जनरेटिंग फंक्शन

पहले दो बहुपदों को परिभाषित करते हुए लैगुएरे बहुपदों को पुनरावर्ती रूप से भी परिभाषित किया जा सकता है

और फिर किसी भी के लिए निम्नलिखित ओर्थोगोनल बहुपद#पुनरावृत्ति संबंधों का उपयोग करना k ≥ 1:
आगे,
कुछ सीमा मान समस्याओं के समाधान में, विशेषता मान उपयोगी हो सकते हैं:
बंद रूप है
उनके लिए जनरेटिंग फ़ंक्शन भी इसी प्रकार है,

नकारात्मक सूचकांक के बहुपदों को सकारात्मक सूचकांक वाले लोगों का उपयोग करके व्यक्त किया जा सकता है:


बाइनरी फ़ंक्शंस से संबंध

बाइनरी विस्तार से संबंधित कार्यों का उपयोग करके लैगुएरे बहुपदों को सेट करने की एक विधि है :

यहाँ
साथ .

भी

यहाँ है A007814 और का सामान्यीकरण है A347204.

सामान्यीकृत लैगुएरे बहुपद

मनमाना वास्तविक α के लिए अंतर समीकरण के बहुपद समाधान[2]

सामान्यीकृत लैगुएरे बहुपद कहलाते हैं, या संबंधित लैगुएरे बहुपद कहलाते हैं।

पहले दो बहुपदों को परिभाषित करते हुए सामान्यीकृत लेगुएरे बहुपदों को पुनरावर्ती रूप से भी परिभाषित किया जा सकता है

और फिर किसी भी के लिए निम्नलिखित ओर्थोगोनल बहुपद#पुनरावृत्ति संबंधों का उपयोग करना k ≥ 1:
सरल लैगुएरे बहुपद विशेष मामले हैं α = 0 सामान्यीकृत लैगुएरे बहुपद:
उनके लिए रोड्रिग्स सूत्र है
उनके लिए जनरेटिंग फंक्शन है

File:Zugeordnete Laguerre-Polynome.svg
पहले कुछ सामान्यीकृत लागुएरे बहुपद, Ln(k)(x)

=== सामान्यीकृत लैगुएरे बहुपद === के स्पष्ट उदाहरण और गुण

  • लैगुएरे फ़ंक्शंस को संगम हाइपरज्यामितीय समारोह और कुमेर के परिवर्तन के रूप में परिभाषित किया गया है[3]
    कहाँ सामान्यीकृत द्विपद गुणांक है। कब n एक पूर्णांक है जो फ़ंक्शन डिग्री के बहुपद तक कम हो जाता है n. इसकी वैकल्पिक अभिव्यक्ति है[4]
    कंफ्लुएंट हाइपरज्यामेट्रिक फ़ंक्शन के संदर्भ में | दूसरी तरह का कुमार का फ़ंक्शन।
  • डिग्री के इन सामान्यीकृत लैगुएरे बहुपदों के लिए बंद रूप n है[5]
    लीबनिज नियम (सामान्यीकृत उत्पाद नियम) लागू करके प्राप्त किया गया | रोड्रिग्स के फार्मूले से उत्पाद के विभेदन के लिए लाइबनिज की प्रमेय।
  • लैगुएरे बहुपदों में एक विभेदक संकारक प्रतिनिधित्व होता है, जो बहुत निकट से संबंधित हर्मिट बहुपदों की तरह होता है। अर्थात्, चलो और अंतर ऑपरेटर पर विचार करें . तब .
  • पहले कुछ सामान्यीकृत लागुएरे बहुपद हैं:
  • अग्रणी पद का गुणांक है (−1)n/n!;
  • स्थिर पद, जिसका मान 0 है, है
  • अगर α गैर-ऋणात्मक है, तो Ln(α) में n वास्तविक संख्या है, एक फ़ंक्शन का सख्ती से सकारात्मक रूट (ध्यान दें कि एक स्टर्म श्रृंखला है), जो सभी अंतराल (गणित) में हैं [citation needed]
  • बड़े के लिए बहुपदों का स्पर्शोन्मुख व्यवहार n, लेकिन तय है α और x > 0, द्वारा दिया गया है[6][7]
    और संक्षेप में
    कहाँ बेसेल फ़ंक्शन#असिम्प्टोटिक रूप है।

=== एक समोच्च अभिन्न === के रूप में ऊपर निर्दिष्ट जनरेटिंग फ़ंक्शन को देखते हुए, बहुपदों को समोच्च अभिन्न के रूप में व्यक्त किया जा सकता है

जहां समोच्च 1 पर आवश्यक विलक्षणता को बंद किए बिना एक वामावर्त दिशा में एक बार मूल को घेरता है

पुनरावृत्ति संबंध

लागुएरे बहुपदों के लिए अतिरिक्त सूत्र:[8]

लैगुएरे के बहुपद पुनरावर्तन संबंधों को संतुष्ट करते हैं
विशेष रूप से
और
या
इसके अतिरिक्त
उनका उपयोग चार 3-बिंदु-नियमों को प्राप्त करने के लिए किया जा सकता है