घन सतह

From Vigyanwiki

गणित में, घन पृष्‍ठ 3-आयामी क्षेत्र में एक पृष्‍ठ के रूप में होती है, जिसे घात 3 के बहुपद समीकरण द्वारा परिभाषित किया जाता है। बीजगणितीय ज्यामिति में घन पृष्‍ठ में मौलिक उदाहरण के रूप में हैं। इस सिद्धांत को एफ़ेईन क्षेत्र के अतिरिक्त प्रक्षेपण स्थान में काम करके सरलीकृत किया गया है और इसलिए घन सतहों को सामान्यतः प्रक्षेपीय 3-स्पेस के रूप में माना जाता है और इस प्रकार वास्तविक संख्याओं के अतिरिक्त जटिल संख्याओं पर सतहों के फोकस करने पर सिद्धांत अधिक समरूप हो जाता है और इस प्रकार ध्यान दें कि जटिल पृष्‍ठ का वास्तविक आयाम 4 होता है। फर्मेट घन पृष्‍ठ का एक सरल उदाहरण है।

. घन सतहों के कई गुण सामान्यतः डेल पेज़ो की सतहों के लिए पकड़ अधिक होती है।

एक चिकनी घन पृष्‍ठ (क्लबश सतह)

घन सतहों की तर्कसंगतता

एक बीजगणितीय रूप से बंद क्षेत्र पर चिकनी स्कीम घन सतहों एक्स की एक केंद्रीय विशेषता यह है कि वे सभी तर्कसंगत विविधताएं हैं, जैसा कि 1866 में अल्फ्रेड क्लेब्सच द्वारा दिखाया गया था।[1] यही है, प्रोजेक्टिव प्लेन के बीच तर्कसंगत कार्यों द्वारा परिभाषित एक-से-एक पत्राचार है माइनस एक लो-डायमेंशनल सब्मिट और X माइनस एक लो-डायमेंशनल सब्मिट। अधिक सामान्यतः , बीजगणितीय रूप से बंद क्षेत्र पर प्रत्येक इर्रिडिएबल घन पृष्‍ठ (संभवतः एकवचन) तर्कसंगत है जब तक कि यह घन वक्र पर प्रक्षेपी शंकु न हो।[2] इस संबंध में, घन सतहें कम से कम 4 इंच की चिकनी सतहों की तुलना में बहुत सरल होती हैं , जो कभी तर्कसंगत नहीं होते। अभिलाक्षणिक (बीजगणित) शून्य में, कम से कम 4 इंच की घात की चिकनी सतहें अनियंत्रित किस्म भी नहीं हैं।[3] अधिक दृढ़ता से, क्लेब्स ने दिखाया कि प्रत्येक चिकनी घन पृष्‍ठ एक बीजगणितीय रूप से बंद क्षेत्र के ऊपर उड़ाते हुए | ब्लो-अप के लिए आइसोमोर्फिक है 6 बिंदुओं पर।[4] परिणाम स्वरुप , जटिल संख्याओं पर हर चिकनी घन पृष्‍ठ जुड़ी हुई राशि के लिए अलग-अलग होती है , जहां माइनस साइन उन्मुखता में बदलाव को दर्शाता है। इसके विपरीत, का झटका 6 बिंदुओं पर एक घन पृष्‍ठ के लिए आइसोमोर्फिक है यदि और केवल यदि बिंदु सामान्य स्थिति में हैं, जिसका अर्थ है कि तीन बिंदु एक रेखा पर नहीं हैं और सभी 6 एक शंकु पर स्थित नहीं हैं। जटिल कई गुना (या एक बीजगणितीय विविधता) के रूप में, पृष्‍ठ उन 6 बिंदुओं की व्यवस्था पर निर्भर करती है।

एक घन पृष्‍ठ पर 27 रेखाएँ

घन सतहों के लिए तर्कसंगतता के अधिकांश प्रमाण पृष्‍ठ पर एक रेखा खोजने से प्रारंभ होते हैं। (प्रक्षेपी ज्यामिति के संदर्भ में, एक रेखा में के लिए आइसोमॉर्फिक है अधिक यथार्थ रूप से, आर्थर केली और जॉर्ज सामन ने 1849 में दिखाया कि बीजगणितीय रूप से बंद क्षेत्र पर प्रत्येक चिकनी घन पृष्‍ठ में ठीक 27 रेखाएँ होती हैं।[5] यह क्यूबिक्स की एक विशिष्ट विशेषता है: एक चिकनी चतुष्कोणीय ( घात 2) पृष्‍ठ रेखाओं के एक सतत परिवार द्वारा कवर की जाती है, जबकि घात की अधिकांश सतहें कम से कम 4 इंच की होती हैं। कोई रेखा नहीं है। 27 पंक्तियों को खोजने के लिए एक अन्य उपयोगी तकनीक में शुबर्ट कैलकुलस सम्मलित है, जो लाइनों के ग्रासमानियन के प्रतिच्छेदन सिद्धांत का उपयोग करके लाइनों की संख्या की गणना करता है। .

चूंकि चिकनी जटिल घन पृष्‍ठ के गुणांक भिन्न होते हैं, 27 रेखाएं लगातार चलती हैं। परिणाम स्वरुप , चिकनी घन सतहों के परिवार में एक बंद लूप 27 लाइनों का क्रमपरिवर्तन निर्धारित करता है। इस प्रकार उत्पन्न होने वाली 27 रेखाओं के क्रमचय के समूह (गणित) को घनीय सतहों के परिवार का मोनोड्रोमी समूह कहा जाता है। 19वीं शताब्दी की एक उल्लेखनीय खोज यह थी कि मोनोड्रोमी समूह न तो तुच्छ है और न ही संपूर्ण सममित समूह ; यह एक E6 (गणित) #Weyl समूह है, जो लाइनों के सेट पर सकर्मक रूप से कार्य करता है।[4]इस समूह को धीरे-धीरे मान्यता दी गई (एली कार्टन (1896), आर्थर कोबल (1915-17), और पैट्रिक डु वैल (1936) द्वारा) प्रकार के वेइल समूह के रूप में , E6 (गणित) से संबंधित 6-आयामी वास्तविक सदिश स्थान पर प्रतिबिंबों द्वारा उत्पन्न एक समूह|झूठे समूह आयाम 78 का।[4]

आदेश 51840 के समान समूह को कॉम्बिनेटरियल शब्दों में वर्णित किया जा सकता है, 27 पंक्तियों के ग्राफ (असतत गणित) के ऑटोमोर्फिज़्म समूह के रूप में, प्रत्येक पंक्ति के लिए एक शीर्ष और जब भी दो रेखाएँ मिलती हैं, एक किनारे के साथ।[6] इस ग्राफ का विश्लेषण 19वीं शताब्दी में श्लाफली डबल सिक्स कॉन्फ़िगरेशन जैसे सबग्राफ का उपयोग करके किया गया था। पूरक ग्राफ (एक किनारे के साथ जब भी दो रेखाएँ अलग होती हैं) को श्लाफली ग्राफ के रूप में जाना जाता है।

श्लाफली ग्राफ

घन सतहों के बारे में कई समस्याओं को कॉम्बिनेटरिक्स के उपयोग से हल किया जा सकता है मूल प्रक्रिया। उदाहरण के लिए, 27 पंक्तियों को वजन (प्रतिनिधित्व सिद्धांत) के साथ पहचाना जा सकता है # झूठ समूह के मौलिक प्रतिनिधित्व के अर्ध-सरल झूठ बीजगणित के प्रतिनिधित्व सिद्धांत में वजन . एक घन पृष्‍ठ पर होने वाली विलक्षणता के संभावित सेट को उप-प्रणालियों के संदर्भ में वर्णित किया जा सकता है मूल प्रक्रिया।[7] इस संबंध के लिए एक व्याख्या यह है कि जाली एंटीकैनोनिकल वर्ग के ऑर्थोगोनल पूरक के रूप में उत्पन्न होती है पिकार्ड समूह में , इसके प्रतिच्छेदन रूप के साथ (पृष्‍ठ पर घटता के प्रतिच्छेदन सिद्धांत से आ रहा है)। एक चिकनी जटिल घन पृष्‍ठ के लिए, पिकार्ड जाली को सह-समरूपता समूह के साथ भी पहचाना जा सकता है .

Ekardt बिंदु वह बिंदु है जहां 27 में से 3 रेखाएँ मिलती हैं। अधिकांश घन सतहों में कोई एकार्ट पॉइंट नहीं होता है, लेकिन ऐसे बिंदु सभी चिकनी घन सतहों के परिवार के codimension -1 सबसेट पर होते हैं।[8] एक्स पर एक घन पृष्‍ठ और के विस्फोट के बीच एक पहचान को देखते हुए सामान्य स्थिति में 6 बिंदुओं पर, X पर 27 पंक्तियों को इस प्रकार देखा जा सकता है: ब्लो अप द्वारा बनाए गए 6 असाधारण वक्र, 6 बिंदुओं के जोड़े के माध्यम से 15 पंक्तियों के द्विवार्षिक परिवर्तन , और 6 शंकुओं के द्विभाजित रूपांतरण जिनमें 6 बिंदुओं में से एक को छोड़कर सभी सम्मलित हैं।[9] एक दी गई घन पृष्‍ठ को विस्फोट के रूप में देखा जा सकता है एक से अधिक विधियों से (वास्तव में, 72 अलग-अलग विधियों से), और इसलिए ब्लो-अप के रूप में एक विवरण सभी 27 पंक्तियों के बीच समरूपता को प्रकट नहीं करता है।

घन सतहों और के बीच संबंध रूट सिस्टम सभी डेल पेज़ो सतहों और रूट सिस्टम के बीच संबंध का सामान्यीकरण करता है। यह गणित में कई ADE वर्गीकरणों में से एक है। इन उपमाओं का अनुसरण करते हुए, वेरा सर्गनोवा और एलेक्सी स्कोरोबोगाटोव ने घन सतहों और लाइ समूह के बीच एक सीधा ज्यामितीय संबंध दिया। .[10] भौतिकी में, 27 पंक्तियों को छह-आयामी टोरस्र्स (6 मोमेंटा; 15 ब्रानेस; 6 Fivebrane ्स) और समूह ई पर एम-सिद्धांत के 27 संभावित आरोपों के साथ पहचाना जा सकता है।6 तब स्वाभाविक रूप से यू-द्वैत समूह के रूप में कार्य करता है। डेल पेज़ो सतहों और टोरी पर एम-सिद्धांत के बीच के इस मानचित्र को रहस्यमय द्वंद्व के रूप में जाना जाता है।

विशेष घनीय सतहें

चिकनी जटिल घन पृष्‍ठ में सबसे बड़े ऑटोमोर्फिज्म समूह के साथ फ़र्मेट घन पृष्‍ठ है, जिसे परिभाषित किया गया है

इसका ऑटोमोर्फिज्म समूह एक विस्तार है , क्रम 648 का।[11] अगली सबसे सममित चिकनी घनीय पृष्‍ठ क्लेब्स्च पृष्‍ठ है, जो में परिभाषित किया जा सकता है दो समीकरणों द्वारा

इसका ऑटोमोर्फिज्म समूह सममित समूह है , आदेश 120। निर्देशांक के एक जटिल रैखिक परिवर्तन के बाद, क्लेब्सच पृष्‍ठ को समीकरण द्वारा भी परिभाषित किया जा सकता है

में .

File:Cayley cubic 2.png
केली की नोडल घन सतह

एकवचन जटिल घन सतहों के बीच, केली की नोडल घन पृष्‍ठ अद्वितीय पृष्‍ठ है जिसमें नोड की अधिकतम संख्या (बीजगणितीय ज्यामिति) है, 4:

इसका ऑटोमोर्फिज्म समूह है , आदेश 24।

रियल घन सरफेस

जटिल स्थिति े के विपरीत, वास्तविक संख्याओं पर चिकनी घन सतहों का स्थान क्लासिकल टोपोलॉजिकल स्पेस (आर के टोपोलॉजी पर आधारित) में जुड़ा हुआ स्थान नहीं है। इसके जुड़े घटक (दूसरे शब्दों में, समस्थानिक तक चिकनी वास्तविक घन सतहों का वर्गीकरण) लुडविग श्लाफली (1863), फेलिक्स क्लेन (1865), और हिरोनिमस जॉर्ज ज़्यूथेन | एच द्वारा निर्धारित किया गया था। जी ज़्यूथेन (1875)।[12] अर्थात्, चिकनी वास्तविक घन सतहों X के 5 समस्थानिक वर्ग हैं , तर्कसंगत बिंदु के स्थान की टोपोलॉजी द्वारा प्रतिष्ठित . वास्तविक बिंदुओं का स्थान या तो भिन्न है , या का असंयुक्त संघ और 2-गोला, जहां वास्तविक वास्तविक प्रक्षेपी विमान r प्रतियों के जुड़े योग को दर्शाता है . तदनुसार, X में निहित वास्तविक रेखाओं की संख्या 27, 15, 7, 3 या 3 है।

एक चिकनी वास्तविक घन पृष्‍ठ 'आर' पर तर्कसंगत है यदि और केवल यदि इसके वास्तविक बिंदुओं का स्थान जुड़ा हुआ है, इसलिए पिछले पांच स्थितियों में से पहले चार में।[13] X पर वास्तविक रेखाओं की औसत संख्या है [14] जब एक्स के लिए परिभाषित बहुपद बॉम्बिएरी_नॉर्म द्वारा प्रेरित गॉसियन पहनावा से यादृच्छिक रूप से नमूना लिया जाता है।

घन सतहों का मापांक स्थान

दो चिकनी घन सतहें बीजगणितीय किस्मों के रूप में आइसोमोर्फिक हैं यदि और केवल यदि वे कुछ रैखिक ऑटोमोर्फिज्म के समतुल्य हैं . ज्यामितीय अपरिवर्तनीय सिद्धांत चिकनी घन सतहों के प्रत्येक आइसोमोर्फिज्म वर्ग के लिए एक बिंदु के साथ घन सतहों का एक मापांक स्थान देता है। इस मोडुली स्पेस का आयाम 4 है। अधिक यथार्थ रूप से, यह सैल्मन और क्लेबश (1860) द्वारा भारित भारित प्रक्षेप्य स्थान(12345) का एक खुला उपसमुच्चय है। विशेष रूप से, यह एक तर्कसंगत 4 गुना है।[15]


वक्रों का शंकु

एक बीजगणितीय रूप से बंद क्षेत्र पर एक घन पृष्‍ठ एक्स पर लाइनों को एक्स के एम्बेडिंग के संदर्भ के बिना आंतरिक रूप से वर्णित किया जा सकता है : वे बिल्कुल (−1)-X पर वक्र हैं, जिसका अर्थ है कि वक्र समरूपी हैं जिसका स्व-चौराहा -1 है। इसके अतिरिक्त , एक्स (या समतुल्य रूप से विभाजक वर्ग समूह) के पिकार्ड जाली में लाइनों के वर्ग वास्तव में पिक (एक्स) के तत्व यू हैं जैसे कि और . (यह उपयोग करता है कि सुसंगत शीफ का प्रतिबंध # वेक्टर बंडलों के उदाहरण O(1) पर X के लिए एंटीकैनोनिकल लाइन बंडल है , संयोजन सूत्र द्वारा।)

किसी भी प्रक्षेपी किस्म X के लिए, वक्रों के शंकु का अर्थ उत्तल शंकु है जो X में सभी वक्रों द्वारा फैला हुआ है (वास्तविक सदिश स्थान में) 1-चक्र सापेक्ष संख्यात्मक तुल्यता, या एकवचन होमोलॉजी में यदि आधार क्षेत्र सम्मिश्र संख्या है)। एक घनीय पृष्‍ठ के लिए, वक्रों के शंकु को 27 रेखाओं द्वारा फैलाया जाता है।[16] विशेष रूप से, यह एक परिमेय बहुफलकीय शंकु है एक बड़े समरूपता समूह के साथ, वेइल समूह . किसी भी डेल पेज़ो पृष्‍ठ के लिए घटता के शंकु का एक समान विवरण है।

एक क्षेत्र पर घन सतहें

फ़ील्ड k पर एक चिकनी घन पृष्‍ठ X जो बीजगणितीय रूप से बंद नहीं है, k पर तर्कसंगत होने की आवश्यकता नहीं है। एक चरम स्थिति े के रूप में, परिमेय संख्या 'Q' (या p-adic संख्या) पर चिकनी घन सतहें होती हैं ) बिना परिमेय बिंदु के, जिस स्थिति में X निश्चित रूप से परिमेय नहीं है।[17] यदि एक्स (के) गैर-खाली है, तो बेंजामिन सीक्रेट और जेनोस कोल्लार द्वारा एक्स कम से कम अपरिमेय है।[18] के अनंत के लिए, एकता का अर्थ है कि के-तर्कसंगत बिंदुओं का सेट एक्स में ज़रिस्की घना है।

K का निरपेक्ष गैलोज़ समूह बीजगणितीय बंद होने पर X की 27 पंक्तियों की अनुमति देता है k का (Weyl समूह के कुछ उपसमूह के माध्यम से ). यदि इस क्रिया की कुछ कक्षा में अलग-अलग रेखाएँ होती हैं, तो X एक बंद बिंदु पर k के ऊपर एक सरल डेल पेज़ो पृष्‍ठ का ब्लो-अप है। अन्यथा, X का पिकार्ड नंबर 1 है। (X का पिकार्ड समूह ज्यामितीय पिकार्ड समूह का एक उपसमूह है ।) बाद के स्थिति े में, सेग्रे ने दिखाया कि एक्स कभी भी तर्कसंगत नहीं है। अधिक दृढ़ता से, यूरी मैनिन ने एक द्विपक्षीय कठोरता बयान सिद्ध कर दिया: पिकार्ड नंबर 1 के साथ दो चिकनी घन सतहें एक पूर्ण क्षेत्र के ऊपर द्विवार्षिक हैं यदि और केवल यदि वे आइसोमोर्फिक हैं।[19] उदाहरण के लिए, ये परिणाम Q के ऊपर कई घन पृष्‍ठ देते हैं जो अपरिमेय हैं लेकिन तर्कसंगत नहीं हैं।

एकवचन घन सतहें

चिकनाई घन सतहों के विपरीत जिसमें 27 रेखाएँ होती हैं, विलक्षणता (गणित) घन सतहों में कम रेखाएँ होती हैं। [20] इसके अतिरिक्त , उन्हें विलक्षणता के प्रकार से वर्गीकृत किया जा सकता है जो उनके सामान्य रूप में उत्पन्न होती है। इन विलक्षणताओं को डायनकिन आरेख का उपयोग करके वर्गीकृत किया गया है।

वर्गीकरण

एक सामान्य विलक्षण घन पृष्‍ठ में स्थानीय निर्देशांक के साथ यदि इसके द्वारा दिया जाता है तो सामान्य रूप में कहा जाता है . विलक्षणता के प्रकार पर निर्भर करता है सम्‍मिलित है, यह प्रक्षेपी पृष्‍ठ में समरूपता है द्वारा दिए गए कहाँ नीचे दी गई तालिका के अनुसार हैं। इसका अर्थ है कि हम सभी एकवचन घनीय सतहों का वर्गीकरण प्राप्त कर सकते हैं। निम्न तालिका के पैरामीटर इस प्रकार हैं: के तीन भिन्न तत्व हैं , पैरामीटर में हैं और का एक तत्व है . ध्यान दें कि विलक्षणता के साथ दो अलग-अलग एकवचन घन सतहें हैं . [21]

Classification of singular cubic surfaces by singularity type [21]
Singularity

सामान्य रूप में, जब भी एक घन पृष्‍ठ कम से कम एक सम्मलित है विलक्षणता, यह एक होगा विलक्षणता पर . [20]


एकवचन घनीय सतहों पर रेखाएँ

एकवचन घनीय सतहों के वर्गीकरण के अनुसार, निम्न तालिका प्रत्येक पृष्‍ठ में प्रक्षेपी रेखाओं की संख्या दर्शाती है।

Lines on singular cubic surfaces [21]
Singularity
No. of lines 21 16 11 12 7 8 9 4 5 5 2 15 7 3 10 6 3 6 3 1


बिना किसी पैरामीटर के एकवचन घन सतहों के automorphism समूह

एक सामान्य विलक्षण घन पृष्‍ठ का एक ऑटोमोर्फिज्म प्रोजेक्टिव स्पेस के ऑटोमोर्फिज्म का प्रतिबंध (गणित) है को . इस तरह के ऑटोमोर्फिज्म एकवचन बिंदुओं को संरक्षित करते हैं। इसके अतिरिक्त , वे विभिन्न प्रकार की विलक्षणताओं की अनुमति नहीं देते हैं। यदि पृष्‍ठ में एक ही प्रकार की दो विलक्षणताएँ होती हैं, तो ऑटोमोर्फिज़्म उन्हें अनुमति दे सकता है। घन पृष्‍ठ पर ऑटोमोर्फिज्म का संग्रह एक समूह (गणित) बनाता है, जिसे ऑटोमोर्फिज्म समूह कहा जाता है। निम्न तालिका बिना किसी पैरामीटर के एकवचन घन सतहों के सभी ऑटोमोर्फिज़्म समूहों को दिखाती है।

Automorphism groups of singular cubic surfaces with no parameters [21]
Singularity Automorphism group of
, the symmetric group of order


यह भी देखें

टिप्पणियाँ

  1. Reid (1988), Corollary 7.4.
  2. Kollár, Smith, Corti (2004), Example 1.28.
  3. Kollár, Smith, Corti (2004), Exercise 1.59.
  4. 4.0 4.1 4.2 Dolgachev (2012), Chapter 9, Historical notes.
  5. Reid (1988), section 7.6.
  6. Hartshorne (1997), Exercise V.4.11.
  7. Bruce & Wall (1979), section 4; Dolgachev (2012), Table 9.1.
  8. Dolgachev (2012), section 9.1.4.
  9. Hartshorne (1997), Theorem V.4.9.
  10. Serganova & Skorobogatov (2007).
  11. Dolgachev (2012), Table 9.6.
  12. Degtyarev and Kharlamov (2000), section 3.5.2. The various types of real cubic surfaces, and the lines on them, are pictured in Holzer & Labs (2006).
  13. Silhol (1989), section VI.5.
  14. Basu, S.; Lerario, A.; Lundberg, E.; Peterson, C. (2019). "यादृच्छिक क्षेत्र और वास्तविक और जटिल हाइपरसर्फ्स पर लाइनों की गणनात्मक ज्यामिति". Mathematische Annalen. 374 (3–4): 1773–1810. arXiv:1610.01205. doi:10.1007/s00208-019-01837-0. S2CID 253717173.
  15. Dolgachev (2012), equation (9.57).
  16. Hartshorne (1997), Theorem V.4.11.
  17. Kollár, Smith, Corti (2004), Exercise 1.29.
  18. Kollár, Smith, Corti (2004), Theorems 1.37 and 1.38.
  19. Kollár, Smith, Corti (2004), Theorems 2.1 and 2.2.
  20. 20.0 20.1 Bruce, J. W.; Wall, C. T. C. (1979). "घन सतहों के वर्गीकरण पर". Journal of the London Mathematical Society (in English). s2-19 (2): 245–256. doi:10.1112/jlms/s2-19.2.245. ISSN 1469-7750.
  21. 21.0 21.1 21.2 21.3 SAKAMAKI, YOSHIYUKI (2010). "बिना किसी पैरामीटर के सामान्य एकवचन घन सतहों पर ऑटोमोर्फिज्म समूह". Transactions of the American Mathematical Society. 362 (5): 2641–2666. doi:10.1090/S0002-9947-09-05023-5. ISSN 0002-9947. JSTOR 25677798.


संदर्भ


बाहरी संबंध