गणित में, विशेष रूप से मान सिद्धांत में, एक सेट फलन एक फलन (गणित) होता है जिसका फलन का डोमेन कुछ दिए गए सेट के उपसमुच्चय के सेट का वर्ग होता है और जो (आमतौर पर) विस्तारित वास्तविक संख्या रेखा में इसके मान लेता है जिसमें वास्तविक संख्याएँ होती हैं और
एक सेट फलन का आम तौर पर लक्ष्य होता है, उपसमुच्चय मान (गणित) सेट फलन को मानने के विशिष्ट उदाहरण हैं। इसलिए, शब्द सेट फलन का उपयोग अक्सर मान के गणितीय अर्थ और इसके सामान्य भाषा अर्थ के बीच भ्रम से बचने के लिए किया जाता है।
अगर सेट ओवर का वर्ग है (मतलब है कि कहाँ पावरसेट को दर्शाता है) फिर एक सेट फलन का कार्य है एक फलन के डोमेन के साथ और कोडोमेन या, कभी-कभी, कोडोमेन इसके बजाय कुछ सदिश समष्टि होता है, जैसा सदिश मानों, जटिल मान और प्रक्षेपण-मान मान के साथ होता है।
सेट फलन के डोमेन में कोई संख्या गुण हो सकते हैं; आमतौर पर सामने आने वाली गुण और वर्गों की श्रेणियों को नीचे दी गई तालिका में सूचीबद्ध किया गया है।
Additionally, a semiring is a [[pi-system|π-system]] where every complement is equal to a finite disjoint union of sets in
A semialgebra is a semiring that contains are arbitrary elements of and it is assumed that
सामान्य तौर पर, यह आमतौर पर माना जाता है हमेशा सभी के लिए अच्छी तरह से परिभाषित है या समकक्ष, वह दोनों नहीं लेता और मानों के रूप में। यह लेख अब से यह मान लेगा; हालांकि वैकल्पिक रूप से, नीचे दी गई सभी परिभाषाएँ बयानों द्वारा योग्य हो सकती हैं जैसे कि जब भी योग/श्रृंखला परिभाषित की जाती है। यह कभी-कभी घटाव के साथ किया जाता है, जैसे निम्न परिणाम के साथ, जो जब भी होता है #पूरी तरह से योगात्मक है:
अंतर सूत्र सेट करें: से परिभाषित किया गया है संतुष्टि देने वाला और अशक्त सेट
एक सेट a कहा जाता है रिक्त समुच्चय (इसके संबंध में ) या केवल रिक्त अगर जब कभी भी दोनों के समान नहीं है या तो यह आमतौर पर यह भी माना जाता है कि:
<उल>
<ली>रिक्त समुच्चय सेट: अगर
विविधता और द्रव्यमान
कुल भिन्नता (मान सिद्धांत) |एक सेट की कुल भिन्नता है
जहाँ निरपेक्ष मान को दर्शाता है (या अधिक सामान्यतः, यह मानदंड (गणित) या सेमिनोर्म को दर्शाता है यदि एक (सेमिनोर्ड स्पेस) नॉर्म्ड स्पेस में सदिश-वैल्यू है)।
ये मानते हुए तब कहा जाता है कुल भिन्नता का और कहा जाता है द्रव्यमान का एक सेट फलन कहा जाता है परिमित यदि प्रत्येक के लिए मान है परिमित (जो परिभाषा के अनुसार इसका मतलब है और ; एक अनंत मूल्य के बराबर है या ).
प्रत्येक परिमित समुच्चय फलन का एक परिमित #द्रव्यमान होना चाहिए।
सेट कार्यों के सामान्य गुण
एक सेट फलन पर बताया गया[1]गैर नकारात्मक यदि इसका मान है।
फिनिटली एडिटिव सेट फलन निश्चित रूप से योगात्मक अगर सभी युग्मानूसार असंयुक्त परिमित अनुक्रमों के लिए ऐसा है कि
अगर बाइनरी संघ (सेट सिद्धांत) के तहत बंद है निश्चित रूप से योज्य है अगर और केवल अगर सभी असंबद्ध जोड़ियों के लिए है।
अगर निश्चित रूप से योज्य है और यदि फिर ले रहा है पता चलता है कि जो केवल तभी संभव है या जहां बाद के मामले में, हर एक के लिए (इसलिए केवल मामला उपयोगी है)।
सिग्मा-एडिटिव सेट फलन गणनीय रूप से योगात्मक या सिग्मा-एडिटिव सेट फलन σ-योगात्मक[2] यदि परिमित रूप से योज्य होने के अलावा, सभी युग्मानूसार असंयुक्त अनुक्रमों के लिए में ऐसा है कि निम्नलिखित सभी धारण करते हैं: a
बाईं ओर की श्रृंखला को सामान्य तरीके से सीमा के रूप में परिभाषित किया गया है
परिणामस्वरूप, यदि तब कोई क्रम परिवर्तन/आपत्ति है यह है क्योंकि और इस शर्त को लागू करना (a) दो बार गारंटी देता है कि दोनों और पकड़ना है। परिभाषा के अनुसार, इस गुण के साथ अभिसरण श्रृंखला को बिना शर्त अभिसरण कहा जाता है। सामान्य अंग्रेजी में कहा गया है, इसका मतलब है कि सेट को पुनर्व्यवस्थित/पुन: लेबलिंग करना नए आदेश के लिए उनके मानों के योग को प्रभावित नहीं करता है। संघ के रूप में ही यह वांछनीय है इन सेटों के क्रम पर निर्भर नहीं करता है, वही योगफल के लिए सही होना चाहिए और
अगर अनंत नहीं है तो यह श्रृंखला पूर्ण अभिसरण भी होना चाहिए, जिसका परिभाषा के अनुसार अर्थ है परिमित होना चाहिए। यह स्वचालित रूप से सत्य है यदि #ऋणेतर संख्या है (या केवल विस्तारित वास्तविक संख्याओं में मान)।
रीमैन श्रृंखला प्रमेय, श्रृंखला द्वारा वास्तविक संख्याओं की किसी भी अभिसरण श्रृंखला के साथ पूरी तरह से अभिसरण करता है अगर और केवल अगर इसका योग इसकी शर्तों के क्रम पर निर्भर नहीं करता है (बिना शर्त अभिसरण के रूप में जाना जाने वाला गुण)। चूंकि बिना शर्त अभिसरण की ऊपर (a) द्वारा गारंटी दी गई है, यह स्थिति स्वचालित रूप से सत्य है यदि में मान है
अगर अनंत है तो यह भी आवश्यक है कि श्रृंखला में से कम से कम एक का मान हो परिमित हो (ताकि उनके मानों का योग अच्छी तरह से परिभाषित हो)। यह स्वचालित रूप से सत्य है यदि #गैर-नकारात्मक है।
एक पूर्व-मान|पूर्व मान अगर यह #ऋणेतर संख्या है, सिग्मा-एडिटिव सेट फलन (#परिमित एडिटिव सहित), और एक # खाली सेट है।
एक मान (गणित)|मान अगर यह एक #पूर्व मान है जिसका डोमेन σ-बीजगणित है। कहने का मतलब यह है कि मान एक σ-बीजगणित पर एक गैर-नकारात्मक गणन योग्य योज्य सेट फलन है जिसमें एक #शून्य खाली सेट होता है।
एक संभाव्यता माप यदि यह एक मान है जिसका #द्रव्यमान है
एक बाहरी मान|बाहरी मान अगर यह गैर-नकारात्मक है, #गणनात्मक रूप से सबएडिटिव है, एक #शून्य खाली सेट है, और पावरसेट है इसके डोमेन के रूप में।
कैराथियोडोरी के विस्तार प्रमेय में बाहरी मान दिखाई देते हैं और वे अक्सर कैराथियोडोरी की कसौटी पर प्रतिबंध (गणित) होते हैं। कैराथियोडोरी मानने योग्य उपसमुच्चय
एक हस्ताक्षरित मान|सांकेतिक मान यदि यह गिनती योगात्मक है, तो #खाली सेट है, और दोनों नहीं लेता और मानों के रूप में।
पूरा मान पुर्ण यदि प्रत्येक #रिक्त सेट का प्रत्येक उपसमुच्चय रिक्त है; स्पष्ट रूप से, इसका अर्थ है: जब भी और का कोई उपसमुच्चय है तब और
कई अन्य गुणों के विपरीत, पूर्णता सेट पर आवश्यकताओं को रखती है (और न सिर्फ चालू के मान).
σ-सीमित मान 𝜎-सीमित यदि कोई अनुक्रम मौजूद है में ऐसा है कि प्रत्येक सूचकांक के लिए परिमित है और भी
विघटित करने योग्य मान वियोजनीय यदि कोई उपवर्ग मौजूद है जोड़ो में असंयुक्त सेट की इस तरह है कि प्रत्येक के लिए परिमित है और भी (कहाँ ).
प्रत्येक 𝜎-फ़िनिट सेट फलन वियोजनीय है, हालांकि इसके विपरीत नहीं। उदाहरण के लिए, गिनती मान पर (जिसका डोमेन है ) वियोजनीय है लेकिन नहीं 𝜎-परिमित है।
एक सदिश मान यदि यह एक गिने-चुने योज्य समुच्चय फलन है एक सांस्थितिक सदिश समष्टि में मान (जैसे एक आदर्श समष्टि) जिसका डोमेन σ-बीजगणित है।
अगर एक आदर्श समष्टि में मान है तो यह गिनती योगात्मक है अगर और केवल अगर किसी भी युग्मानूसार संबंध विच्छेद अनुक्रम के लिए में है अगर एक बनच समष्टि में सूक्ष्म रूप से योगात्मक और मान है, तो यह योगात्मक रूप से योगात्मक है यदि और केवल यदि किसी युग्मानूसार असंबद्ध अनुक्रम के लिए में है।
एक जटिल मान यदि यह एक गिने-चुने योगात्मक जटिल संख्या-मान सेट फलन है जिसका प्रांत σ-बीजगणित है।
परिभाषा के अनुसार, एक जटिल मान कभी नहीं होता है एक मान के रूप में और इसलिए एक #शून्य खाली सेट है।
वर्णित श्रृंखला (गणित)#किसी भी वर्ग के लिए सामान्यीकृत श्रृंखला पर इस लेख के खंड में यादृच्छिक सूचकांक सेट पर योग एक यादृच्छिक अनुक्रमण सेट द्वारा अनुक्रमित वास्तविक संख्याओं का उनकी राशि को परिभाषित करना संभव है परिमित आंशिक योगों के शुद्ध (गणित) की सीमा के रूप में जहां डोमेन द्वारा निर्देशित किया गया है जब कभी यह अभिसारी जाल होता है तो इसकी सीमा को प्रतीकों द्वारा निरूपित किया जाता है जबकि अगर यह नेट इसके बजाय अलग हो जाता है तो यह लिखकर संकेत किया जा सकता है रिक्त समुच्चय पर किसी भी योग को शून्य के रूप में परिभाषित किया गया है; वह है, अगर तब परिभाषा है।
उदाहरण के लिए, यदि हर एक के लिए तब और यह दिखाया जा सकता है अगर फिर सामान्यीकृत श्रृंखला में विलीन हो जाता है अगर और केवल अगर बिना शर्त अभिसरण (या समकक्ष, पूर्ण अभिसरण) सामान्य अर्थों में।
यदि एक सामान्यीकृत श्रृंखला में विलीन हो जाता है फिर दोनों और के तत्वों में भी अभिसरण करते हैं और सेट आवश्यक रूप से गणनीय समुच्चय है (अर्थात, या तो परिमित या गणनीय रूप से अनंत); श्रृंखला (गणित) # एबेलियन सांस्थिति समूह यदि किसी भी सामान्य समष्टि से प्रतिस्थापित किया जाता है।[proof 1]
यह इस प्रकार है कि एक सामान्यीकृत श्रृंखला के लिए में जुटना या यह आवश्यक है कि सभी लेकिन अधिक से अधिक संख्या में के बराबर होगा जिसका अर्थ है कि अधिक से अधिक कई गैर-शून्य शब्दों का योग है।
अलग ढंग से कहा, अगर अगणनीय है तो सामान्यीकृत श्रृंखला एकाग्र नहीं होती है।
संक्षेप में, वास्तविक संख्याओं की प्रकृति और इसकी टोपोलॉजी के कारण, वास्तविक संख्याओं की प्रत्येक सामान्यीकृत श्रृंखला (एक यादृच्छिक सेट द्वारा अनुक्रमित) जो अभिसरण करता है, को कई वास्तविक संख्याओं की एक सामान्य पूर्ण रूप से अभिसरण श्रृंखला में घटाया जा सकता है। इसलिए मान सिद्धांत के संदर्भ में, अगणनीय सेटों और सामान्यीकृत श्रृंखलाओं पर विचार करने से बहुत कम लाभ प्राप्त होता है। विशेष रूप से, यही कारण है कि #गणनीय योगात्मक की परिभाषा को शायद ही कभी कई सेटों से बढ़ाया जाता है में (और सामान्य गणनीय श्रृंखला ) यादृच्छिक ढंग से कई सेटों के लिए (और सामान्यीकृत श्रृंखला ).
आंतरिक मान, बाहरी मान और अन्य गुण
एक सेट फलन कहा जाता है / संतुष्ट करता है[1]एकदिष्ट अगर जब कभी भी संतुष्ट करना
मॉड्यूलर सेट फलन यदि यह निम्नलिखित शर्त को पूरा करता है, जिसे जाना जाता है मॉड्यूलता: सभी के लिए ऐसा है कि
समुच्चयों के क्षेत्र में प्रत्येक परिमित योज्य फलन मॉड्यूलर होता है।
ज्यामिति में, इस गुण वाले कुछ एबेलियन सेमीग्रुप में मान एक सेट फलन को मानांकन (ज्यामिति) के रूप में जाना जाता है। यह मानांकन (ज्यामिति) मानांकन की ज्यामितीय परिभाषा को मजबूत गैर-समतुल्य मानांकन (मान सिद्धांत) के साथ भ्रमित नहीं होना चाहिए मानांकन की सैद्धांतिक परिभाषा को मानें जो कि #मानांकन है।
सबमॉड्यूलर सेट फलन अगर सभी के लिए ऐसा है कि परिमित सबएडेटिव अगर सभी परिमित अनुक्रमों के लिए जो संतुष्ट करता है गणनीय सबएडेटिव या σ-सबएडेटिव अगर सभी क्रमों के लिए में जो संतुष्ट करता है
अगर परिमित संघों के तहत बंद है तो यह स्थिति केवल और केवल तभी होती है सभी के लिए अगर गैर-ऋणात्मक है तो निरपेक्ष मान हटाया जा सकता है।
अगर एक मान है तो यह स्थिति अगर और केवल अगर रखती है सभी के लिए में [3] अगर एक प्रायिकता मान है तो यह असमानता बूले की असमानता है।
अगर गिनती उप-योगात्मक है और साथ तब #पूरी तरह से सबएडिटिव है।
सुपरएडिटीविटी अगर जब कभी भी से असंबद्ध हैं उपरित: संतत अगर सभी के लिए गैर-बढ़ते अनुक्रम सेट का में ऐसा है कि साथ और सभी परिमित है ।
लेबेस्गु मान ऊपर से निरंतर है लेकिन यह धारणा नहीं होगी कि सभी अंततः परिमित हैं परिभाषा से हटा दिया गया था, जैसा कि इस उदाहरण से पता चलता है: प्रत्येक पूर्णांक के लिए होने देना खुला अंतराल हो ताकि जहाँ है।
नीचे से निरंतर अगर सभी के लिए गैर-क्रियाशील अनुक्रम सेट का में ऐसा है कि अनंत नीचे से संपर्क किया जाता है अगर कभी भी संतुष्ट तो हर असली के लिए कुछ मौजूद है ऐसा है कि और है।
एक #बाहरी मान अगर गैर-ऋणात्मक है, #गणनीय रूप से सबएडिटिव है, एक #शून्य खाली सेट है, और पावर सेट है इसके डोमेन के रूप में है।
एक आंतरिक मान अगर गैर-नकारात्मक है, #सुपरएडिटिव, ऊपर से #निरंतर, एक #शून्य खाली सेट है, पावर सेट है इसके डोमेन के रूप में, और नीचे से #अनंतता तक संपर्क किया जाता है नीचे से संपर्क किया गया है।
परमाणु मान यदि सकारात्मक मान के प्रत्येक मानने योग्य सेट में एक परमाणु (मान सिद्धांत) होता है।
अगर और दो सेट कार्य समान्त हो गए हैं तब:
<उल>
<ली> पूर्ण निरंतरता (मान सिद्धांत) कहा जाता है |absolutely continuous with respect to या वर्चस्व (मान सिद्धांत) |dominated by , लिखा हुआ अगर हर सेट के लिए जो दोनों के अधिकार क्षेत्र में आता है और अगर तब
अगर और σ-सीमित मान हैं |-समान मानने योग्य समष्टि पर परिमित मान और यदि फिर रैडॉन-निकोडिम व्युत्पन्न मौजूद है और हर मानने योग्य के लिए
</ली>
और तुल्यता (मान सिद्धांत) कहलाते हैं|equivalent यदि प्रत्येक एक दूसरे के संबंध में #बिल्कुल निरंतर है। एक तुल्यता (मान सिद्धांत) # सहायक मान कहा जाता हैsupporting measure मान का अगर सिग्मा-परिमित है|-परिमित और वे समकक्ष हैं।[4]
<वह> और एकवचन मान हैं |singular, लिखा हुआ अगर वहाँ असंबद्ध सेट मौजूद हैं और के डोमेन में और ऐसा है कि सभी के लिए के अधिकार क्षेत्र में और सभी के लिए के अधिकार क्षेत्र में </ली>
उदाहरण
सेट कार्यों के उदाहरणों में शामिल हैं:
कार्यक्रम
पर्याप्त रूप से अच्छे व्यवहार वाले उपसमुच्चय को प्राकृतिक घनत्व प्रदान करना एक निर्धारित कार्य है।
एक संभाव्यता मान सिग्मा-बीजगणित | σ-बीजगणित में प्रत्येक सेट के लिए एक संभावना प्रदान करता है। विशेष रूप से, खाली सेट की संभावना शून्य है और नमूना समष्टि की संभावना है के बीच दी गई संभावनाओं के साथ अन्य सेटों के साथ और
एक संभावित मान किसी दिए गए सेट के पावरसेट में प्रत्येक सेट को शून्य और एक के बीच एक संख्या प्रदान करता है। संभावना सिद्धांत देखें।
Lebesgue मान पर एक सेट फलन है जो लेबेसेग से संबंधित वास्तविक संख्याओं के प्रत्येक सेट के लिए एक गैर-ऋणात्मक वास्तविक संख्या प्रदान करता है -बीजगणित।[5] इसकी परिभाषा समुच्चय से शुरू होती है वास्तविक संख्याओं के सभी अंतरालों का, जो एक अर्धबीजगणित है वह फलन जो हर अंतराल को असाइन करता है इसका एक सूक्ष्म योगात्मक सेट फलन है (स्पष्ट रूप से, if समानन बिंदु हैं तब ).
इस सेट फलन को Lebesgue बाहरी मान पर बढ़ाया जा सकता है जो अनुवाद-अपरिवर्तनीय सेट फलन है जो एक उपसमुच्चय भेजता है नीचे
Lebesgue बाहरी मान गिनती योग्य नहीं है (और इसलिए एक मान नहीं है) हालांकि सिग्मा-बीजगणित के लिए इसका प्रतिबंध है।𝜎-सभी उपसमुच्चयों का बीजगणित जो कैराथियोडोरी की कसौटी पर खरे उतरते हैं | कैराथियोडोरी की कसौटी:
जैसा कि अनंत-आयामी लेबेस्गु मान पर लेख में विस्तृत है, केवल समष्टिीय रूप से परिमित और अनुवाद-अपरिवर्तनीय बोरेल मान एक अनंत-आयामी वियोज्य अंतरिक्ष मानक समष्टि पर मामूली मान है। हालांकि, गॉसियन मानों को अनंत-आयामी सांस्थिति सदिश रिक्त समष्टि पर परिभाषित करना संभव है। गॉसियन मानों के लिए संरचना प्रमेय से पता चलता है कि अमूर्त वीनर अंतरिक्ष निर्माण अनिवार्य रूप से एक पृथक समष्टि बनच समष्टि पर एक सख्त सकारात्मक गॉसियन मान प्राप्त करने का एकमात्र तरीका है।
पूरी तरह से एडिटिव ट्रांसलेशन-इनवेरिएंट सेट फलन
केवल अनुवाद-अपरिवर्तनीय मान पर डोमेन के साथ के प्रत्येक कॉम्पैक्ट उपसमुच्चय पर परिमित है तुच्छ सेट फलन है जो समान रूप से बराबर है (यानी, यह हर भेजता है को )[6]
हालाँकि, यदि काउंटेबल एडिटिविटी को परिमित एडिटिविटी के लिए कमजोर किया जाता है, तो इन गुणों के साथ एक गैर-तुच्छ सेट फलन मौजूद होता है और इसके अलावा, कुछ का मान भी होता है वास्तव में, इस तरह के गैर-तुच्छ सेट फलन तब भी मौजूद रहेंगे किसी अन्य एबेलियन समूहसमूह (गणित) द्वारा प्रतिस्थापित किया जाता है [7]
Theorem[8] — If is any abelian group then there exists a finitely additive and translation-invariant[note 1] set function of mass
लगता है कि अर्धबीजगणित पर एक समुच्चय फलन है ऊपर और जाने
जो सेट का फील्ड है द्वारा उत्पन्न : विक्षनरी: अर्धबीजगणित का आदर्श उदाहरण जो समुच्चयों का क्षेत्र भी नहीं है वह वर्ग है
पर कहाँ सभी के लिए [9] महत्वपूर्ण रूप से, दो गैर-सख्त असमानताएँ में सख्त असमानताओं के साथ प्रतिस्थापित नहीं किया जा सकता है चूंकि अर्ध-अल्जेब्रस में संपूर्ण अंतर्निहित सेट होना चाहिए वह है, अर्ध-अल्जेब्रस की आवश्यकता है (जैसा है ).
अगर # निश्चित रूप से योज्य है तो इसमें एक सेट फलन का एक अनूठा विस्तार है पर भेजकर परिभाषित किया गया है (कहाँ इंगित करता है कि ये जोड़ो में असंयुक्त हैं) से:[9]
यह विस्तार भी सूक्ष्म रूप से योगात्मक होगा: किसी भी युग्मानूसार असंयुक्त के लिए [9]
अगर इसके अलावा विस्तारित वास्तविक-मान और #एकदिष्ट है (जो, विशेष रूप से, यदि मामला होगा #ऋणेतर संख्या) है तो मोनोटोन और #अंतिम रूप से उप-योगात्मक होगा: किसी के लिए भी ऐसा है कि [9]
अगर एक #pre-measure|सेट के रिंग पर पूर्व-मान है (जैसे सेट का बीजगणित) ऊपर तब एक मान का विस्तार है σ-बीजगणित पर द्वारा उत्पन्न अगर is #σ-परिमित मान|σ-परिमित तो यह विस्तार अद्वितीय है।
इस विस्तार को परिभाषित करने के लिए, पहले विस्तार करें एक बाहरी मान के लिए पर द्वारा
और उसके बाद इसे सेट तक सीमित करें का -मानने योग्य सेट (अर्थात कैराथोडोरी-मानने योग्य सेट), जो सभी का सेट है ऐसा है कि
यह है एक -बीजगणित और कैरथियोडोरी लेम्मा द्वारा सिग्मा-एडिटिव ऑन इट है।
अगर एक सेट पर एक #बाहरी मान है जहां (परिभाषा के अनुसार) डोमेन आवश्यक रूप से पावर सेट है का फिर एक उपसमुच्चय कहा जाता है–measurable याCarathéodory-measurable यदि यह निम्नलिखित को संतुष्ट करता है Carathéodory's criterion:
कहाँ का पूरक (सेट सिद्धांत) है सबका वर्ग -मानने योग्य उपसमुच्चय एक σ-बीजगणित और बाहरी मान का प्रतिबंध (गणित) है इस वर्ग के लिए एक मान (गणित) है।
↑The function being translation-invariant means that for every and every subset
Proofs
↑Suppose the net converges to some point in a metrizable topological vector space (such as or a normed space), where recall that this net's domain is the directed set
Like every convergent net, this convergent net of partial sums is a Cauchy net, which for this particular net means (by definition) that for every neighborhood of the origin in there exists a finite subset of such that
for all finite supersets
this implies that for every (by taking and ).
Since is metrizable, it has a countable neighborhood basis at the origin, whose intersection is necessarily (since is a Hausdorff TVS).
For every positive integer pick a finite subset such that for every
If belongs to then belongs to
Thus for every index that does not belong to the countable set