आंशिक अंश अपघटन: Difference between revisions

From Vigyanwiki
No edit summary
Line 290: Line 290:


<math display="block"> f(z)=\frac{z^{2}-5}{(z^2-1)(z^2+1)}=\frac{z^{2}-5}{(z+1)(z-1)(z+i)(z-i)}</math>
<math display="block"> f(z)=\frac{z^{2}-5}{(z^2-1)(z^2+1)}=\frac{z^{2}-5}{(z+1)(z-1)(z+i)(z-i)}</math>
इस प्रकार, f(z) को परिमेय कार्यों में विघटित किया जा सकता है जिनके हर z+1, z−1, z+i, z−i हैं। चूँकि प्रत्येक पद की घात एक है, −1, 1, −i और i सरल ध्रुव हैं।
इस प्रकार, ''f''(''z'') को परिमेय कार्यों में विघटित किया जा सकता है जिनके हर ''z''+1, ''z''−1, ''z''+i, ''z''−i हैं। चूँकि प्रत्येक पद की घात एक है, −1, 1, −i और i सरल ध्रुव हैं।


इसलिए, प्रत्येक ध्रुव से जुड़े अवशेष, द्वारा दिए गए हैं
इसलिए, प्रत्येक ध्रुव से जुड़े अवशेष, द्वारा दिए गए हैं
Line 303: Line 303:
=== उदाहरण 5 (सीमा विधि) ===
=== उदाहरण 5 (सीमा विधि) ===


आंशिक अंश अपघटन खोजने के लिए सीमा (गणित) का उपयोग किया जा सकता है।<ref>{{cite book|last=Bluman|first=George W.| title=Problem Book for First Year Calculus|year=1984|publisher=Springer-Verlag|location=New York|pages=250–251}}</ref> निम्नलिखित उदाहरण पर विचार करें:
आंशिक अंश अपघटन खोजने के लिए सीमाओं का उपयोग किया जा सकता है।<ref>{{cite book|last=Bluman|first=George W.| title=Problem Book for First Year Calculus|year=1984|publisher=Springer-Verlag|location=New York|pages=250–251}}</ref> निम्नलिखित उदाहरण पर विचार करें:


<math display="block"> \frac{1}{x^3 - 1}</math>
<math display="block"> \frac{1}{x^3 - 1}</math>
Line 309: Line 309:


<math display="block"> \frac{1}{x^3 - 1} = \frac{1}{(x - 1)(x^2 + x + 1)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + x + 1}.</math>
<math display="block"> \frac{1}{x^3 - 1} = \frac{1}{(x - 1)(x^2 + x + 1)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + x + 1}.</math>
से गुणा करना <math>x-1</math>, और जब सीमा ले रहा है <math>x \to 1</math>, हम पाते हैं
<math>x-1</math> से गुणा करने पर, और जब <math>x \to 1</math> सीमा लेता है <math>x \to 1</math>, हम पाते हैं


<math display="block">\lim_{x \to 1} \left((x-1)\left ( \frac{A}{x-1} + \frac{Bx + C}{x^2 + x + 1} \right )\right) = \lim_{x \to 1} A + \lim_{x \to 1}\frac{(x-1)(Bx + C)}{x^2 + x + 1} =A.</math>
<math display="block">\lim_{x \to 1} \left((x-1)\left ( \frac{A}{x-1} + \frac{Bx + C}{x^2 + x + 1} \right )\right) = \lim_{x \to 1} A + \lim_{x \to 1}\frac{(x-1)(Bx + C)}{x^2 + x + 1} =A.</math>
Line 318: Line 318:


<math display="block">A = \frac{1}{3}.</math>
<math display="block">A = \frac{1}{3}.</math>
से गुणा करना {{math|''x''}} और जब सीमा ले रहा है <math>x \to \infty</math>, अपने पास
'''से गुणा करना''' {{math|''x''}} से गुणा करने पर और जब <math>x \to \infty</math> सीमा ले रहा है '''<math>x \to \infty</math>''', अपने पास


<math display="block">\lim_{x \to \infty} x\left( \frac{A}{x-1} + \frac{Bx + C}{x^2 + x + 1} \right )= \lim_{x \to \infty} \frac{Ax}{x-1} + \lim_{x \to \infty} \frac{Bx^2+Cx}{x^2+x+1}= A+B,</math>
<math display="block">\lim_{x \to \infty} x\left( \frac{A}{x-1} + \frac{Bx + C}{x^2 + x + 1} \right )= \lim_{x \to \infty} \frac{Ax}{x-1} + \lim_{x \to \infty} \frac{Bx^2+Cx}{x^2+x+1}= A+B,</math>
Line 324: Line 324:


<math display="block">\lim_{x \to \infty} \frac{x}{(x - 1)(x^2 + x + 1)} =0.</math>
<math display="block">\lim_{x \to \infty} \frac{x}{(x - 1)(x^2 + x + 1)} =0.</math>
यह संकेत करता है {{math|1=''A'' + ''B'' = 0}} इसलिए <math>B = -\frac{1}{3}</math>.
'''यह संकेत करता है''' {{math|1=''A'' + ''B'' = 0}} यह संकेत करता है, इसलिए <math>B = -\frac{1}{3}</math>.


के लिए {{math|1=''x'' = 0}}, हम पाते हैं  <math>-1 = -A + C,</math> और इस तरह <math>C = -\tfrac{2}{3}</math>.
'''के लिए''' {{math|1=''x'' = 0}} के लिए, हम पाते हैं  <math>-1 = -A + C,</math> और इस प्रकार <math>C = -\tfrac{2}{3}</math>.


सब कुछ एक साथ रखकर, हम अपघटन प्राप्त करते हैं
सब कुछ एक साथ रखकर, हम अपघटन प्राप्त करते हैं
Line 337: Line 337:


<math display="block">\int \frac{x^4+x^3+x^2+1}{x^2+x-2} \,dx</math>
<math display="block">\int \frac{x^4+x^3+x^2+1}{x^2+x-2} \,dx</math>
अपघटन करने से पहले, यह स्पष्ट है कि हमें बहुपद लंबे विभाजन और भाजक का [[गुणन]]खंडन करना चाहिए। ऐसा करने का परिणाम होगा:
अपघटन करने से पहले, यह स्पष्ट है कि हमें बहुपद लंबे विभाजन और भाजक का [[गुणन|गुणनखंडन]] '''खंडन''' करना चाहिए। ऐसा करने पर परिणाम यह होगा:


<math display="block">\int \left(x^2 + 3 + \frac{-3x+7}{(x+2)(x-1)}\right) dx</math>
<math display="block">\int \left(x^2 + 3 + \frac{-3x+7}{(x+2)(x-1)}\right) dx</math>
Line 344: Line 344:
<math display="block">\int \left(x^2+3+ \frac{-3x+7}{(x+2)(x-1)}\right) dx = \int \left(x^2+3+ \frac{A}{(x+2)}+\frac{B}{(x-1)}\right) dx</math>
<math display="block">\int \left(x^2+3+ \frac{-3x+7}{(x+2)(x-1)}\right) dx = \int \left(x^2+3+ \frac{A}{(x+2)}+\frac{B}{(x-1)}\right) dx</math>
इसलिए:
इसलिए:
<math display="block">A(x-1)+B(x+2)=-3x+7</math>.
<math display="block">A(x-1)+B(x+2)=-3x+7</math>हमारे मानों को प्रतिस्थापित करने पर, इस स्थिति में, जहाँ x=1 को B के लिए हल करना है और x=-2 को A के लिए हल करना है, हम इसका परिणाम प्राप्त करेंगे:
हमारे मानों को प्रतिस्थापित करने पर, इस स्थिति में, जहाँ x=1 को B के लिए हल करना है और x=-2 को A के लिए हल करना है, हम इसका परिणाम प्राप्त करेंगे:


<math display="block">A=\frac{-13}{3} \ , B=\frac{4}{3} </math>
<math display="block">A=\frac{-13}{3} \ , B=\frac{4}{3} </math>
Line 359: Line 358:
<math display="block">P(x), Q(x), A_1(x),\ldots, A_r(x)</math>
<math display="block">P(x), Q(x), A_1(x),\ldots, A_r(x)</math>
वास्तविक या जटिल बहुपद हो
वास्तविक या जटिल बहुपद हो
ये मान लीजिए
ये मान लीजिए


<math display="block">Q=\prod_{j=1}^{r}(x-\lambda_j)^{\nu_j},</math>
<math display="block">Q=\prod_{j=1}^{r}(x-\lambda_j)^{\nu_j},</math>
संतुष्ट
संतुष्ट करता है
<math display="block">\deg A_1<\nu_1, \ldots, \deg A_r<\nu_r,  \quad \text{and} \quad \deg(P)<\deg(Q)=\sum_{j=1}^{r}\nu_j.</math>
<math display="block">\deg A_1<\nu_1, \ldots, \deg A_r<\nu_r,  \quad \text{and} \quad \deg(P)<\deg(Q)=\sum_{j=1}^{r}\nu_j.</math>
परिभाषित भी करें
परिभाषित भी करें
Line 370: Line 370:


<math display="block">\frac{P}{Q}=\sum_{j=1}^{r}\frac{A_j}{(x-\lambda_j)^{\nu_j}}</math>
<math display="block">\frac{P}{Q}=\sum_{j=1}^{r}\frac{A_j}{(x-\lambda_j)^{\nu_j}}</math>
यदि, और केवल यदि, प्रत्येक बहुपद <math>A_i(x)</math> का टेलर बहुपद है <math>\tfrac{P}{Q_i}</math> आदेश की <math>\nu_i-1</math> बिंदु पर <math>\lambda_i</math>:
यदि, और केवल यदि, प्रत्येक बहुपद <math>A_i(x)</math> का टेलर बहुपद है <math>\tfrac{P}{Q_i}</math> क्रम में <math>\nu_i-1</math> बिंदु पर <math>\lambda_i</math>:


<math display="block">A_i(x):=\sum_{k=0}^{\nu_i-1} \frac{1}{k!}\left(\frac{P}{Q_i}\right)^{(k)}(\lambda_i)\ (x-\lambda_i)^k. </math>
<math display="block">A_i(x):=\sum_{k=0}^{\nu_i-1} \frac{1}{k!}\left(\frac{P}{Q_i}\right)^{(k)}(\lambda_i)\ (x-\lambda_i)^k. </math>
Line 377: Line 377:
=== प्रमाण का रेखाचित्र ===
=== प्रमाण का रेखाचित्र ===


उपरोक्त आंशिक अंश अपघटन का अर्थ है, प्रत्येक 1 ≤ i ≤ r के लिए, बहुपद विस्तार
उपरोक्त आंशिक अंश अपघटन का अर्थ है, प्रत्येक 1 ≤ ''i'' ≤ ''r'' के लिए, बहुपद विस्तार


<math display="block">\frac{P}{Q_i}=A_i + O((x-\lambda_i)^{\nu_i}), \qquad \text{for } x\to\lambda_i,</math>
<math display="block">\frac{P}{Q_i}=A_i + O((x-\lambda_i)^{\nu_i}), \qquad \text{for } x\to\lambda_i,</math>
इसलिए <math>A_i</math> का टेलर बहुपद है <math>\tfrac{P}{Q_i}</math>, क्रम के बहुपद विस्तार की एकता के कारण <math>\nu_i-1</math>, और धारणा से <math>\deg A_i<\nu_i</math>.
इसलिए <math>A_i</math> का टेलर बहुपद है <math>\tfrac{P}{Q_i}</math>, क्रम के बहुपद विस्तार की एकता के कारण <math>\nu_i-1</math>, और धारणा के अनुसार <math>\deg A_i<\nu_i</math>.


इसके विपरीत, यदि <math>A_i</math> टेलर बहुपद हैं, प्रत्येक पर उपरोक्त विस्तार <math>\lambda_i</math> पकड़ो, इसलिए हमारे पास भी है
इसके विपरीत, यदि <math>A_i</math> टेलर बहुपद हैं, प्रत्येक पर उपरोक्त विस्तार <math>\lambda_i</math> धारण करते हैं, इसलिए हमारे पास भी है


<math display="block">P-Q_i A_i = O((x-\lambda_i)^{\nu_i}), \qquad \text{for } x\to\lambda_i,</math>
<math display="block">P-Q_i A_i = O((x-\lambda_i)^{\nu_i}), \qquad \text{for } x\to\lambda_i,</math>
जिसका अर्थ है कि बहुपद <math> P-Q_iA_i</math> से विभाज्य है <math>  (x-\lambda_i)^{\nu_i}.</math>
जिसका अर्थ है कि बहुपद <math> P-Q_iA_i</math> '''से विभाज्य है''' <math>  (x-\lambda_i)^{\nu_i}.</math> से विभाज्य है;


के लिए <math> j\neq i, Q_jA_j</math> से विभाज्य भी है <math>(x-\lambda_i)^{\nu_i}</math>, इसलिए
'''के लिए''' <math> j\neq i, Q_jA_j</math> के लिए '''से विभाज्य भी है''' <math>(x-\lambda_i)^{\nu_i}</math>से विभाज्य भी है, इसलिए


<math display="block">  P- \sum_{j=1}^{r}Q_jA_j</math>
<math display="block">  P- \sum_{j=1}^{r}Q_jA_j</math>
से विभाज्य है <math>Q</math>. तब से
<math>Q</math> से विभाज्य है, तब


<math display="block"> \deg\left( P- \sum_{j=1}^{r}Q_jA_j \right) < \deg(Q)</math>
<math display="block"> \deg\left( P- \sum_{j=1}^{r}Q_jA_j \right) < \deg(Q)</math>
Line 396: Line 396:


<math display="block">  P- \sum_{j=1}^{r}Q_jA_j=0,</math>
<math display="block">  P- \sum_{j=1}^{r}Q_jA_j=0,</math>
और हम आंशिक अंश अपघटन को विभाजित करके पाते हैं <math>  Q</math>.
और हम आंशिक अंश अपघटन को <math>  Q</math> से विभाजित करके पाते हैं,


== पूर्णांकों के अंश ==
== पूर्णांकों के अंश ==


आंशिक अंशों के विचार को अन्य [[अभिन्न डोमेन]]ों के लिए सामान्यीकृत किया जा सकता है, जैसे कि पूर्णांकों की अंगूठी जहां अभाज्य संख्याएँ अलघुकरणीय भाजक की भूमिका लेती हैं। उदाहरण के लिए:
आंशिक अंशों के विचार को अन्य [[अभिन्न डोमेन]] के लिए सामान्यीकृत किया जा सकता है, जैसे कि पूर्णांकों की अंगूठी जहां अभाज्य संख्याएँ अलघुकरणीय भाजक की भूमिका लेती हैं। उदाहरण के लिए:


<math display="block">\frac{1}{18} = \frac{1}{2} - \frac{1}{3} - \frac{1}{3^2}. </math>
<math display="block">\frac{1}{18} = \frac{1}{2} - \frac{1}{3} - \frac{1}{3^2}. </math>

Revision as of 00:23, 10 February 2023

बीजगणित में, आंशिक अंश अपघटन या तर्कसंगत अंश का आंशिक अंश विस्तार (अर्थात, अंश (गणित) जैसे कि अंश और भाजक दोनों बहुपद हैं) संचालन है जिसमें अंश को बहुपद के योग और सरल भाजक के साथ एक या अधिक भिन्न के रूप में व्यक्त किया जाता है (संभवतः शून्य)।[1]

आंशिक अंश अपघटन का महत्व इस तथ्य में निहित है कि यह तर्कसंगत कार्य के साथ विभिन्न संगणनाओं के लिए एल्गोरिदम प्रदान करता है, जिसमें एंटीडेरिवेटिव्स की स्पष्ट गणना टेलर श्रृंखला विस्तार, व्युत्क्रम Z-रूपांतरण, और व्युत्क्रम लाप्लास रूपांतरण सम्मिलित है।[2] इस अवधारणा की खोज स्वतंत्र रूप से 1702 में जोहान बर्नौली और गॉटफ्रीड लीबनिज दोनों ने की थी।[3]

प्रतीकों में, फार्म के तर्कसंगत अंश का आंशिक अंश अपघटन जहाँ पर f और g बहुपद हैं, इसकी अभिव्यक्ति है

जहाँ

p(x) बहुपद है, और, प्रत्येक के लिए j, भाजक gj (x) अलघुकरणीय बहुपद का घातांक है (जो धनात्मक अंशों के बहुपदों में गुणनखंडनीय नहीं है), और अंश fj (x) इस अलघुकरणीय बहुपद की घात से छोटी कोटि का बहुपद है।

जब स्पष्ट संगणना सम्मिलित होती है, तो मोटे अपघटन को अधिकांशतः पसंद किया जाता है, जिसमें परिणाम के विवरण में अलघुकरणीय बहुपद को वर्ग-मुक्त बहुपद द्वारा प्रतिस्थापित किया जाता है। यह बहुत सरल-से-गणना वर्ग-मुक्त गुणनखंडन द्वारा बहुपद गुणनखंडन को परिवर्तित करने की अनुमति देता है। यह अधिकांश अनुप्रयोगों के लिए पर्याप्त है, और इनपुट बहुपद के गुणांक पूर्णांक या परिमेय संख्या होने पर अपरिमेय संख्या को प्रस्तुत करने से बचता है।

मूल सिद्धांत

माना

एक परिमेय भिन्न हो, जहाँ F और G एक क्षेत्र में अनिश्चित (चर) x में अविभाज्य बहुपद हैं। निम्नलिखित कमी चरणों को आगमनात्मक रूप से प्रयुक्त करके आंशिक अंश का अस्तित्व सिद्ध किया जा सकता है।

बहुपद भाग

ऐसे दो बहुपद E और F1 का अस्तित्व है कि

और
जहाँ बहुपद P के बहुपद की डिग्री को दर्शाता है

यह F द्वारा G बहुपदों के यूक्लिडियन विभाजन से तुरंत परिणामित होता है, जो E और F1 के अस्तित्व की पुष्टि करता है, जैसे कि और

यह अगले चरणों में मान लेने की अनुमति देता है कि


भाजक के गुणनखंड

यदि और

जहाँ पर G1 और G2 कोप्राइम बहुपद हैं, तो बहुपद का अस्तित्व है जैसे कि

और
इसे इस प्रकार सिद्ध किया जा सकता है। बेज़ाउट की पहचान बहुपदों C और D के अस्तित्व पर जोर देती है जैसे कि


(परिकल्पना द्वारा 1, G1 और G2 का बहुपद महत्तम समापवर्तक है)

माना साथ के बहुपदों DF द्वारा का यूक्लिडियन विभाजन हो, सेटिंग मिलता है

यह दिखाना शेष है भिन्नों के अंतिम योग को सामान्य भाजक में कम करके, प्राप्त करता है

और इस तरह


भाजक में शक्तियाँ

पूर्ववर्ती अपघटन का उपयोग करके किसी को के साथ रूप के अंश मिलते हैं, साथ जहाँ G अलघुकरणीय बहुपद है। अगर k > 1, कोई और विघटित कर सकता है, इसका उपयोग करके अलघुकरणीय बहुपद वर्ग-मुक्त बहुपद है, अर्थात बहुपद और उसके व्युत्पन्न का सबसे बड़ा सामान्य भाजक है। अगर , G का व्युत्पन्न है, बेज़ाउट की पहचान बहुपद C और D प्रदान करती है जैसे कि और इस तरह का यूक्लिडियन विभाजन द्वारा बहुपद देता है और जैसे कि और सेटिंग मिलता है

साथ के साथ

इस प्रक्रिया के साथ पुनरावृति करना की जगह अंततः निम्नलिखित प्रमेय की ओर जाता है।

कथन

Theorem — माना f और g एक क्षेत्र पर शून्येतर बहुपद हो K. लिखें g विशिष्ट अलघुकरणीय बहुपदों की घातों के उत्पाद के रूप में :

(अद्वितीय) बहुपद हैं b और aij के साथ deg aij < deg pi जैसे कि

यदि deg f < deg g, तब b = 0.

विशिष्टता इस प्रकार सिद्ध की जा सकती है। माना d = max(1 + deg f, deg g). सभी एक साथ, b और यह aij के d गुणांक हैं। अपघटन का आकार d से कम डिग्री के गुणांक वैक्टर से बहुपद f तक रैखिक मानचित्र को परिभाषित करता है। अस्तित्व प्रमाण का अर्थ है कि यह मानचित्र आच्छादक है। चूंकि दो वेक्टर रिक्त स्थान समान आयाम हैं, नक्शा भी इंजेक्शन है, जिसका अर्थ अपघटन की विशिष्टता है। वैसे, यह प्रमाण रैखिक बीजगणित के माध्यम से अपघटन की गणना के लिए एल्गोरिथ्म को प्रेरित करता है।

अगर K जटिल संख्याओं का क्षेत्र है, बीजगणित के मौलिक प्रमेय का अर्थ है कि सभी pi डिग्री है, और सभी अंश स्थिरांक हैं। जब K वास्तविक संख्या का क्षेत्र है, इनमें से कुछ pi द्विघात हो सकता है, इसलिए, आंशिक अंश अपघटन में, द्विघात बहुपदों की घातों द्वारा रैखिक बहुपदों का भागफल भी हो सकता है।

पिछले प्रमेय में, अलग-अलग अलघुकरणीय बहुपदों को युग्मवार कोप्राइम बहुपदों द्वारा प्रतिस्थापित किया जा सकता है जो उनके व्युत्पन्न के साथ सहअभाज्य हैं। उदाहरण के लिए, pi g के वर्ग मुक्त गुणनखंड के कारक हो सकते हैं। जब K परिमेय संख्याओं का क्षेत्र है, जैसा कि सामान्यतः कंप्यूटर बीजगणित में होता है, तो यह आंशिक अंश अपघटन की गणना के लिए सबसे बड़े सामान्य विभाजक संगणना द्वारा गुणनखंड को परिवर्तित करने की अनुमति देता है।

प्रतीकात्मक एकीकरण के लिए प्रयोजन

प्रतीकात्मक एकीकरण के प्रयोजन के लिए, पूर्ववर्ती परिणाम में परिष्कृत किया जा सकता है

{math_theorem|name=Theorem| माना f और g एक क्षेत्र K पर गैर-शून्य बहुपद हैं। g को जोड़ीदार कोप्राइम बहुपदों की शक्तियों के उत्पाद के रूप में लिखें, जिनकी बीजीय रूप से बंद क्षेत्र में कोई बहुमूल नहीं है:

deg cij < deg pi के साथ (अद्वितीय) बहुपद b और cij हैं

जहाँ के व्युत्पन्न को दर्शाता है}

यह अंतिम योग के एकीकरण के लिए तर्कसंगत फलन के एंटीडेरिवेटिव की गणना को कम करता है, जिसे लॉगरिदमिक भाग कहा जाता है, क्योंकि इसका एंटीडेरिवेटिव लॉगरिदम का रैखिक संयोजन है।

प्रमेय में अपघटन की गणना करने के लिए विभिन्न विधियाँ हैं। सरल विधि को चार्ल्स हर्मिट की विधि कहा जाता है। सबसे पहले, b की गणना तुरंत f के यूक्लिडियन विभाजन g द्वारा की जाती है, उस स्थिति को कम करते हुए जहाँ deg(f) < deg(g) होता है। इसके बाद, कोई deg(cij) < deg(pi) जानता है, इसलिए प्रत्येक cij को अज्ञात गुणांक वाले बहुपद के रूप में लिख सकते हैं। प्रमेय में अंशों के योग को सामान्य भाजक में कम करना, और दो अंशों में x की प्रत्येक शक्ति के गुणांक को बराबर करना, रैखिक समीकरणों की प्रणाली प्राप्त करता है जिसे अज्ञात गुणांकों के लिए वांछित (अद्वितीय) मान प्राप्त करने के लिए हल किया जा सकता है। .

प्रक्रिया

दो बहुपद और दिए गए हैं, जहां αi विशिष्ट स्थिरांक हैं और deg P < n, आंशिक अंशों के लिए स्पष्ट अभिव्यक्तियाँ यह मान कर प्राप्त की जा सकती हैं

और ci स्थिरांक के लिए हल करना, प्रतिस्थापन द्वारा, x की घात वाले पदों के गुणांकों को बराबर करके, या अन्यथा। (यह अनिर्धारित गुणांक की विधि का एक प्रकार है। समीकरण के दोनों पक्षों को Q(x) से गुणा करने के बाद, समीकरण का एक पक्ष विशिष्ट बहुपद है, और दूसरी तरफ अनिर्धारित गुणांक वाला बहुपद है। समानता है केवल तभी संभव है जब x की समान शक्तियों के गुणांक समान हों। इससे n अज्ञात, ck में n समीकरण प्राप्त होते हैं)।

अधिक प्रत्यक्ष संगणना, जो भाषा प्रक्षेप से दृढ़ता से संबंधित है, में लेखन सम्मिलित है

जहाँ , बहुपद का व्युत्पन्न है, के गुणांक f/g का अवशेष (जटिल विश्लेषण) कहा जाता है।

यह दृष्टिकोण कई अन्य स्थितियों के लिए उत्तरदायी नहीं है, लेकिन तदनुसार संशोधित किया जा सकता है:

  • यदि फिर बहुपद लंबे विभाजन का उपयोग करते हुए, Q द्वारा P के यूक्लिडियन विभाजन को निष्पादित करना आवश्यक है P(x) = E(x) Q(x) + R(x) साथ deg R < n. Q(x) से भाग देने पर यह मिलता है
    और फिर शेष अंश के लिए आंशिक अंशों की तलाश करें (जो परिभाषा के अनुसार deg R < deg Q संतुष्ट करता है)
  • यदि Q(x) में ऐसे कारक सम्मिलित हैं जो दिए गए क्षेत्र में अपरिवर्तनीय हैं, तो प्रत्येक आंशिक अंश के अंश N(x) में इस तरह के एक कारक F(x) के साथ deg N < deg F को बहुपद के रूप में मांगा जाना चाहिए। बल्कि एक स्थिरांक के रूप में। उदाहरण के लिए, R पर निम्नलिखित अपघटन लें:
  • मान लीजिए Q(x) = (xα)r S(x) और S(α) ≠ 0 है, α गुणक r के Q(x) का एक मूल है। आंशिक अंश अपघटन में, (xα) की r पहली शक्तियाँ (xα) आंशिक भिन्नों के हर के रूप में घटित होंगी (संभवतः शून्य अंश के साथ)। उदाहरण के लिए, यदि S(x) = 1 आंशिक अंश अपघटन का रूप है


चित्रण

इस प्रक्रिया के उदाहरण आवेदन में, (3x + 5)/(1 − 2x)2 को रूप में विघटित किया जा सकता है

समाशोधन भाजक यह दर्शाता है 3x + 5 = A + B(1 − 2x), x की शक्तियों के गुणांक का विस्तार और समीकरण करना देता है

5 = A + B और 3x = −2Bx

A और B के लिए रैखिक समीकरणों की इस प्रणाली को हल करने पर A = 13/2 और B = −3/2 प्राप्त होता है। इस तरह,


अवशेष विधि

सम्मिश्र संख्याओं में, मान लीजिए कि f(x) परिमेय उचित भिन्न है, और इसे विघटित किया जा सकता है

माना
तब लॉरेंट श्रृंखला अद्वितीयता के अनुसार, aij पद (xxi)−1 का गुणांक, gij(x) के लॉरेंट विस्तार में बिंदु xi के बारे मेंi, है, अर्थात, इसका अवशेष (जटिल विश्लेषण)
यह सीधे सूत्र द्वारा दिया गया है
या स्थिति में जब xi साधारण मूल है,
जब


वास्तविक से अधिक

तर्कसंगत कार्यों के वास्तविक-मूल्यवान प्रतिपक्षी को खोजने के लिए आंशिक अंशों का उपयोग वास्तविक-चर अभिन्न कलन में किया जाता है। वास्तविक तर्कसंगत कार्यों के आंशिक अंश अपघटन का उपयोग उनके व्युत्क्रम लाप्लास रूपांतरणों को खोजने के लिए भी किया जाता है। वास्तविक पर आंशिक अंश अपघटन के अनुप्रयोगों के लिए, देखें

  • प्रतीकात्मक एकीकरण के लिए आवेदन, ऊपर
  • लाप्लास रूपांतरण में आंशिक अंश

सामान्य परिणाम

मान लीजिए f(x) वास्तविक संख्याओं पर कोई परिमेय फलन है। दूसरे शब्दों में, मान लीजिए कि वास्तविक बहुपद फलन p(x) और q(x) ≠ 0 उपस्थित हैं, जैसे कि

q(x) के अग्रणी गुणांक द्वारा अंश और हर दोनों को विभाजित करके, हम सामान्यता के हानि के बिना मान सकते हैं कि q(x) एकात्मक बहुपद है। बीजगणित के मौलिक प्रमेय से हम लिख सकते हैं

जहाँ a1,..., am, b1,..., bn, c1,..., cn वास्तविक संख्याएँ हैं, जिनमें bi2 − 4ci < 0, और j1,..., jm, k1,..., kn सकारात्मक पूर्णांक हैं। शब्द (xai) q(x) के रैखिक कारक हैं जो q(x) की वास्तविक जड़ों के अनुरूप हैं, और शब्द (xi2 + bix + ci) q(x) के अपरिवर्तनीय द्विघात कारक हैं जो q(x) की जटिल संख्या संयुग्मी जड़ों के जोड़े के अनुरूप हैं।

तब f(x) का आंशिक अंश अपघटन निम्न है:

यहाँ, P(x) (संभवतः शून्य) बहुपद है, और Air, Bir, और Cir वास्तविक स्थिरांक हैं। स्थिरांकों को खोजने के कई विधियाँ हैं।

सामान्य भाजक q(x) से गुणा करना सबसे सरल विधि है। इसके बाद हम बहुपदों का समीकरण प्राप्त करते हैं जिसका बायाँ पक्ष केवल p(x) है और जिसके दाएँ पक्ष में गुणांक हैं जो स्थिरांक Air, Bir, और Cir के रैखिक व्यंजक हैं। चूंकि दो बहुपद समान हैं यदि और केवल यदि उनके संगत गुणांक समान हैं, तो हम समान पदों के गुणांकों की बराबरी कर सकते हैं। इस तरह, रैखिक समीकरणों की प्रणाली प्राप्त होती है जिसका हमेशा अनूठा समाधान होता है। यह समाधान रैखिक बीजगणित के किसी भी मानक विधियों का उपयोग करके पाया जा सकता है। इसे सीमाओं के साथ भी पाया जा सकता है (उदाहरण 5 देखें)।

उदाहरण

उदाहरण 1

यहाँ, भाजक दो अलग-अलग रैखिक कारकों में विभाजित होता है:

इसलिए हमारे पास आंशिक अंश अपघटन है

बायीं ओर के हर से गुणा करने पर बहुपद सर्वसमिका प्राप्त होती है

इस समीकरण में x = −3 को प्रतिस्थापित करने पर A = −1/4 प्राप्त होता है, और x = 1 को प्रतिस्थापित करने पर B = 1/4 प्राप्त होता है, जिससे


उदाहरण 2

बहुपद लंबे विभाजन के बाद, हमारे पास है

कारक x2 − 4x + 8 अपने विविक्तकर के रूप में वास्तविक से कम नहीं किया जा सकता है (−4)2 − 4×8 = −16 नकारात्मक है। इस प्रकार वास्तविक पर आंशिक अंश अपघटन का आकार होता है

x3 − 4x2 + 8 से गुणा करने पर, हमारे पास बहुपद सर्वसमिका है

x = 0 लेने पर, हम देखते हैं कि 16 = 8A, इसलिए A = 2, x2 गुणांकों की तुलना करने पर, हम देखते हैं कि 4 = A + B = 2 + B, इसलिए B = 2। रैखिक गुणांकों की तुलना करने पर, हम देखते हैं कि −8 = −4A + C = −8 + C, इसलिए C = 0। कुल मिलाकर,

जटिल संख्याओं का उपयोग करके अंश को पूरी तरह से विघटित किया जा सकता है। बीजगणित के मौलिक प्रमेय के अनुसार डिग्री n के प्रत्येक जटिल बहुपद में n (जटिल) मूल होते हैं (जिनमें से कुछ को दोहराया जा सकता है)। दूसरे अंश को विघटित किया जा सकता है:

हर से गुणा करने पर मिलता है:

इस समीकरण के दोनों पक्षों के x और स्थिरांक (x के संबंध में) के गुणांकों की बराबरी करने पर, हमें D और E दो रैखिक समीकरणों की प्रणाली मिलती है, जिसका समाधान है

इस प्रकार हमारे पास पूर्ण अपघटन है:

कोई अवशेष विधि के साथ सीधे A, D और E की गणना भी कर सकता है (नीचे उदाहरण 4 भी देखें)।

उदाहरण 3

यह उदाहरण लगभग सभी विधियाँ दिखाता है जिनका हमें उपयोग करने की आवश्यकता हो सकती है, कंप्यूटर बीजगणित प्रणाली से परामर्श करने से कम।

बहुपद दीर्घ विभाजन और बहुपद गुणनखंडन के बाद हर, हमारे पास है

आंशिक अंश अपघटन रूप लेता है

बायीं ओर के हर से गुणा करने पर हमें बहुपद सर्वसमिका प्राप्त होती है

अब हम गुणांकों की गणना करने के लिए x के विभिन्न मानों का उपयोग करते हैं:

इसका समाधान हमारे पास है:

इन मानों का उपयोग करके हम लिख सकते हैं:

हम दोनों तरफ x6 और x5 के गुणांकों की तुलना करते हैं, और हमारे पास है:

इसलिए:

जो हमें B = 0 देता है। इस प्रकार आंशिक अंश अपघटन द्वारा दिया जाता है:

वैकल्पिक रूप से, विस्तार करने के अतिरिक्त, कुछ डेरिवेटिव्स की गणना करने वाले गुणांक पर अन्य रैखिक निर्भरता प्राप्त कर सकते हैं उपरोक्त बहुपद पहचान में। (इसके लिए, याद रखें कि x = a का अवकलज (xa)mp(x) विलुप्त हो जाता है यदि m > 1 और m = 1 के लिए केवल p(a) है।) उदाहरण के लिए x = 1 पर पहला व्युत्पन्न देता है

अर्थात 8 = 4B + 8 तो B = 0।

उदाहरण 4 (अवशेष विधि)

इस प्रकार, f(z) को परिमेय कार्यों में विघटित किया जा सकता है जिनके हर z+1, z−1, z+i, z−i हैं। चूँकि प्रत्येक पद की घात एक है, −1, 1, −i और i सरल ध्रुव हैं।

इसलिए, प्रत्येक ध्रुव से जुड़े अवशेष, द्वारा दिए गए हैं

हैं

क्रमशः, और


उदाहरण 5 (सीमा विधि)

आंशिक अंश अपघटन खोजने के लिए सीमाओं का उपयोग किया जा सकता है।[4] निम्नलिखित उदाहरण पर विचार करें:

सबसे पहले, भाजक का गुणनखंड करें जो अपघटन को निर्धारित करता है:

से गुणा करने पर, और जब सीमा लेता है , हम पाते हैं

वहीं दूसरी ओर,

और इस तरह:

से गुणा करना x से गुणा करने पर और जब सीमा ले रहा है , अपने पास

और

यह संकेत करता है A + B = 0 यह संकेत करता है, इसलिए .

के लिए x = 0 के लिए, हम पाते हैं और इस प्रकार .

सब कुछ एक साथ रखकर, हम अपघटन प्राप्त करते हैं


उदाहरण 6 (अभिन्न)

मान लीजिए हमारे पास अनिश्चितकालीन अभिन्न है:

अपघटन करने से पहले, यह स्पष्ट है कि हमें बहुपद लंबे विभाजन और भाजक का गुणनखंडन खंडन करना चाहिए। ऐसा करने पर परिणाम यह होगा:

इस पर, अब हम आंशिक अंश अपघटन कर सकते हैं।

इसलिए:
हमारे मानों को प्रतिस्थापित करने पर, इस स्थिति में, जहाँ x=1 को B के लिए हल करना है और x=-2 को A के लिए हल करना है, हम इसका परिणाम प्राप्त करेंगे:

यह सब वापस हमारे अभिन्न अंग में प्लग करने से हमें उत्तर खोजने की अनुमति मिलती है:


टेलर बहुपद की भूमिका

परिमेय फलन का आंशिक अंश अपघटन टेलर के प्रमेय से निम्नानुसार संबंधित हो सकता है। माना

वास्तविक या जटिल बहुपद हो

ये मान लीजिए

संतुष्ट करता है
परिभाषित भी करें

तो हमारे पास हैं

यदि, और केवल यदि, प्रत्येक बहुपद का टेलर बहुपद है क्रम में बिंदु पर :

टेलर का प्रमेय (वास्तविक या जटिल स्थिति में) तब आंशिक अंश अपघटन के अस्तित्व और विशिष्टता का प्रमाण प्रदान करता है, और गुणांकों का लक्षण वर्णन करता है।

प्रमाण का रेखाचित्र

उपरोक्त आंशिक अंश अपघटन का अर्थ है, प्रत्येक 1 ≤ ir के लिए, बहुपद विस्तार

इसलिए का टेलर बहुपद है , क्रम के बहुपद विस्तार की एकता के कारण , और धारणा के अनुसार .

इसके विपरीत, यदि टेलर बहुपद हैं, प्रत्येक पर उपरोक्त विस्तार धारण करते हैं, इसलिए हमारे पास भी है

जिसका अर्थ है कि बहुपद से विभाज्य है से विभाज्य है;

के लिए के लिए से विभाज्य भी है से विभाज्य भी है, इसलिए

से विभाज्य है, तब

हमारे पास है

और हम आंशिक अंश अपघटन को से विभाजित करके पाते हैं,

पूर्णांकों के अंश

आंशिक अंशों के विचार को अन्य अभिन्न डोमेन के लिए सामान्यीकृत किया जा सकता है, जैसे कि पूर्णांकों की अंगूठी जहां अभाज्य संख्याएँ अलघुकरणीय भाजक की भूमिका लेती हैं। उदाहरण के लिए:


टिप्पणियाँ

  1. Larson, Ron (2016). Algebra & Trigonometry (in English). Cengage Learning. ISBN 9781337271172.
  2. Horowitz, Ellis. "Algorithms for partial fraction decomposition and rational function integration." Proceedings of the second ACM symposium on Symbolic and algebraic manipulation. ACM, 1971.
  3. Grosholz, Emily (2000). The Growth of Mathematical Knowledge. Kluwer Academic Publilshers. p. 179. ISBN 978-90-481-5391-6.
  4. Bluman, George W. (1984). Problem Book for First Year Calculus. New York: Springer-Verlag. pp. 250–251.


संदर्भ


बाहरी कड़ियाँ