गणित: Difference between revisions

From Vigyanwiki
(minor changes)
(minor changes)
Line 94: Line 94:
=== बीजगणित ===
=== बीजगणित ===
{{Main|Algebra}}
{{Main|Algebra}}
बीजगणित समीकरणों और सूत्रों में हेरफेर की कला है। डायोफैंटस (तीसरी शताब्दी) और अल-ख्वारिज्मी (9वीं शताब्दी) बीजगणित के दो प्रमुख अग्रदूत थे। पहले व्यक्ति ने कुछ समीकरणों को हल किया जिसमें अज्ञात प्राकृतिक संख्याएं शामिल थीं, जब तक कि वह समाधान प्राप्त नहीं कर लेता। दूसरे ने समीकरणों को बदलने के लिए व्यवस्थित तरीकों की शुरुआत की (जैसे कि एक समीकरण के एक तरफ से दूसरी तरफ एक शब्द को स्थानांतरित करना)। बीजगणित शब्द अरबी शब्द अल-जबर से लिया गया है जिसका अर्थ है "टूटे हुए हिस्सों के लिए पुनर्मिलन" '''[14]''' जिसका उपयोग उन्होंने अपने मुख्य ग्रंथ के शीर्षक में इन विधियों में से एक के नामकरण के लिए किया था।
बीजगणित समीकरणों और सूत्रों में हेरफेर की कला है। डायोफैंटस (तीसरी शताब्दी) और अल-ख्वारिज्मी (9वीं शताब्दी) बीजगणित के दो प्रमुख अग्रदूत थे। पहले व्यक्ति ने कुछ समीकरणों को हल किया जिसमें अज्ञात प्राकृतिक संख्याएं शामिल थीं, जब तक कि वह समाधान प्राप्त नहीं कर लेता। दूसरे ने समीकरणों को बदलने के लिए व्यवस्थित तरीकों की शुरुआत की (जैसे कि एक समीकरण के एक तरफ से दूसरी तरफ एक शब्द को स्थानांतरित करना)। बीजगणित शब्द अरबी शब्द अल-जबर से लिया गया है जिसका अर्थ है "टूटे हुए हिस्सों के लिए पुनर्मिलन" जिसका उपयोग उन्होंने अपने मुख्य ग्रंथ के शीर्षक में इन विधियों में से एक के नामकरण के लिए किया था।


[[File:Quadratic formula.svg|thumb|द्विघात सूत्र, जो सभी द्विघात समीकरणों के समाधानों को व्यक्त करता है]]
[[File:Quadratic formula.svg|thumb|द्विघात सूत्र, जो सभी द्विघात समीकरणों के समाधानों को व्यक्त करता है]]
Line 114: Line 114:
गणितीय वस्तुओं के रूप में बीजगणितीय संरचनाओं के प्रकार का अध्ययन सार्वभौमिक बीजगणित और श्रेणी सिद्धांत का उद्देश्य है। उत्तरार्द्ध प्रत्येक गणितीय संरचना पर लागू होता है (न केवल बीजीय वाले)। इसके मूल में, गैर-बीजीय वस्तुओं जैसे टोपोलॉजिकल रिक्त स्थान के बीजगणितीय अध्ययन की अनुमति देने के लिए, समरूप बीजगणित के साथ इसे पेश किया गया था; अनुप्रयोग के इस विशेष क्षेत्र को बीजगणितीय टोपोलॉजी कहा जाता है।
गणितीय वस्तुओं के रूप में बीजगणितीय संरचनाओं के प्रकार का अध्ययन सार्वभौमिक बीजगणित और श्रेणी सिद्धांत का उद्देश्य है। उत्तरार्द्ध प्रत्येक गणितीय संरचना पर लागू होता है (न केवल बीजीय वाले)। इसके मूल में, गैर-बीजीय वस्तुओं जैसे टोपोलॉजिकल रिक्त स्थान के बीजगणितीय अध्ययन की अनुमति देने के लिए, समरूप बीजगणित के साथ इसे पेश किया गया था; अनुप्रयोग के इस विशेष क्षेत्र को बीजगणितीय टोपोलॉजी कहा जाता है।


=== कैलकुलस और विश्लेषण ===
=== कलन और विश्लेषण ===
{{Main|Calculus|Mathematical analysis}}
{{Main|Calculus|Mathematical analysis}}
कैलकुलस, जिसे पहले इनफिनिटिमल कैलकुलस कहा जाता था, को स्वतंत्र रूप से और एक साथ 17 वीं शताब्दी के गणितज्ञ न्यूटन और लीबनिज़ द्वारा पेश किया गया था। यह मौलिक रूप से चर के संबंध का अध्ययन है जो एक दूसरे पर निर्भर करता है। कैलकुलस को 18 वीं शताब्दी में यूलर द्वारा एक फ़ंक्शन की अवधारणा की शुरुआत के साथ, और कई अन्य परिणामों के साथ विस्तारित किया गया था। वर्तमान में कैलकुलस मुख्य रूप से इस सिद्धांत के प्राथमिक भाग को संदर्भित करता है, और विश्लेषण आमतौर पर उन्नत भागों के लिए उपयोग किया जाता है।
कैलकुलस, जिसे पहले इनफिनिट्सिमल कैलकुलस कहा जाता था, को स्वतंत्र रूप से और साथ ही साथ 17 वीं शताब्दी के गणितज्ञ न्यूटन और लाइबनिज़ द्वारा पेश किया गया था। यह मूल रूप से एक दूसरे पर निर्भर चरों के संबंध का अध्ययन है। कैलकुलस का विस्तार 18वीं शताब्दी में यूलर द्वारा एक फलन की अवधारणा और कई अन्य परिणामों के साथ किया गया था। वर्तमान में, "कैलकुलस" मुख्य रूप से इस सिद्धांत के प्रारंभिक भाग को संदर्भित करता है, और "विश्लेषण" का उपयोग आमतौर पर उन्नत भागों के लिए किया जाता है।


विश्लेषण को वास्तविक विश्लेषण में और विभाजित किया जाता है, जहां चर वास्तविक संख्या और जटिल विश्लेषण का प्रतिनिधित्व करते हैं जहां चर जटिल संख्याओं का प्रतिनिधित्व करते हैं। विश्लेषण में कई सबरियस शामिल हैं, जो गणित के अन्य क्षेत्रों के साथ कुछ साझा करते हैं; वे सम्मिलित करते हैं:
विश्लेषण को वास्तविक विश्लेषण में और उप-विभाजित किया जाता है, जहां चर वास्तविक संख्याओं का प्रतिनिधित्व करते हैं, और जटिल विश्लेषण, जहां चर जटिल संख्याओं का प्रतिनिधित्व करते हैं। विश्लेषण में गणित के अन्य क्षेत्रों द्वारा साझा किए गए कई उपक्षेत्र शामिल हैं जिनमें निम्न शामिल हैं:
* बहु -विचित्र गणना
* बहुचर कलन
* कार्यात्मक विश्लेषण, जहां चर अलग -अलग कार्यों का प्रतिनिधित्व करते हैं;
* कार्यात्मक विश्लेषण, जहां चर भिन्न-भिन्न कार्यों का प्रतिनिधित्व करते हैं;
* एकीकरण, माप सिद्धांत और संभावित सिद्धांत, सभी दृढ़ता से संभाव्यता सिद्धांत के साथ संबंधित;
* एकीकरण, माप सिद्धांत और संभावित सिद्धांत, सभी संभाव्यता सिद्धांत से दृढ़ता से संबंधित हैं;
* सामान्य अवकल समीकरण;
* सामान्य अवकल समीकरण;
* आंशिक अंतर समीकरण;
* आंशिक अंतर समीकरण;
* संख्यात्मक विश्लेषण, मुख्य रूप से कई अनुप्रयोगों में उत्पन्न होने वाले साधारण और आंशिक अंतर समीकरणों के समाधान के कंप्यूटर पर गणना के लिए समर्पित है।
* संख्यात्मक विश्लेषण, मुख्य रूप से कई अनुप्रयोगों में उत्पन्न होने वाले सामान्य और आंशिक अंतर समीकरणों के समाधान के कंप्यूटर पर गणना के लिए समर्पित है।


=== असतत गणित ===
=== विविक्त गणित ===
{{main|Discrete mathematics}}
{{main|Discrete mathematics}}
असतत गणित, मोटे तौर पर बोलना परिमित गणितीय वस्तुओं का अध्ययन है।क्योंकि यहां अध्ययन की वस्तुएं असतत हैं, पथरी और गणितीय विश्लेषण के तरीके सीधे लागू नहीं होते हैं।{{efn|However, some advanced methods of analysis are sometimes used; for example, methods of [[complex analysis]] applied to [[generating series]].}} एल्गोरिदम - विशेष रूप से उनके कार्यान्वयन और कम्प्यूटेशनल जटिलता - असतत गणित में एक प्रमुख भूमिका निभाते हैं।
असतत गणित, मोटे तौर पर, परिमित गणितीय वस्तुओं का अध्ययन है। क्योंकि यहां अध्ययन की वस्तुएं असतत हैं, कैलकुलस और गणितीय विश्लेषण के तरीके सीधे लागू नहीं होते हैं।{{efn|However, some advanced methods of analysis are sometimes used; for example, methods of [[complex analysis]] applied to [[generating series]].}} एल्गोरिदम - विशेष रूप से उनके कार्यान्वयन और कम्प्यूटेशनल जटिलता - असतत गणित में एक प्रमुख भूमिका निभाते हैं।


असतत गणित में शामिल हैं:
असतत गणित में शामिल हैं:
* कॉम्बीनेटरिक्स, गणितीय वस्तुओं की गणना करने की कला जो कुछ दी गई बाधाओं को पूरा करती है।मूल रूप से, ये ऑब्जेक्ट किसी दिए गए सेट के तत्व या सबसेट थे;इसे विभिन्न वस्तुओं तक बढ़ाया गया है, जो कॉम्बिनेटरिक्स और असतत गणित के अन्य भागों के बीच एक मजबूत लिंक स्थापित करता है।उदाहरण के लिए, असतत ज्यामिति में ज्यामितीय आकृतियों के गिनती विन्यास शामिल हैं
* कॉम्बिनेटरिक्स, गणितीय वस्तुओं की गणना करने की कला जो कुछ दी गई बाधाओं को संतुष्ट करती है। मूल रूप से, ये ऑब्जेक्ट दिए गए सेट के तत्व या सबसेट थे; इसे विभिन्न वस्तुओं तक बढ़ा दिया गया है, जो संयोजन और असतत गणित के अन्य भागों के बीच एक मजबूत संबंध स्थापित करता है। उदाहरण के लिए, असतत ज्यामिति में ज्यामितीय आकृतियों की गिनती विन्यास शामिल हैं
* ग्राफ सिद्धांत और हाइपरग्राफ
* ग्राफ सिद्धांत और हाइपरग्राफ
* कोडिंग सिद्धांत, जिसमें त्रुटि को सुधारने और क्रिप्टोग्राफी का एक हिस्सा शामिल है
* कोडिंग सिद्धांत, जिसमें त्रुटि सुधार कोड और क्रिप्टोग्राफी का एक भाग शामिल है
* मैट्रोइड थ्योरी
* मैट्रॉइड सिद्धांत
* असतत ज्यामिति
* असतत ज्यामिति
* असतत संभावना वितरण
* असतत प्रायिकता बंटन
* गेम थ्योरी (हालांकि निरंतर खेलों का भी अध्ययन किया जाता है, सबसे आम खेल, जैसे कि शतरंज और पोकर असतत हैं)
* गेम थ्योरी (हालांकि निरंतर खेलों का भी अध्ययन किया जाता है, शतरंज और पोकर जैसे अधिकांश सामान्य खेल असतत होते हैं)
* असतत अनुकूलन, जिसमें कॉम्बिनेटरियल ऑप्टिमाइज़ेशन, पूर्णांक प्रोग्रामिंग, बाधा प्रोग्रामिंग शामिल हैं
* असतत अनुकूलन, जिसमें संयोजन अनुकूलन, पूर्णांक प्रोग्रामिंग, बाधा प्रोग्रामिंग शामिल हैं
<!--असतत गणित (जर्नल) की गुंजाइश [https://www.journals.elsevier.com/discrete-mathematics के अनुसार। सेट, एक्सट्रीमल सेट थ्योरी, मैटॉइड थ्योरी, बीजीय को कॉम्बिनेटरिक्स, असतत ज्यामिति, मैट्रिस, असतत संभावना और क्रिप्टोग्राफी के कुछ हिस्सों।
<!--असतत गणित (जर्नल) की गुंजाइश [https://www.journals.elsevier.com/discrete-mathematics के अनुसार। सेट, एक्सट्रीमल सेट थ्योरी, मैटॉइड थ्योरी, बीजीय को कॉम्बिनेटरिक्स, असतत ज्यामिति, मैट्रिस, असतत संभावना और क्रिप्टोग्राफी के कुछ हिस्सों।


Line 159: Line 159:
-->
-->


चार रंग प्रमेय और इष्टतम क्षेत्र पैकिंग 20 वीं शताब्दी के उत्तरार्ध में हल किए गए असतत गणित की दो प्रमुख समस्याएं थीं।पी बनाम एनपी समस्या, जो आज तक खुली रहती है, असतत गणित के लिए भी महत्वपूर्ण है, क्योंकि इसका समाधान इसका बहुत कुछ प्रभावित करेगा।{{Further explanation needed|reason=explain why P vs NP is so important|date=June 2022}}
चार रंग प्रमेय और इष्टतम क्षेत्र पैकिंग 20 वीं शताब्दी के उत्तरार्ध में असतत गणित की दो प्रमुख समस्याएं हल की गईं। P बनाम NP समस्या, जो आज भी खुली है, असतत गणित के लिए भी महत्वपूर्ण है, क्योंकि इसका समाधान इसे बहुत प्रभावित करेगा।{{Further explanation needed|reason=explain why P vs NP is so important|date=June 2022}}
<!--अनुभाग ज्यामिति के समान एक गैलरी उपयोगी होगी, लेकिन अधिक सुविधाजनक चित्रण की आवश्यकता है।
<!--अनुभाग ज्यामिति के समान एक गैलरी उपयोगी होगी, लेकिन अधिक सुविधाजनक चित्रण की आवश्यकता है।


Line 172: Line 172:
गणितीय तर्क और सेट सिद्धांत के दो विषय दोनों 19 वीं शताब्दी के अंत से गणित से संबंधित हैं। इस अवधि से पहले, सेटों को गणितीय वस्तुएं नहीं माना जाता था, और तर्क, हालांकि गणितीय प्रमाणों के लिए उपयोग किया जाता था, दर्शन से संबंधित था, और विशेष रूप से गणितज्ञों द्वारा अध्ययन नहीं किया गया था।
गणितीय तर्क और सेट सिद्धांत के दो विषय दोनों 19 वीं शताब्दी के अंत से गणित से संबंधित हैं। इस अवधि से पहले, सेटों को गणितीय वस्तुएं नहीं माना जाता था, और तर्क, हालांकि गणितीय प्रमाणों के लिए उपयोग किया जाता था, दर्शन से संबंधित था, और विशेष रूप से गणितज्ञों द्वारा अध्ययन नहीं किया गया था।


अनंत सेटों के कैंटर के अध्ययन से पहले, गणितज्ञ वास्तव में अनंत संग्रह पर विचार करने के लिए अनिच्छुक थे, और अनंत को अंतहीन गणना का परिणाम माना जाता था। कैंटर के काम ने कई गणितज्ञों को न केवल वास्तव में अनंत सेटों पर विचार करके, बल्कि यह दिखाते हुए कि यह अनंत के विभिन्न आकारों (कैंटर के विकर्ण तर्क देखें) और गणितीय वस्तुओं के अस्तित्व को दर्शाता है, जिनकी गणना नहीं की जा सकती है, या यहां तक ​​कि स्पष्ट रूप से वर्णित है (उदाहरण के लिए, हामेल बेस तर्कसंगत संख्याओं पर वास्तविक संख्याओं की)। इसके कारण कैंटर के सिद्धांत पर विवाद हुआ। कैंटर के सेट सिद्धांत पर विवाद।
कैंटर के अनंत समुच्चयों के अध्ययन से पहले, गणितज्ञ वास्तव में अनंत संग्रहों पर विचार करने के लिए अनिच्छुक थे, और अनंत को अनंत गणना का परिणाम मानते थे। कैंटर के काम ने कई गणितज्ञों को न केवल वास्तव में अनंत सेटों पर विचार करके, बल्कि यह दिखाते हुए कि यह अनंत के विभिन्न आकारों (कैंटोर के विकर्ण तर्क को देखें) और गणितीय वस्तुओं के अस्तित्व को दर्शाता है, जिनकी गणना नहीं की जा सकती है, या यहां तक ​​कि स्पष्ट रूप से वर्णित नहीं किया जा सकता है (उदाहरण के लिए, हेमल बेस परिमेय संख्याओं की तुलना में वास्तविक संख्याओं का) इससे कैंटर के सेट थ्योरी को लेकर विवाद पैदा हो गया।


इसी अवधि में, गणित के विभिन्न क्षेत्रों ने निष्कर्ष निकाला कि मूल गणितीय वस्तुओं की पूर्व सहज ज्ञान युक्त परिभाषाएँ गणितीय कठोरता सुनिश्चित करने के लिए अपर्याप्त थीं। इस तरह की सहजतापूर्ण परिभाषाओं के उदाहरण एक सेट हैं, वस्तुओं का एक संग्रह है, प्राकृतिक संख्या का उपयोग गिनती के लिए किया जाता है, एक बिंदु हर दिशा में एक शून्य लंबाई के साथ एक आकार है, एक वक्र एक चलती बिंदु द्वारा छोड़ दिया गया एक ट्रेस है, आदि।
इसी अवधि में, गणित के विभिन्न क्षेत्रों ने निष्कर्ष निकाला कि मूल गणितीय वस्तुओं की पूर्व सहज परिभाषाएं गणितीय कठोरता सुनिश्चित करने के लिए अपर्याप्त थीं। ऐसी सहज परिभाषाओं के उदाहरण हैं "एक सेट वस्तुओं का एक संग्रह है", "प्राकृतिक संख्या वह है जो गिनती के लिए उपयोग की जाती है", "एक बिंदु हर दिशा में शून्य लंबाई वाला एक आकार है", "एक वक्र एक निशान है एक गतिमान बिंदु", आदि।


यह गणित का मूलभूत संकट बन गया।<ref>Luke Howard Hodgkin & Luke Hodgkin, ''A History of Mathematics'', Oxford University Press, 2005.</ref> यह अंततः मुख्यधारा के गणित में एक Zermelo -Fraenkel सेट सिद्धांत के अंदर स्वयंसिद्ध विधि को व्यवस्थित करके हल किया गया था। औपचारिक सेट सिद्धांत। मोटे तौर पर, प्रत्येक गणितीय वस्तु को सभी समान वस्तुओं और उन गुणों के सेट द्वारा परिभाषित किया जाता है जो इन वस्तुओं के पास होना चाहिए। उदाहरण के लिए, पीनो अंकगणित में, प्राकृतिक संख्याओं को शून्य द्वारा परिभाषित किया गया है, एक संख्या है, प्रत्येक संख्या एक अद्वितीय उत्तराधिकारी के रूप में, प्रत्येक संख्या लेकिन शून्य में एक अद्वितीय पूर्ववर्ती है, और तर्क के कुछ नियम हैं। इस तरह से परिभाषित वस्तुओं की प्रकृति एक दार्शनिक समस्या है जिसे गणितज्ञ दार्शनिकों को छोड़ देते हैं, भले ही कई गणितज्ञों ने इस प्रकृति पर राय दी हो, और उनकी राय का उपयोग करें - कभी -कभी अंतर्ज्ञान नामक अपने अध्ययन और प्रमाणों का मार्गदर्शन करें।
यह गणित का आधारभूत संकट बन गया।<ref>Luke Howard Hodgkin & Luke Hodgkin, ''A History of Mathematics'', Oxford University Press, 2005.</ref> औपचारिक रूप से सेट सिद्धांत के अंदर स्वयंसिद्ध पद्धति को व्यवस्थित करके इसे अंततः मुख्यधारा के गणित में हल किया गया। मोटे तौर पर, प्रत्येक गणितीय वस्तु को सभी समान वस्तुओं के समुच्चय और इन वस्तुओं के गुणों के द्वारा परिभाषित किया जाता है। उदाहरण के लिए, पीनो अंकगणित में, प्राकृतिक संख्याओं को "शून्य एक संख्या है", "प्रत्येक संख्या को एक अद्वितीय उत्तराधिकारी के रूप में", "प्रत्येक संख्या लेकिन शून्य में एक अद्वितीय पूर्ववर्ती है", और तर्क के कुछ नियम हैं। इस तरह से परिभाषित वस्तुओं की "प्रकृति" एक दार्शनिक समस्या है जिसे गणितज्ञ दार्शनिकों के पास छोड़ देते हैं, भले ही कई गणितज्ञों की इस प्रकृति पर राय हो, और अपनी राय का उपयोग करें - कभी-कभी "अंतर्ज्ञान" कहा जाता है - अपने अध्ययन और प्रमाणों का मार्गदर्शन करने के लिए।


यह दृष्टिकोण लॉजिक्स (यानी, अनुमत नियमों के सेट), प्रमेय, प्रमाण आदि को गणितीय वस्तुओं के रूप में, और उनके बारे में प्रमेय साबित करने के लिए अनुमति देता है। उदाहरण के लिए, गोडेल की अपूर्णता प्रमेय दावा करते हैं, मोटे तौर पर यह बोलते हैं कि, हर सिद्धांत में जिसमें प्राकृतिक संख्याएं होती हैं, ऐसे प्रमेय हैं जो सत्य हैं (जो एक बड़े सिद्धांत में साबित होता है), लेकिन सिद्धांत के अंदर साबित नहीं होता है।
यह दृष्टिकोण गणितीय वस्तुओं के रूप में "लॉजिक्स" (अर्थात अनुमत कटौती नियमों के सेट), प्रमेयों, प्रमाणों आदि पर विचार करने और उनके बारे में प्रमेयों को सिद्ध करने की अनुमति देता है। उदाहरण के लिए, गोडेल की अपूर्णता प्रमेय जोर देते हैं, मोटे तौर पर बोलते हुए, हर सिद्धांत में प्राकृतिक संख्याएं होती हैं, ऐसे प्रमेय होते हैं जो सत्य होते हैं (जो कि एक बड़े सिद्धांत में सिद्ध होता है), लेकिन सिद्धांत के अंदर सिद्ध नहीं होता है।


गणित की नींव के इस दृष्टिकोण को 20 वीं शताब्दी की पहली छमाही के दौरान गणितज्ञों द्वारा एल। ई। जे। ब्रूवर के नेतृत्व में चुनौती दी गई थी।
गणित की नींव के इस दृष्टिकोण को 20 वीं शताब्दी के पूर्वार्द्ध के दौरान ब्रौवर के नेतृत्व में गणितज्ञों द्वारा चुनौती दी गई थी, जिन्होंने अंतर्ज्ञानवादी तर्क को बढ़ावा दिया था, जिसमें स्पष्ट रूप से बहिष्कृत मध्य के कानून का अभाव था।


इन समस्याओं और बहसों ने गणितीय तर्क का एक विस्तृत विस्तार किया, जैसे कि मॉडल सिद्धांत (अन्य सिद्धांतों के अंदर कुछ तार्किक सिद्धांतों की मॉडलिंग), प्रूफ थ्योरी, टाइप थ्योरी, कम्प्यूटिबिलिटी थ्योरी और कम्प्यूटेशनल कॉम्प्लेक्सिटी थ्योरी। यद्यपि गणितीय तर्क के इन पहलुओं को कंप्यूटर के उदय से पहले पेश किया गया था, संकलक डिजाइन, कार्यक्रम प्रमाणन, प्रूफ सहायकों और कंप्यूटर विज्ञान के अन्य पहलुओं में उनके उपयोग ने इन तार्किक सिद्धांतों के विस्तार में योगदान दिया।<ref>{{cite web |last1=Halpern |first1=Joseph |last2=Harper |first2=Robert |last3=Immerman |first3=Neil |last4=Kolaitis |first4=Phokion |last5=Vardi |first5=Moshe |last6=Vianu |first6=Victor |title=On the Unusual Effectiveness of Logic in Computer Science |url=https://www.cs.cmu.edu/~rwh/papers/unreasonable/basl.pdf |access-date=15 January 2021 |date=2001}}</ref>
इन समस्याओं और बहसों ने गणितीय तर्क का व्यापक विस्तार किया, जैसे मॉडल सिद्धांत (अन्य सिद्धांतों के अंदर कुछ तार्किक सिद्धांतों का मॉडलिंग), सबूत सिद्धांत, प्रकार सिद्धांत, संगणना सिद्धांत और कम्प्यूटेशनल जटिलता सिद्धांत जैसे उपक्षेत्रों के साथ। हालांकि गणितीय तर्क के इन पहलुओं को कंप्यूटर के उदय से पहले पेश किया गया था, लेकिन संकलक डिजाइन, प्रोग्राम प्रमाणन, प्रूफ सहायक और कंप्यूटर विज्ञान के अन्य पहलुओं में उनके उपयोग ने इन तार्किक सिद्धांतों के विस्तार में योगदान दिया।<ref>{{cite web |last1=Halpern |first1=Joseph |last2=Harper |first2=Robert |last3=Immerman |first3=Neil |last4=Kolaitis |first4=Phokion |last5=Vardi |first5=Moshe |last6=Vianu |first6=Victor |title=On the Unusual Effectiveness of Logic in Computer Science |url=https://www.cs.cmu.edu/~rwh/papers/unreasonable/basl.pdf |access-date=15 January 2021 |date=2001}}</ref>
 
=== अनुप्रयुक्त गणित ===
 
=== एप्लाइड गणित ===
{{Main|Applied mathematics}}{{Expand section|the connections between mathematics proper and the other sciences (enough for an entire first-level section)|date=June 2022}}
{{Main|Applied mathematics}}{{Expand section|the connections between mathematics proper and the other sciences (enough for an entire first-level section)|date=June 2022}}
एप्लाइड गणित विज्ञान, इंजीनियरिंग, व्यवसाय और उद्योग में उपयोग किए जाने वाले गणितीय तरीकों का अध्ययन है।इस प्रकार, लागू गणित विशेष ज्ञान के साथ एक गणितीय विज्ञान है।एप्लाइड गणित शब्द भी पेशेवर विशेषता का वर्णन करता है जिसमें गणितज्ञ व्यावहारिक समस्याओं पर काम करते हैं;व्यावहारिक समस्याओं पर ध्यान केंद्रित करने वाले पेशे के रूप में, एप्लाइड गणित गणित मॉडल के सूत्रीकरण, अध्ययन और उपयोग पर केंद्रित है।{{Cn|date=May 2022}}
अनुप्रयुक्त गणित विज्ञान, इंजीनियरिंग, व्यवसाय और उद्योग में उपयोग किए जाने वाले गणितीय तरीकों का अध्ययन है। इस प्रकार, "अनुप्रयुक्त गणित" विशिष्ट ज्ञान वाला गणितीय विज्ञान है। व्यावहारिक गणित शब्द उस पेशेवर विशेषता का भी वर्णन करता है जिसमें गणितज्ञ व्यावहारिक समस्याओं पर कार्य करते हैं; व्यावहारिक समस्याओं पर केंद्रित एक पेशे के रूप में, अनुप्रयुक्त गणित "गणितीय मॉडल के निर्माण, अध्ययन और उपयोग" पर केंद्रित है।{{Cn|date=May 2022}}
अतीत में, व्यावहारिक अनुप्रयोगों ने गणितीय सिद्धांतों के विकास को प्रेरित किया है, जो तब शुद्ध गणित में अध्ययन का विषय बन गया है, जहां गणित को मुख्य रूप से अपने स्वयं के लिए विकसित किया जाता है।इस प्रकार, लागू गणित की गतिविधि शुद्ध गणित में अनुसंधान के साथ जुड़ी हुई है।{{Example needed|s|date=June 2022}}
 


अतीत में, व्यावहारिक अनुप्रयोगों ने गणितीय सिद्धांतों के विकास को प्रेरित किया है, जो तब शुद्ध गणित में अध्ययन का विषय बन गया, जहां गणित को मुख्य रूप से अपने लिए विकसित किया गया है। इस प्रकार, अनुप्रयुक्त गणित की गतिविधि विशुद्ध रूप से शुद्ध गणित में अनुसंधान के साथ जुड़ी हुई है।{{Example needed|s|date=June 2022}}
=== सांख्यिकी और अन्य निर्णय विज्ञान ===
=== सांख्यिकी और अन्य निर्णय विज्ञान ===
{{Main|Statistics}}
{{Main|Statistics}}
एप्लाइड गणित में आंकड़ों के अनुशासन के साथ महत्वपूर्ण ओवरलैप है, जिसका सिद्धांत गणितीय रूप से तैयार किया गया है, विशेष रूप से संभाव्यता सिद्धांत।{{Definition needed|define statistics|date=June 2022}} सांख्यिकीविद् (एक शोध परियोजना के हिस्से के रूप में काम करना) डेटा बनाते हैं जो यादृच्छिक नमूने के साथ और यादृच्छिक प्रयोगों के साथ समझ में आता है;<ref>[[C.R. Rao|Rao, C.R.]] (1997) ''Statistics and Truth: Putting Chance to Work'', World Scientific. {{isbn|978-981-02-3111-8}}</ref> एक सांख्यिकीय नमूने या प्रयोग का डिज़ाइन डेटा के विश्लेषण को निर्दिष्ट करता है (डेटा उपलब्ध होने से पहले)।जब प्रयोगों और नमूनों से डेटा पर पुनर्विचार किया जाता है या अवलोकन संबंधी अध्ययन से डेटा का विश्लेषण करते समय, सांख्यिकीविद मॉडलिंग की कला और अनुमान के सिद्धांत का उपयोग करके डेटा की समझ बनाते हैं - मॉडल चयन और अनुमान के साथ;अनुमानित मॉडल और परिणामी भविष्यवाणियों को नए डेटा पर परीक्षण किया जाना चाहिए।{{Clarification needed|reason=clarify this paragraph (not the footnote!) - too wordy and unclear|date=June 2022}}{{efn|Like other mathematical sciences such as [[physics]] and [[computer science]], statistics is an autonomous discipline rather than a branch of applied mathematics. Like research physicists and computer scientists, research statisticians are mathematical scientists. Many statisticians have a degree in mathematics, and some statisticians are also mathematicians.}}
व्यावहारिक गणित में सांख्यिकी के अनुशासन के साथ महत्वपूर्ण ओवरलैप है, जिसका सिद्धांत गणितीय रूप से तैयार किया गया है, विशेष रूप से संभाव्यता सिद्धांत।{{Definition needed|define statistics|date=June 2022}} सांख्यिकीविद (एक शोध परियोजना के हिस्से के रूप में काम कर रहे हैं) यादृच्छिक नमूने और यादृच्छिक प्रयोगों के साथ "डेटा बनाएं जो समझ में आता है";<ref>[[C.R. Rao|Rao, C.R.]] (1997) ''Statistics and Truth: Putting Chance to Work'', World Scientific. {{isbn|978-981-02-3111-8}}</ref> सांख्यिकीय नमूने या प्रयोग का डिजाइन डेटा के विश्लेषण को निर्दिष्ट करता है (डेटा उपलब्ध होने से पहले)प्रयोगों और नमूनों से डेटा पर पुनर्विचार करते समय या अवलोकन संबंधी अध्ययनों से डेटा का विश्लेषण करते समय, सांख्यिकीविद मॉडलिंग की कला और अनुमान के सिद्धांत का उपयोग करके मॉडल चयन और अनुमान के साथ "डेटा का अर्थ बनाते हैं"; नए डेटा पर अनुमानित मॉडल और परिणामी भविष्यवाणियों का परीक्षण किया जाना चाहिए।{{Clarification needed|reason=clarify this paragraph (not the footnote!) - too wordy and unclear|date=June 2022}}{{efn|Like other mathematical sciences such as [[physics]] and [[computer science]], statistics is an autonomous discipline rather than a branch of applied mathematics. Like research physicists and computer scientists, research statisticians are mathematical scientists. Many statisticians have a degree in mathematics, and some statisticians are also mathematicians.}}
सांख्यिकीय सिद्धांत एक सांख्यिकीय कार्रवाई के जोखिम (अपेक्षित हानि) को कम करने जैसे निर्णय की समस्याओं का अध्ययन करता है, जैसे कि एक प्रक्रिया का उपयोग करना, उदाहरण के लिए, पैरामीटर अनुमान, परिकल्पना परीक्षण, और सबसे अच्छा चयन करना।गणितीय आँकड़ों के इन पारंपरिक क्षेत्रों में, एक सांख्यिकीय-निर्णय समस्या एक उद्देश्य समारोह को कम करके तैयार की जाती है, जैसे कि अपेक्षित हानि या लागत, विशिष्ट बाधाओं के तहत: उदाहरण के लिए, एक सर्वेक्षण को डिजाइन करना अक्सर किसी दिए गए के साथ जनसंख्या का अनुमान लगाने की लागत को कम करना शामिल होता है।आत्मविश्वास का स्तर।<ref name="RaoOpt">{{cite book |editor1-last=Arthanari |editor1-first=T.S. |editor2-last=Dodge |editor2-first=Yadolah |editor2-link=Yadolah Dodge |last=Rao |first=C.R. |author-link=C.R. Rao |chapter=Foreword |title=Mathematical programming in statistics |series=Wiley Series in Probability and Mathematical Statistics |publisher=Wiley |location=New York |year=1981 |pages=vii–viii |isbn=978-0-471-08073-2 |mr=607328 }}</ref> अनुकूलन के अपने उपयोग के कारण, सांख्यिकी का गणितीय सिद्धांत अन्य निर्णय विज्ञानों के साथ ओवरलैप करता है, जैसे कि संचालन अनुसंधान, नियंत्रण सिद्धांत और गणितीय अर्थशास्त्र।<ref name="Whittle">{{harvtxt|Whittle|1994|pp=10–11, 14–18}}: {{cite book |first=Peter |last=Whittle |author-link=Peter Whittle (mathematician) |chapter=Almost home |editor-link=Frank Kelly (mathematician) |editor-first=F.P. |editor-last=Kelly |year=1994 |title=Probability, statistics and optimisation: A Tribute to Peter Whittle |location=Chichester |publisher=John Wiley |isbn=978-0-471-94829-2 |pages=1–28 |chapter-url=http://www.statslab.cam.ac.uk/History/2history.html#6._1966--72:_The_Churchill_Chair |edition=previously "A realised path: The Cambridge Statistical Laboratory up to 1993 (revised 2002)" |url-status=live |archive-url=https://web.archive.org/web/20131219080017/http://www.statslab.cam.ac.uk/History/2history.html#6._1966--72:_The_Churchill_Chair |archive-date=December 19, 2013 |df=mdy-all }}</ref>
 


=== कम्प्यूटेशनल गणित ===
सांख्यिकीय सिद्धांत निर्णय की समस्याओं का अध्ययन करता है जैसे कि सांख्यिकीय कार्रवाई के जोखिम (अपेक्षित नुकसान) को कम करना, जैसे कि एक प्रक्रिया का उपयोग करना, उदाहरण के लिए, पैरामीटर अनुमान, परिकल्पना परीक्षण, और सर्वोत्तम का चयन करना। गणितीय आँकड़ों के इन पारंपरिक क्षेत्रों में, विशिष्ट बाधाओं के तहत, अपेक्षित हानि या लागत जैसे एक उद्देश्य समारोह को कम करके एक सांख्यिकीय-निर्णय समस्या तैयार की जाती है: उदाहरण के लिए, एक सर्वेक्षण को डिजाइन करने में अक्सर किसी दिए गए जनसंख्या माध्य का अनुमान लगाने की लागत को कम करना शामिल होता है आत्मविश्वास का स्तर।<ref name="RaoOpt">{{cite book |editor1-last=Arthanari |editor1-first=T.S. |editor2-last=Dodge |editor2-first=Yadolah |editor2-link=Yadolah Dodge |last=Rao |first=C.R. |author-link=C.R. Rao |chapter=Foreword |title=Mathematical programming in statistics |series=Wiley Series in Probability and Mathematical Statistics |publisher=Wiley |location=New York |year=1981 |pages=vii–viii |isbn=978-0-471-08073-2 |mr=607328 }}</ref> इसके अनुकूलन के उपयोग के कारण, सांख्यिकी का गणितीय सिद्धांत अन्य निर्णय विज्ञानों, जैसे संचालन अनुसंधान, नियंत्रण सिद्धांत और गणितीय अर्थशास्त्र के साथ अतिव्याप्त है।<ref name="Whittle">{{harvtxt|Whittle|1994|pp=10–11, 14–18}}: {{cite book |first=Peter |last=Whittle |author-link=Peter Whittle (mathematician) |chapter=Almost home |editor-link=Frank Kelly (mathematician) |editor-first=F.P. |editor-last=Kelly |year=1994 |title=Probability, statistics and optimisation: A Tribute to Peter Whittle |location=Chichester |publisher=John Wiley |isbn=978-0-471-94829-2 |pages=1–28 |chapter-url=http://www.statslab.cam.ac.uk/History/2history.html#6._1966--72:_The_Churchill_Chair |edition=previously "A realised path: The Cambridge Statistical Laboratory up to 1993 (revised 2002)" |url-status=live |archive-url=https://web.archive.org/web/20131219080017/http://www.statslab.cam.ac.uk/History/2history.html#6._1966--72:_The_Churchill_Chair |archive-date=December 19, 2013 |df=mdy-all }}</ref>
=== अभिकलन गणित ===
{{Main|Computational mathematics}}
{{Main|Computational mathematics}}
कम्प्यूटेशनल गणित गणितीय समस्याओं का अध्ययन है जो आमतौर पर मानव संख्यात्मक क्षमता के लिए बहुत बड़े होते हैं।संख्यात्मक विश्लेषण और सन्निकटन सिद्धांत का उपयोग करके विश्लेषण में समस्याओं के लिए संख्यात्मक विश्लेषण अध्ययन;संख्यात्मक विश्लेषण में मोटे तौर पर राउंडिंग त्रुटियों पर विशेष ध्यान देने के साथ सन्निकटन और विवेकाधिकार का अध्ययन शामिल है।संख्यात्मक विश्लेषण और, अधिक व्यापक रूप से, वैज्ञानिक कंप्यूटिंग गणितीय विज्ञान के गैर-विश्लेषणात्मक विषयों का भी अध्ययन करता है, विशेष रूप से एल्गोरिथम-मैट्रिक्स-एंड-ग्राफ सिद्धांत।कम्प्यूटेशनल गणित के अन्य क्षेत्रों में कंप्यूटर बीजगणित और प्रतीकात्मक संगणना शामिल हैं।
कम्प्यूटेशनल गणित गणितीय समस्याओं का अध्ययन है जो आम तौर पर मानव, संख्यात्मक क्षमता के लिए बहुत बड़ी होती है। कार्यात्मक विश्लेषण और सन्निकटन सिद्धांत का उपयोग करके विश्लेषण में समस्याओं के लिए संख्यात्मक विश्लेषण अध्ययन विधियों; संख्यात्मक विश्लेषण में मोटे तौर पर सन्निकटन और विवेकीकरण का अध्ययन शामिल है, जिसमें गोल करने वाली त्रुटियों पर विशेष ध्यान दिया जाता है। संख्यात्मक विश्लेषण और, अधिक व्यापक रूप से, वैज्ञानिक कंप्यूटिंग गणितीय विज्ञान के गैर-विश्लेषणात्मक विषयों, विशेष रूप से एल्गोरिथम-मैट्रिक्स-एंड-ग्राफ सिद्धांत का भी अध्ययन करती है। कम्प्यूटेशनल गणित के अन्य क्षेत्रों में कंप्यूटर बीजगणित और प्रतीकात्मक संगणना शामिल है।
<!--टैग में बताए गए कारणों के लिए इन छवियों को टिप्पणी करना, लेकिन उन्हें रखने के बाद से कुछ बेहतर जगह पर उपयोगी हो सकते हैं, एक बेहतर कैप्शन के साथ
<!--टैग में बताए गए कारणों के लिए इन छवियों को टिप्पणी करना, लेकिन उन्हें रखने के बाद से कुछ बेहतर जगह पर उपयोगी हो सकते हैं, एक बेहतर कैप्शन के साथ


Line 214: Line 210:
|[[Mathematical finance]] || [[Mathematical physics]] || [[Mathematical chemistry]] || [[Mathematical biology]]|| [[Mathematical economics]] || [[Control theory]]
|[[Mathematical finance]] || [[Mathematical physics]] || [[Mathematical chemistry]] || [[Mathematical biology]]|| [[Mathematical economics]] || [[Control theory]]
|} -->
|} -->
== इतिहास ==
== इतिहास ==
{{main|History of mathematics}}
{{main|History of mathematics}}
गणित का इतिहास सार की एक बढ़ती श्रृंखला है।विकासशील रूप से, पहले की खोज की जाने वाली पहली अमूर्त, एक कई जानवरों द्वारा साझा की गई,<ref>{{cite journal |title=Abstract representations of numbers in the animal and human brain |journal=Trends in Neurosciences |volume=21 |issue=8 |date=Aug 1998 |pages=355–61 |doi=10.1016/S0166-2236(98)01263-6 |pmid=9720604 |last1=Dehaene |first1=Stanislas |last2=Dehaene-Lambertz |first2=Ghislaine |last3=Cohen |first3=Laurent|s2cid=17414557 }}</ref> शायद संख्याओं की थी: यह अहसास, कि उदाहरण के लिए, दो सेबों का एक संग्रह और दो संतरों का एक संग्रह (कहते हैं) में कुछ आम है, अर्थात् उनमें से दो हैं।जैसा कि भौतिक वस्तुओं की गिनती करने के तरीके को पहचानने के अलावा, हड्डी पर पाए जाने वाले लम्बे लोगों द्वारा स्पष्ट किया गया है, प्रागैतिहासिक लोगों को यह भी पता हो सकता है कि समय -समय, मौसम या वर्षों की तरह अमूर्त मात्रा की गणना कैसे करें।<ref>See, for example, [[Raymond L. Wilder]], ''Evolution of Mathematical Concepts; an Elementary Study'', ''passim''</ref><ref>{{Cite book|last=Zaslavsky, Claudia.|url=http://worldcat.org/oclc/843204342|title=Africa Counts : Number and Pattern in African Culture.|date=1999|publisher=Chicago Review Press|isbn=978-1-61374-115-3|oclc=843204342|access-date=May 29, 2020|archive-date=March 31, 2021|archive-url=https://web.archive.org/web/20210331144030/https://www.worldcat.org/title/africa-counts-number-and-pattern-in-african-culture/oclc/843204342|url-status=live}}</ref>
 
==== प्राचीन ====
गणित का इतिहास अमूर्तन की एक निरंतर बढ़ती श्रृंखला है। विकास की दृष्टि से, अब तक खोजा जाने वाला पहला अमूर्तन, कई जानवरों द्वारा साझा किया गया,<ref>{{cite journal |title=Abstract representations of numbers in the animal and human brain |journal=Trends in Neurosciences |volume=21 |issue=8 |date=Aug 1998 |pages=355–61 |doi=10.1016/S0166-2236(98)01263-6 |pmid=9720604 |last1=Dehaene |first1=Stanislas |last2=Dehaene-Lambertz |first2=Ghislaine |last3=Cohen |first3=Laurent|s2cid=17414557 }}</ref> शायद संख्याओं का था: यह अहसास कि, उदाहरण के लिए, दो सेबों का एक संग्रह और दो संतरे का संग्रह (जैसे) में कुछ है सामान्य, अर्थात् उनमें से दो हैं। जैसा कि हड्डी पर पाए जाने वाले टांगों से प्रमाणित होता है, भौतिक वस्तुओं की गणना करने के तरीके को पहचानने के अलावा, प्रागैतिहासिक लोगों को यह भी पता हो सकता है कि समय-दिन, मौसम या वर्षों जैसी अमूर्त मात्राओं की गणना कैसे की जाती है।<ref>See, for example, [[Raymond L. Wilder]], ''Evolution of Mathematical Concepts; an Elementary Study'', ''passim''</ref><ref>{{Cite book|last=Zaslavsky, Claudia.|url=http://worldcat.org/oclc/843204342|title=Africa Counts : Number and Pattern in African Culture.|date=1999|publisher=Chicago Review Press|isbn=978-1-61374-115-3|oclc=843204342|access-date=May 29, 2020|archive-date=March 31, 2021|archive-url=https://web.archive.org/web/20210331144030/https://www.worldcat.org/title/africa-counts-number-and-pattern-in-african-culture/oclc/843204342|url-status=live}}</ref>
[[File:Plimpton 322.jpg|thumb|बेबीलोनियन गणितीय टैबलेट प्लिम्पटन 322, दिनांकित 1800 & nbsp; bc]]
[[File:Plimpton 322.jpg|thumb|बेबीलोनियन गणितीय टैबलेट प्लिम्पटन 322, दिनांकित 1800 & nbsp; bc]]
अधिक जटिल गणित के लिए साक्ष्य लगभग 3000 & nbsp तक प्रकट नहीं होता है;{{Abbr|BC|Before Christ}}, जब बेबीलोनियों और मिस्रियों ने कराधान और अन्य वित्तीय गणनाओं के लिए, निर्माण और निर्माण के लिए, और खगोल विज्ञान के लिए अंकगणित, बीजगणित और ज्यामिति का उपयोग करना शुरू किया।{{sfn|Kline|1990|loc=Chapter 1}} मेसोपोटामिया और मिस्र के सबसे पुराने गणितीय ग्रंथ 2000 से 1800 & nbsp; bc तक हैं।कई शुरुआती ग्रंथों में पाइथागोरियन ट्रिपल्स का उल्लेख किया गया है और इसलिए, अनुमान द्वारा, पाइथागोरियन प्रमेय बुनियादी अंकगणित और ज्यामिति के बाद सबसे प्राचीन और व्यापक गणितीय अवधारणा लगता है।यह बेबीलोन के गणित में है कि प्राथमिक अंकगणित (इसके अलावा, घटाव, गुणा और विभाजन) पहले पुरातात्विक रिकॉर्ड में दिखाई देते हैं।बेबीलोनियों के पास एक स्थान-मूल्य प्रणाली भी थी और एक सेक्सजैमिमल अंक प्रणाली का उपयोग किया गया था जो कोण और समय को मापने के लिए आज भी उपयोग में है।{{sfn|Boyer|1991|loc="Mesopotamia" pp. 24–27}}
अधिक जटिल गणित के प्रमाण लगभग 3000 ईसा पूर्व तक प्रकट नहीं होते, जब बेबीलोनियों और मिस्रवासियों ने कराधान और अन्य वित्तीय गणनाओं के लिए, भवन और निर्माण और खगोल विज्ञान के लिए अंकगणित, बीजगणित और ज्यामिति का उपयोग करना शुरू किया।{{sfn|Kline|1990|loc=Chapter 1}} मेसोपोटामिया और मिस्र के सबसे पुराने गणितीय ग्रंथ 2000 से 1800 ई.पू. के हैं। कई प्रारंभिक ग्रंथों में पाइथागोरस त्रिगुणों का उल्लेख है और इसलिए, अनुमान से, पाइथागोरस प्रमेय बुनियादी अंकगणित और ज्यामिति के बाद सबसे प्राचीन और व्यापक गणितीय अवधारणा प्रतीत होती है। यह बेबीलोन के गणित में है कि प्रारंभिक अंकगणित (जोड़, घटाव, गुणा और भाग) पहले पुरातात्विक रिकॉर्ड में दिखाई देते हैं। बेबीलोनियाई लोगों के पास एक स्थान-मूल्य प्रणाली भी थी और उन्होंने एक सेक्सेजिमल अंक प्रणाली का उपयोग किया था जो आज भी कोण और समय को मापने के लिए उपयोग में है।{{sfn|Boyer|1991|loc="Mesopotamia" pp. 24–27}}
[[File:Archimedes pi.svg|thumb|left|upright=1.25|आर्किमिडीज ने थकावट की विधि का उपयोग किया, यहां चित्रित, पीआई के मूल्य को अनुमानित करने के लिए।]]
[[File:Archimedes pi.svg|thumb|left|upright=1.25|आर्किमिडीज ने थकावट की विधि का उपयोग किया, यहां चित्रित, पीआई के मूल्य को अनुमानित करने के लिए।]]
पाइथागोरस के साथ 6 वीं शताब्दी ईसा पूर्व में शुरू हुआ, ग्रीक गणित के साथ प्राचीन यूनानियों ने अपने आप में एक विषय के रूप में गणित का एक व्यवस्थित अध्ययन शुरू किया।<ref>{{cite book |last=Heath |first=Thomas Little |url=https://archive.org/details/historyofgreekma0002heat/page/n14 |url-access=registration |page=1 |title=A History of Greek Mathematics: From Thales to Euclid |location=New York |publisher=Dover Publications |date=1981 |orig-year=1921 |isbn=978-0-486-24073-2}}</ref> लगभग 300 ईसा पूर्व, यूक्लिड ने आज भी गणित में उपयोग की जाने वाली स्वयंसिद्ध विधि पेश की, जिसमें परिभाषा, स्वयंसिद्ध, प्रमेय और प्रमाण शामिल हैं।उनकी पुस्तक, यूक्लिड के तत्व | तत्व, व्यापक रूप से सभी समय की सबसे सफल और प्रभावशाली पाठ्यपुस्तक माना जाता है।{{sfn|Boyer|1991|loc="Euclid of Alexandria" p. 119}} पुरातनता का सबसे बड़ा गणितज्ञ अक्सर सिरैक्यूज़, इटली के आर्किमिडीज (सी। 287–212 ईसा पूर्व) के रूप में आयोजित किया जाता है। सिरैक्यूज़।{{sfn|Boyer|1991|loc="Archimedes of Syracuse" p. 120}} उन्होंने क्रांति के ठोस पदार्थों की सतह के क्षेत्र और मात्रा की गणना के लिए सूत्र विकसित किए और एक अनंत श्रृंखला के योग के साथ एक परबोला के चाप के तहत क्षेत्र की गणना करने के लिए थकावट की विधि का उपयोग किया, एक तरह से आधुनिक पथरी से बहुत असंतुष्ट नहीं है।{{sfn|Boyer|1991|loc="Archimedes of Syracuse" p. 130}} ग्रीक गणित की अन्य उल्लेखनीय उपलब्धियां शंकु वर्गों (पेर्गा के अपोलोनियस, तीसरी शताब्दी ईसा पूर्व) हैं,{{sfn|Boyer|1991|loc="Apollonius of Perga" p. 145}} त्रिकोणमिति (Nicaea के हिप्पार्कस, दूसरी शताब्दी ईसा पूर्व),{{sfn|Boyer|1991|loc= "Greek Trigonometry and Mensuration" p. 162}} और बीजगणित की शुरुआत (डायोफेंटस, तीसरी शताब्दी ईस्वी){{sfn|Boyer|1991|loc= "Revival and Decline of Greek Mathematics" p. 180}}
छठी शताब्दी ईसा पूर्व में, ग्रीक गणित एक विशिष्ट विषय के रूप में उभरने लगा और कुछ प्राचीन यूनानियों जैसे पाइथागोरस ने इसे अपने आप में एक विषय माना।<ref>{{cite book |last=Heath |first=Thomas Little |url=https://archive.org/details/historyofgreekma0002heat/page/n14 |url-access=registration |page=1 |title=A History of Greek Mathematics: From Thales to Euclid |location=New York |publisher=Dover Publications |date=1981 |orig-year=1921 |isbn=978-0-486-24073-2}}</ref> लगभग 300 ईसा पूर्व, यूक्लिड ने अभिधारणाओं और पहले सिद्धांतों के माध्यम से गणितीय ज्ञान को व्यवस्थित किया, जो कि स्वयंसिद्ध पद्धति में विकसित हुआ, जिसका उपयोग आज गणित में किया जाता है, जिसमें परिभाषा, अभिगृहीत, प्रमेय और प्रमाण शामिल हैं।{{sfn|Boyer|1991|loc="Euclid of Alexandria" p. 119}} उनकी पुस्तक, एलिमेंट्स, व्यापक रूप से अब तक की सबसे सफल और प्रभावशाली पाठ्यपुस्तक मानी जाती है। [27] पुरातनता के महानतम गणितज्ञ को अक्सर सिरैक्यूज़ का आर्किमिडीज़ (सी. 287-212 ईसा पूर्व) माना जाता है।{{sfn|Boyer|1991|loc="Archimedes of Syracuse" p. 120}} उन्होंने सतह क्षेत्र और क्रांति के ठोसों की मात्रा की गणना के लिए सूत्र विकसित किए और एक अनंत श्रृंखला के योग के साथ एक परवलय के चाप के नीचे के क्षेत्र की गणना करने के लिए थकावट की विधि का इस्तेमाल किया, जो आधुनिक कलन से बहुत भिन्न नहीं है।{{sfn|Boyer|1991|loc="Archimedes of Syracuse" p. 130}} ग्रीक गणित की अन्य उल्लेखनीय उपलब्धियां हैं शंकु वर्ग (पेर्गा का अपोलोनियस, तीसरी शताब्दी ईसा पूर्व),{{sfn|Boyer|1991|loc="Apollonius of Perga" p. 145}} त्रिकोणमिति (निकेआ का हिप्पार्कस, दूसरी शताब्दी ईसा पूर्व),{{sfn|Boyer|1991|loc= "Greek Trigonometry and Mensuration" p. 162}} और बीजगणित की शुरुआत (डायोफैंटस, तीसरी शताब्दी ई।){{sfn|Boyer|1991|loc= "Revival and Decline of Greek Mathematics" p. 180}}
[[File:Bakhshali numerals 2.jpg|thumb|right|upright=1.5|2 वीं शताब्दी ईसा पूर्व और दूसरी शताब्दी ईस्वी के बीच दिनांकित बखमली पांडुलिपि में इस्तेमाल किए गए अंक,]]
[[File:Bakhshali numerals 2.jpg|thumb|right|upright=1.5|2 वीं शताब्दी ईसा पूर्व और दूसरी शताब्दी ईस्वी के बीच दिनांकित बखमली पांडुलिपि में इस्तेमाल किए गए अंक,]]
हिंदू -अरबिक अंक प्रणाली और इसके संचालन के उपयोग के लिए नियम, आज दुनिया भर में उपयोग में, भारत में पहली सहस्राब्दी विज्ञापन के दौरान विकसित हुए और इस्लामी गणित के माध्यम से पश्चिमी दुनिया में प्रेषित किए गए।भारतीय गणित के अन्य उल्लेखनीय विकासों में साइन और कोसाइन की आधुनिक परिभाषा और सन्निकटन और अनंत श्रृंखला का एक प्रारंभिक रूप शामिल है।
हिंदू-अरबी अंक प्रणाली और इसके संचालन के उपयोग के नियम, आज दुनिया भर में उपयोग में हैं, भारत में पहली सहस्राब्दी ईस्वी के दौरान विकसित हुए और इस्लामी गणित के माध्यम से पश्चिमी दुनिया में प्रसारित किए गए। भारतीय गणित के अन्य उल्लेखनीय विकासों में साइन और कोसाइन की आधुनिक परिभाषा और सन्निकटन, और अनंत श्रृंखला का प्रारंभिक रूप शामिल है।


[[File:Image-Al-Kitāb al-muḫtaṣar fī ḥisāb al-ğabr wa-l-muqābala.jpg|left|thumb|अल-ख्वारिज़मी के बीजगणित का एक पृष्ठ]]
[[File:Image-Al-Kitāb al-muḫtaṣar fī ḥisāb al-ğabr wa-l-muqābala.jpg|left|thumb|अल-ख्वारिज़मी के बीजगणित का एक पृष्ठ]]
[[File:Fibonacci.jpg|thumb|upright|लियोनार्डो फाइबोनैचि, इतालवी गणितज्ञ, जिन्होंने हिंदू -अरबिक अंक प्रणाली की शुरुआत की, जो कि 1 और 4 वें & nbsp के बीच भारतीय गणितज्ञों द्वारा, पश्चिमी दुनिया के लिए आविष्कार किया गया था।]]
[[File:Fibonacci.jpg|thumb|upright|लियोनार्डो फाइबोनैचि, इतालवी गणितज्ञ, जिन्होंने हिंदू -अरबिक अंक प्रणाली की शुरुआत की, जो कि 1 और 4 वें & nbsp के बीच भारतीय गणितज्ञों द्वारा, पश्चिमी दुनिया के लिए आविष्कार किया गया था।]]
इस्लाम के स्वर्ण युग के दौरान, विशेष रूप से 9 वीं और 10 वीं & nbsp के दौरान;इस्लामी गणित की सबसे उल्लेखनीय उपलब्धि बीजगणित का विकास था।इस्लामी अवधि की अन्य उपलब्धियों में गोलाकार त्रिकोणमिति में अग्रिम और अरबी अंक प्रणाली के दशमलव बिंदु के अलावा शामिल हैं।<ref>{{Cite book|last=Saliba, George.|url=http://worldcat.org/oclc/28723059|title=A history of Arabic astronomy : planetary theories during the golden age of Islam|date=1994|publisher=New York University Press|isbn=978-0-8147-7962-0|oclc=28723059|access-date=May 29, 2020|archive-date=March 31, 2021|archive-url=https://web.archive.org/web/20210331144039/https://www.worldcat.org/title/history-of-arabic-astronomy-planetary-theories-during-the-golden-age-of-islam/oclc/28723059|url-status=live}}</ref> इस अवधि के कई उल्लेखनीय गणितज्ञ फ़ारसी थे, जैसे कि मुहम्मद इब्न मूसा अल-ख्वारिज़्मी | अल-ख्वारिज्मी, उमर खय्याम और शराफ अल-दीन अल-ṭsिजी।
इस्लाम के स्वर्ण युग के दौरान, विशेष रूप से 9वीं और 10वीं शताब्दी के दौरान, गणित ने यूनानी गणित पर कई महत्वपूर्ण नवाचारों का निर्माण देखा। इस्लामिक गणित की सबसे उल्लेखनीय उपलब्धि बीजगणित का विकास था। इस्लामी काल की अन्य उपलब्धियों में गोलाकार त्रिकोणमिति में प्रगति और अरबी अंक प्रणाली में दशमलव बिंदु का जोड़ शामिल है।<ref>{{Cite book|last=Saliba, George.|url=http://worldcat.org/oclc/28723059|title=A history of Arabic astronomy : planetary theories during the golden age of Islam|date=1994|publisher=New York University Press|isbn=978-0-8147-7962-0|oclc=28723059|access-date=May 29, 2020|archive-date=March 31, 2021|archive-url=https://web.archive.org/web/20210331144039/https://www.worldcat.org/title/history-of-arabic-astronomy-planetary-theories-during-the-golden-age-of-islam/oclc/28723059|url-status=live}}</ref> इस काल के कई उल्लेखनीय गणितज्ञ फारसी थे, जैसे अल-ख्वारिस्मी, उमर खय्याम और शराफ अल-दीन अल-इस्सी।
 
शुरुआती आधुनिक काल के दौरान, पश्चिमी यूरोप में एक त्वरित गति से गणित का विकास शुरू हुआ। 17 वीं शताब्दी में इसहाक न्यूटन और गॉटफ्रीड लिबनिज़ द्वारा कैलकुलस के विकास ने गणित में क्रांति ला दी। लियोनहार्ड यूलर 18 वीं शताब्दी के सबसे उल्लेखनीय गणितज्ञ थे, जो कई प्रमेयों और खोजों का योगदान देते थे। शायद 19 वीं शताब्दी के सबसे महत्वपूर्ण गणितज्ञ जर्मन गणितज्ञ कार्ल गॉस थे, जिन्होंने बीजगणित, विश्लेषण, अंतर ज्यामिति, मैट्रिक्स सिद्धांत, संख्या सिद्धांत और सांख्यिकी जैसे क्षेत्रों में कई योगदान दिया। 20 वीं शताब्दी की शुरुआत में, कर्ट गोडेल ने अपने गोडेल की अपूर्णता प्रमेय प्रकाशित करके गणित को बदल दिया। अपूर्णता प्रमेय, जो इस भाग में दिखाते हैं कि कोई भी सुसंगत स्वयंसिद्ध प्रणाली - जो कि अंकगणित का वर्णन करने के लिए पर्याप्त शक्तिशाली है - इसमें सच्चे प्रस्ताव शामिल हैं जो साबित नहीं किए जा सकते हैं।
 
गणित तब से बहुत बढ़ा दिया गया है, और दोनों के लाभ के लिए गणित और विज्ञान के बीच एक फलदायी बातचीत हुई है। गणितीय खोजों को बहुत दिन तक जारी रखा जाता है। मिखाइल बी। सेव्रीुक के अनुसार, जनवरी और एनबीएसपी में, 2006 में अमेरिकी गणितीय सोसायटी के बुलेटिन का अंक, 1940 के बाद से गणितीय समीक्षा डेटाबेस में शामिल कागजात और पुस्तकों की संख्या (एमआर के संचालन का पहला वर्ष) अब 1.9 से अधिक है। & nbsp; मिलियन, और 75 से अधिक & nbsp; हजार आइटम प्रत्येक वर्ष डेटाबेस में जोड़े जाते हैं। इस महासागर में अधिकांश कार्यों में नए गणितीय प्रमेय और उनके प्रमाण शामिल हैं।{{sfn|Sevryuk|2006|pp=101–09}}


प्रारंभिक आधुनिक काल के दौरान, पश्चिमी यूरोप में गणित का तेजी से विकास होना शुरू हुआ। 17वीं सदी में आइजैक न्यूटन और गॉटफ्रीड लाइबनिज द्वारा कलन के विकास ने गणित में क्रांति ला दी। लियोनहार्ड यूलर 18वीं सदी के सबसे उल्लेखनीय गणितज्ञ थे, जिन्होंने कई प्रमेयों और खोजों का योगदान दिया। शायद 19वीं सदी के सबसे अग्रणी गणितज्ञ जर्मन गणितज्ञ कार्ल गॉस थे, जिन्होंने बीजगणित, विश्लेषण, अंतर ज्यामिति, मैट्रिक्स सिद्धांत, संख्या सिद्धांत और सांख्यिकी जैसे क्षेत्रों में कई योगदान दिए। 20वीं शताब्दी की शुरुआत में, कर्ट गोडेल ने अपने अपूर्णता प्रमेयों को प्रकाशित करके गणित को बदल दिया, जो इस बात को दर्शाता है कि किसी भी सुसंगत स्वयंसिद्ध प्रणाली-यदि अंकगणित का वर्णन करने के लिए पर्याप्त शक्तिशाली है- में सच्चे प्रस्ताव होंगे जिन्हें साबित नहीं किया जा सकता है।


तब से गणित का बहुत विस्तार हुआ है, और गणित और विज्ञान के बीच एक उपयोगी अंतःक्रिया हुई है, जिससे दोनों को लाभ हुआ है। आज भी गणितीय खोजें जारी हैं। अमेरिकी गणितीय सोसायटी के बुलेटिन के जनवरी 2006 के अंक में मिखाइल बी. सेवरीुक के अनुसार, "1940 (एमआर के संचालन का पहला वर्ष) से गणितीय समीक्षा डेटाबेस में शामिल पत्रों और पुस्तकों की संख्या अब 1.9 से अधिक है मिलियन, और प्रत्येक वर्ष डेटाबेस में 75 हजार से अधिक आइटम जोड़े जाते हैं। इस महासागर में अधिकांश कार्यों में नए गणितीय प्रमेय और उनके प्रमाण शामिल हैं।"{{sfn|Sevryuk|2006|pp=101–09}}
=== व्युत्पत्ति ===
=== व्युत्पत्ति ===
गणित शब्द प्राचीन ग्रीक मथम से आता है ({{Lang-grc|{{wikt-lang|en|μάθημα}}|label=none}}), जिसका अर्थ है कि जो सीखा है,<ref>{{cite dictionary|title=mathematic (n.)|dictionary=[[Online Etymology Dictionary]]|url=http://www.etymonline.com/index.php?term=mathematic&allowed_in_frame=0|url-status=live|archive-url=https://web.archive.org/web/20130307093926/http://etymonline.com/index.php?term=mathematic&allowed_in_frame=0|archive-date=March 7, 2013|df=mdy-all}}</ref> किसी को क्या पता है, इसलिए अध्ययन और विज्ञान भी।गणित के लिए शब्द शास्त्रीय समय में भी संकीर्ण और अधिक तकनीकी अर्थ गणितीय अध्ययन था।<ref>Both meanings can be found in Plato, the narrower in [[Republic (Plato)|''Republic'']] [https://www.perseus.tufts.edu/hopper/text?doc=Plat.+Rep.+6.510c&fromdoc=Perseus%3Atext%3A1999.01.0168 510c] {{Webarchive|url=https://web.archive.org/web/20210224152747/http://www.perseus.tufts.edu/hopper/text?doc=Plat.+Rep.+6.510c&fromdoc=Perseus%3Atext%3A1999.01.0168 |date=February 24, 2021 }}, but Plato did not use a ''math-'' word; Aristotle did, commenting on it. {{LSJ|maqhmatiko/s|μαθηματική|ref}}. ''OED Online'', "Mathematics".</ref> इसका विशेषण Mathēmatikós है ({{lang|grc|μαθηματικός}}), सीखने या अध्ययनशील से संबंधित अर्थ, जो आगे भी गणितीय का अर्थ था।विशेष रूप से, Mathēmatikḗ tékhnē ({{lang|grc|μαθηματικὴ τέχνη}}; {{lang-la|ars mathematica}}) गणितीय कला का मतलब था।
गणित शब्द प्राचीन ग्रीक मथम से आता है ({{Lang-grc|{{wikt-lang|en|μάθημα}}|label=none}}), जिसका अर्थ है कि जो सीखा है,<ref>{{cite dictionary|title=mathematic (n.)|dictionary=[[Online Etymology Dictionary]]|url=http://www.etymonline.com/index.php?term=mathematic&allowed_in_frame=0|url-status=live|archive-url=https://web.archive.org/web/20130307093926/http://etymonline.com/index.php?term=mathematic&allowed_in_frame=0|archive-date=March 7, 2013|df=mdy-all}}</ref> किसी को क्या पता है, इसलिए अध्ययन और विज्ञान भी।गणित के लिए शब्द शास्त्रीय समय में भी संकीर्ण और अधिक तकनीकी अर्थ गणितीय अध्ययन था।<ref>Both meanings can be found in Plato, the narrower in [[Republic (Plato)|''Republic'']] [https://www.perseus.tufts.edu/hopper/text?doc=Plat.+Rep.+6.510c&fromdoc=Perseus%3Atext%3A1999.01.0168 510c] {{Webarchive|url=https://web.archive.org/web/20210224152747/http://www.perseus.tufts.edu/hopper/text?doc=Plat.+Rep.+6.510c&fromdoc=Perseus%3Atext%3A1999.01.0168 |date=February 24, 2021 }}, but Plato did not use a ''math-'' word; Aristotle did, commenting on it. {{LSJ|maqhmatiko/s|μαθηματική|ref}}. ''OED Online'', "Mathematics".</ref> इसका विशेषण Mathēmatikós है ({{lang|grc|μαθηματικός}}), सीखने या अध्ययनशील से संबंधित अर्थ, जो आगे भी गणितीय का अर्थ था।विशेष रूप से, Mathēmatikḗ tékhnē ({{lang|grc|μαθηματικὴ τέχνη}}; {{lang-la|ars mathematica}}) गणितीय कला का मतलब था।
Line 249: Line 243:


अरस्तू ने गणित को मात्रा के विज्ञान के रूप में परिभाषित किया और यह परिभाषा 18 वीं शताब्दी तक प्रबल रही।हालांकि, अरस्तू ने यह भी नोट किया कि अकेले मात्रा पर ध्यान केंद्रित किया जा सकता है, जो गणित को भौतिकी जैसे विज्ञान से अलग नहीं कर सकता है;उनके विचार में, वास्तविक उदाहरणों से विचार में अलग -अलग संपत्ति के रूप में अमूर्तता और अध्ययन की मात्रा गणित को अलग करती है।<ref name="Franklin">{{Cite book|last=Franklin|first=James|url=https://books.google.com/books?id=mbn35b2ghgkC&pg=PA104|title=Philosophy of Mathematics|date=2009-07-08|isbn=978-0-08-093058-9|pages=104–106|access-date=July 1, 2020|archive-url=https://web.archive.org/web/20150906134402/https://books.google.com/books?id=mbn35b2ghgkC&pg=PA104#v=onepage&q&f=false|archive-date=September 6, 2015|url-status=live}}</ref>
अरस्तू ने गणित को मात्रा के विज्ञान के रूप में परिभाषित किया और यह परिभाषा 18 वीं शताब्दी तक प्रबल रही।हालांकि, अरस्तू ने यह भी नोट किया कि अकेले मात्रा पर ध्यान केंद्रित किया जा सकता है, जो गणित को भौतिकी जैसे विज्ञान से अलग नहीं कर सकता है;उनके विचार में, वास्तविक उदाहरणों से विचार में अलग -अलग संपत्ति के रूप में अमूर्तता और अध्ययन की मात्रा गणित को अलग करती है।<ref name="Franklin">{{Cite book|last=Franklin|first=James|url=https://books.google.com/books?id=mbn35b2ghgkC&pg=PA104|title=Philosophy of Mathematics|date=2009-07-08|isbn=978-0-08-093058-9|pages=104–106|access-date=July 1, 2020|archive-url=https://web.archive.org/web/20150906134402/https://books.google.com/books?id=mbn35b2ghgkC&pg=PA104#v=onepage&q&f=false|archive-date=September 6, 2015|url-status=live}}</ref>
19 वीं शताब्दी में, जब गणित के अध्ययन में कठोरता में वृद्धि हुई और समूह सिद्धांत और प्रक्षेप्य ज्यामिति जैसे अमूर्त विषयों को संबोधित करना शुरू किया, जिनका मात्रा और माप के लिए कोई स्पष्ट संबंध नहीं है, गणितज्ञों और दार्शनिकों ने विभिन्न प्रकार की नई परिभाषाओं का प्रस्ताव करना शुरू किया।।<ref name="Cajori">{{cite book|author=Cajori, Florian|title=A History of Mathematics|publisher=American Mathematical Society (1991 reprint)|year=1893|isbn=978-0-8218-2102-2|pages=[https://books.google.com/books?id=mGJRjIC9fZgC&pg=PA285 285–86]|author-link=Florian Cajori}}</ref> आज तक, दार्शनिक गणित के दर्शन में सवालों से निपटना जारी रखते हैं, जैसे कि गणितीय प्रमाण की प्रकृति।<ref>{{cite book |title=Proof and Other Dilemmas: Mathematics and Philosophy |author1=Gold, Bonnie|author1-link=Bonnie Gold |author2=Simons, Rogers A. |publisher=MAA |year=2008}}</ref>
19 वीं शताब्दी में, जब गणित के अध्ययन में कठोरता में वृद्धि हुई और समूह सिद्धांत और प्रक्षेप्य ज्यामिति जैसे अमूर्त विषयों को संबोधित करना शुरू किया, जिनका मात्रा और माप के लिए कोई स्पष्ट संबंध नहीं है, गणितज्ञों और दार्शनिकों ने विभिन्न प्रकार की नई परिभाषाओं का प्रस्ताव करना शुरू किया।।<ref name="Cajori">{{cite book|author=Cajori, Florian|title=A History of Mathematics|publisher=American Mathematical Society (1991 reprint)|year=1893|isbn=978-0-8218-2102-2|pages=[https://books.google.com/books?id=mGJRjIC9fZgC&pg=PA285 285–86]|author-link=Florian Cajori}}</ref> आज तक, दार्शनिक गणित के दर्शन में सवालों से निपटना जारी रखते हैं, जैसे कि गणितीय प्रमाण की प्रकृति।<ref>{{cite book |title=Proof and Other Dilemmas: Mathematics and Philosophy |author1=Gold, Bonnie|author1-link=Bonnie Gold |author2=Simons, Rogers A. |publisher=MAA |year=2008}}</ref>




Line 293: Line 289:
[[File:Carl Friedrich Gauss.jpg|upright|thumb|left|कार्ल फ्रेडरिक गॉस, जिसे गणितज्ञों के राजकुमार के रूप में जाना जाता है]]
[[File:Carl Friedrich Gauss.jpg|upright|thumb|left|कार्ल फ्रेडरिक गॉस, जिसे गणितज्ञों के राजकुमार के रूप में जाना जाता है]]
जर्मन गणितज्ञ कार्ल फ्रेडरिक गॉस ने गणित को विज्ञान की रानी कहा,{{sfn|Waltershausen|1965|p=79}} और हाल ही में, मार्कस डू सौतॉय ने गणित को वैज्ञानिक खोज के पीछे मुख्य ड्राइविंग बल के रूप में वर्णित किया है।<ref>{{Cite episode |title=Nicolas Bourbaki |url=http://www.bbc.co.uk/programmes/b00stcgv |access-date=26 October 2017 |series=A Brief History of Mathematics |first=Marcus |last=du Sautoy |station=BBC Radio 4 |date=25 June 2010 |time=min. 12:50 |url-status=live |archive-url=https://web.archive.org/web/20161216050402/http://www.bbc.co.uk/programmes/b00stcgv |archive-date=December 16, 2016 |df=mdy-all }}</ref> हालांकि, कुछ लेखक इस बात पर जोर देते हैं कि गणित विज्ञान की आधुनिक धारणा से एक प्रमुख तरीके से भिन्न होता है: यह अनुभवजन्य साक्ष्य पर भरोसा नहीं करता है।<ref name= "Bishop1991">{{cite book | last1 = Bishop | first1 = Alan | year = 1991 | chapter = Environmental activities and mathematical culture | title = Mathematical Enculturation: A Cultural Perspective on Mathematics Education | chapter-url = https://books.google.com/books?id=9AgrBgAAQBAJ&pg=PA54 | pages = 20–59 | location = Norwell, Massachusetts | publisher = Kluwer Academic Publishers | isbn = 978-0-792-31270-3 | access-date = April 5, 2020 | archive-date = December 25, 2020 | archive-url = https://web.archive.org/web/20201225195821/https://books.google.com/books?id=9AgrBgAAQBAJ&pg=PA54 | url-status = live }}</ref><ref>{{cite book |title=Out of Their Minds: The Lives and Discoveries of 15 Great Computer Scientists |author1=Shasha, Dennis Elliot |author2=Lazere, Cathy A. |publisher=Springer |year=1998 |page=228}}</ref><ref name= "Nickles2013" >{{cite book | last = Nickles | first = Thomas | year = 2013 | chapter = The Problem of Demarcation | title = Philosophy of Pseudoscience: Reconsidering the Demarcation Problem | page = 104 | location = Chicago | publisher = The University of Chicago Press}}</ref><ref name="Pigliucci2014">{{Cite magazine| year = 2014| last = [[Massimo Pigliucci|Pigliucci]]| first = Massimo| title = Are There 'Other' Ways of Knowing?| magazine = [[Philosophy Now]]| url = https://philosophynow.org/issues/102/Are_There_Other_Ways_of_Knowing| access-date = 6 April 2020| archive-date = May 13, 2020| archive-url = https://web.archive.org/web/20200513190522/https://philosophynow.org/issues/102/Are_There_Other_Ways_of_Knowing| url-status = live}}</ref>
जर्मन गणितज्ञ कार्ल फ्रेडरिक गॉस ने गणित को विज्ञान की रानी कहा,{{sfn|Waltershausen|1965|p=79}} और हाल ही में, मार्कस डू सौतॉय ने गणित को वैज्ञानिक खोज के पीछे मुख्य ड्राइविंग बल के रूप में वर्णित किया है।<ref>{{Cite episode |title=Nicolas Bourbaki |url=http://www.bbc.co.uk/programmes/b00stcgv |access-date=26 October 2017 |series=A Brief History of Mathematics |first=Marcus |last=du Sautoy |station=BBC Radio 4 |date=25 June 2010 |time=min. 12:50 |url-status=live |archive-url=https://web.archive.org/web/20161216050402/http://www.bbc.co.uk/programmes/b00stcgv |archive-date=December 16, 2016 |df=mdy-all }}</ref> हालांकि, कुछ लेखक इस बात पर जोर देते हैं कि गणित विज्ञान की आधुनिक धारणा से एक प्रमुख तरीके से भिन्न होता है: यह अनुभवजन्य साक्ष्य पर भरोसा नहीं करता है।<ref name= "Bishop1991">{{cite book | last1 = Bishop | first1 = Alan | year = 1991 | chapter = Environmental activities and mathematical culture | title = Mathematical Enculturation: A Cultural Perspective on Mathematics Education | chapter-url = https://books.google.com/books?id=9AgrBgAAQBAJ&pg=PA54 | pages = 20–59 | location = Norwell, Massachusetts | publisher = Kluwer Academic Publishers | isbn = 978-0-792-31270-3 | access-date = April 5, 2020 | archive-date = December 25, 2020 | archive-url = https://web.archive.org/web/20201225195821/https://books.google.com/books?id=9AgrBgAAQBAJ&pg=PA54 | url-status = live }}</ref><ref>{{cite book |title=Out of Their Minds: The Lives and Discoveries of 15 Great Computer Scientists |author1=Shasha, Dennis Elliot |author2=Lazere, Cathy A. |publisher=Springer |year=1998 |page=228}}</ref><ref name= "Nickles2013" >{{cite book | last = Nickles | first = Thomas | year = 2013 | chapter = The Problem of Demarcation | title = Philosophy of Pseudoscience: Reconsidering the Demarcation Problem | page = 104 | location = Chicago | publisher = The University of Chicago Press}}</ref><ref name="Pigliucci2014">{{Cite magazine| year = 2014| last = [[Massimo Pigliucci|Pigliucci]]| first = Massimo| title = Are There 'Other' Ways of Knowing?| magazine = [[Philosophy Now]]| url = https://philosophynow.org/issues/102/Are_There_Other_Ways_of_Knowing| access-date = 6 April 2020| archive-date = May 13, 2020| archive-url = https://web.archive.org/web/20200513190522/https://philosophynow.org/issues/102/Are_There_Other_Ways_of_Knowing| url-status = live}}</ref>
वैज्ञानिक क्रांति के बाद से गणितीय ज्ञान ने दायरे में विस्फोट किया है, और अध्ययन के अन्य क्षेत्रों के साथ, इसने विशेषज्ञता को संचालित किया है।2010 तक, अमेरिकन मैथमेटिकल सोसाइटी का नवीनतम गणित विषय वर्गीकरण सैकड़ों उपक्षेत्रों को मान्यता देता है, जिसमें पूर्ण वर्गीकरण 46 पृष्ठों तक पहुंच जाता है।<ref>{{cite web |url=https://www.ams.org/mathscinet/msc/pdfs/classification2010.pdf |title=Mathematics Subject Classification 2010 |access-date=November 9, 2010 |url-status=live |archive-url=https://web.archive.org/web/20110514091144/http://www.ams.org/mathscinet/msc/pdfs/classification2010.pdf |archive-date=May 14, 2011 |df=mdy-all }}</ref> आमतौर पर, एक सबफील्ड में कई अवधारणाएं गणित की अन्य शाखाओं से अनिश्चित काल तक अलग -थलग रह सकती हैं; परिणाम मुख्य रूप से अन्य प्रमेयों और तकनीकों का समर्थन करने के लिए मचान के रूप में काम कर सकते हैं, या उनके पास सबफील्ड के बाहर किसी भी चीज़ से स्पष्ट संबंध नहीं हो सकता है।
वैज्ञानिक क्रांति के बाद से गणितीय ज्ञान ने दायरे में विस्फोट किया है, और अध्ययन के अन्य क्षेत्रों के साथ, इसने विशेषज्ञता को संचालित किया है।2010 तक, अमेरिकन मैथमेटिकल सोसाइटी का नवीनतम गणित विषय वर्गीकरण सैकड़ों उपक्षेत्रों को मान्यता देता है, जिसमें पूर्ण वर्गीकरण 46 पृष्ठों तक पहुंच जाता है।<ref>{{cite web |url=https://www.ams.org/mathscinet/msc/pdfs/classification2010.pdf |title=Mathematics Subject Classification 2010 |access-date=November 9, 2010 |url-status=live |archive-url=https://web.archive.org/web/20110514091144/http://www.ams.org/mathscinet/msc/pdfs/classification2010.pdf |archive-date=May 14, 2011 |df=mdy-all }}</ref> आमतौर पर, एक सबफील्ड में कई अवधारणाएं गणित की अन्य शाखाओं से अनिश्चित काल तक अलग -थलग रह सकती हैं; परिणाम मुख्य रूप से अन्य प्रमेयों और तकनीकों का समर्थन करने के लिए मचान के रूप में काम कर सकते हैं, या उनके पास सबफील्ड के बाहर किसी भी चीज़ से स्पष्ट संबंध नहीं हो सकता है।



Revision as of 09:38, 9 September 2022

File:Euclid.jpg
तीसरी शताब्दी ईसा पूर्व ग्रीक गणितज्ञ यूक्लिड ने कैलीपर्स को पकड़े हुए, जैसा कि एथेंस के स्कूल से इस विस्तार से राफेल द्वारा कल्पना की गई थी (1509-1511)[lower-alpha 1]

गणित (from Ancient Greek μάθημα; máthēma: 'knowledge, study, learning') ज्ञान का एक क्षेत्र है जिसमें संख्याएं (अंकगणित और संख्या सिद्धांत),[1] सूत्र और संबंधित संरचनाएं (बीजगणित),[2] आकार जैसे विषय शामिल हैं। और वे स्थान जिनमें वे समाहित हैं (ज्यामिति),[1] और मात्राएँ और उनके परिवर्तन (कैलकुलस और विश्लेषण)।[3][4][5] अधिकांश गणितीय गतिविधि में अमूर्त वस्तुओं के गुणों को खोजने या साबित करने के लिए शुद्ध कारण का उपयोग शामिल होता है, जिसमें या तो प्रकृति से अमूर्त होते हैं या—आधुनिक गणित में—ऐसी संस्थाएं होती हैं जो कुछ गुणों के साथ निर्धारित होती हैं, जिन्हें स्वयंसिद्ध कहा जाता है। एक गणितीय प्रमाण में पहले से सिद्ध किए गए प्रमेयों, स्वयंसिद्धों और (प्रकृति से अमूर्तता के मामले में) कुछ बुनियादी गुणों सहित पहले से ज्ञात परिणामों के लिए कुछ निगमन नियमों के अनुप्रयोगों का उत्तराधिकार होता है, जिन्हें विचाराधीन सिद्धांत के सही प्रारंभिक बिंदु माना जाता है।

विज्ञान में गणित का उपयोग मॉडलिंग परिघटनाओं के लिए किया जाता है, जो तब प्रायोगिक नियमों से भविष्यवाणियां करने की अनुमति देता है। किसी भी प्रयोग से गणितीय सत्य की स्वतंत्रता का तात्पर्य है कि ऐसी भविष्यवाणियों की सटीकता केवल मॉडल की पर्याप्तता पर निर्भर करती है। गलत भविष्यवाणियां, गलत गणित के कारण होने के बजाय, इस्तेमाल किए गए गणितीय मॉडल को बदलने की आवश्यकता का संकेत देती हैं। उदाहरण के लिए, बुध के पेरिहेलियन पूर्वसर्ग को आइंस्टीन के सामान्य सापेक्षता के उद्भव के बाद ही समझाया जा सकता है, जिसने न्यूटन के गुरुत्वाकर्षण के नियम को बेहतर गणितीय मॉडल के रूप में बदल दिया।

गणित विज्ञान, इंजीनियरिंग, चिकित्सा, वित्त, कंप्यूटर विज्ञान और सामाजिक विज्ञान में आवश्यक है। गणित के कुछ क्षेत्रों, जैसे कि सांख्यिकी और खेल सिद्धांत, को उनके अनुप्रयोगों के साथ घनिष्ठ संबंध में विकसित किया गया है और अक्सर उन्हें अनुप्रयुक्त गणित के अंतर्गत समूहीकृत किया जाता है। अन्य गणितीय क्षेत्रों को किसी भी अनुप्रयोग से स्वतंत्र रूप से विकसित किया जाता है (और इसलिए उन्हें शुद्ध गणित कहा जाता है), लेकिन व्यावहारिक अनुप्रयोगों को अक्सर बाद में खोजा जाता है।[6][7] एक उपयुक्त उदाहरण पूर्णांक गुणनखंडन की समस्या है, जो यूक्लिड में वापस जाता है, लेकिन जिसका RSA क्रिप्टोसिस्टम (कंप्यूटर नेटवर्क की सुरक्षा के लिए) में उपयोग करने से पहले कोई व्यावहारिक अनुप्रयोग नहीं था।

ऐतिहासिक रूप से, प्रमाण की अवधारणा और उससे जुड़ी गणितीय कठोरता सबसे पहले ग्रीक गणित में दिखाई दी, विशेष रूप से यूक्लिड के तत्वों में।[8] इसकी शुरुआत के बाद से, गणित को अनिवार्य रूप से ज्यामिति, और अंकगणित (प्राकृतिक संख्याओं और अंशों का हेरफेर) में विभाजित किया गया था, जब तक कि 16वीं और 17वीं शताब्दी तक, जब बीजगणित और इनफिनिट्सिमल कैलकुलस को विषय के नए क्षेत्रों के रूप में पेश किया गया था। तब से, गणितीय नवाचारों और वैज्ञानिक खोजों के बीच पारस्परिक क्रिया ने गणित के विकास में तेजी से वृद्धि की है। उन्नीसवीं सदी के अंत में, गणित के मूलभूत संकट ने स्वयंसिद्ध पद्धति के व्यवस्थितकरण को जन्म दिया। इससे गणित के क्षेत्रों की संख्या और उनके अनुप्रयोगों के क्षेत्रों में नाटकीय वृद्धि हुई। इसका एक उदाहरण गणित विषय वर्गीकरण है, जिसमें गणित के 60 से अधिक प्रथम-स्तर के क्षेत्रों की सूची है।




शब्द व्युत्पत्ति

गणित शब्द की उत्पत्ति प्राचीन यूनानी गणित (μάθημα) से हुई है, जिसका अर्थ है "जो सीखा जाता है,"[9] "जो कुछ भी पता चलता है," इसलिए "अध्ययन" और "विज्ञान" भी। शास्त्रीय काल में भी "गणित" शब्द का संक्षिप्त और अधिक तकनीकी अर्थ "गणितीय अध्ययन" आया।[10] इसका विशेषण Mathēmatikós (μαθηματικός) है, जिसका अर्थ है "सीखने से संबंधित" या "अध्ययनशील", जिसका अर्थ "गणितीय" भी है। विशेष रूप से, mathēmatikḗ tékhnē (μαθηματικὴ ; लैटिन: ars mathematica) का अर्थ "गणितीय कला" है।

इसी तरह, पाइथागोरसवाद में विचार के दो मुख्य विद्यालयों में से एक को गणितज्ञ (μαθηματικοί ) के रूप में जाना जाता था - जो उस समय आधुनिक अर्थों में "गणितज्ञ" के बजाय "शिक्षार्थी" था।

लैटिन में, और अंग्रेजी में लगभग 1700 तक, गणित शब्द का अर्थ "गणित" के बजाय "ज्योतिष" (या कभी-कभी "खगोल विज्ञान") से अधिक होता था; अर्थ धीरे-धीरे लगभग 1500 से 1800 तक अपने वर्तमान में बदल गया। इसके परिणामस्वरूप कई गलत अनुवाद हुए हैं। उदाहरण के लिए, सेंट ऑगस्टाइन की चेतावनी कि ईसाइयों को गणितज्ञ से सावधान रहना चाहिए, जिसका अर्थ है ज्योतिषी, कभी-कभी गणितज्ञों की निंदा के रूप में गलत अनुवाद किया जाता है।[11]

अंग्रेजी में स्पष्ट बहुवचन रूप लैटिन नपुंसक बहुवचन गणित (सिसरो) में वापस चला जाता है, जो ग्रीक बहुवचन ता गणितिका (τὰ μαθηματικά) पर आधारित है, जिसका उपयोग अरस्तू (384-322 ईसा पूर्व) द्वारा किया गया था, और इसका अर्थ मोटे तौर पर "सभी चीजें गणितीय" हैं, हालांकि यह प्रशंसनीय है कि अंग्रेजी ने केवल विशेषण गणित (अल) को उधार लिया और भौतिकी और तत्वमीमांसा के पैटर्न के बाद संज्ञा गणित का गठन किया, जो ग्रीक से विरासत में मिला था।[12] इसे अक्सर गणित या, उत्तरी अमेरिका में, गणित के रूप में संक्षिप्त किया जाता है।[13]

गणित के क्षेत्र

पुनर्जागरण से पहले, गणित को दो मुख्य क्षेत्रों में विभाजित किया गया था: अंकगणित — संख्याओं के हेरफेर के बारे में, और ज्यामिति — आकृतियों के अध्ययन के बारे में। कुछ प्रकार के छद्म विज्ञान, जैसे अंकशास्त्र और ज्योतिष, तब स्पष्ट रूप से गणित से अलग नहीं थे।

पुनर्जागरण के दौरान दो और क्षेत्र सामने आए। गणितीय संकेतन ने बीजगणित की ओर अग्रसर किया, जो मोटे तौर पर, अध्ययन और सूत्रों के हेरफेर से बना है। कैलकुलस, दो उपक्षेत्रों इनफिनिटसिमल कैलकुलस और इंटीग्रल कैलकुलस से मिलकर बना है, निरंतर कार्यों का अध्ययन है, जो अलग-अलग मात्राओं (चर) के बीच आम तौर पर गैर-रेखीय संबंधों को मॉडल करता है। चार मुख्य क्षेत्रों में यह विभाजन — अंकगणित, ज्यामिति, बीजगणित, कलनLua error: Internal error: The interpreter exited with status 1. — 19वीं शताब्दी के अंत तक बना रहा। आकाशीय यांत्रिकी और ठोस यांत्रिकी जैसे क्षेत्रों को अक्सर गणित का हिस्सा माना जाता था, लेकिन अब उन्हें भौतिकी से संबंधित माना जाता है। इस अवधि के दौरान विकसित कुछ विषय गणित से पहले के हैं और ऐसे क्षेत्रों में विभाजित हैं जैसे कि संभाव्यता सिद्धांत और संयोजन, जो बाद में स्वायत्त क्षेत्रों के रूप में माना जाने लगा।

19वीं शताब्दी के अंत में, गणित में मूलभूत संकट और परिणामी स्वयंसिद्ध पद्धति के व्यवस्थितकरण ने गणित के नए क्षेत्रों का विस्फोट किया। आज, गणित विषय वर्गीकरण में चौंसठ प्रथम-स्तरीय क्षेत्रों से कम नहीं है। इनमें से कुछ क्षेत्र पुराने विभाजन से मेल खाते हैं, जैसा कि संख्या सिद्धांत (उच्च अंकगणित के लिए आधुनिक नाम) और ज्यामिति के बारे में सच है। (हालांकि, कई अन्य प्रथम-स्तरीय क्षेत्रों में उनके नाम में "ज्यामिति" है या अन्यथा सामान्यतः ज्यामिति का हिस्सा माना जाता है।) बीजगणित और कलन प्रथम-स्तर के क्षेत्रों के रूप में प्रकट नहीं होते हैं, लेकिन क्रमशः कई प्रथम-स्तर के क्षेत्रों में विभाजित होते हैं। 20वीं शताब्दी के दौरान अन्य प्रथम-स्तरीय क्षेत्र उभरे (उदाहरण के लिए श्रेणी सिद्धांत; होमोलॉजिकल बीजगणित, और कंप्यूटर विज्ञान) या पहले गणित के रूप में नहीं माना गया था, जैसे गणितीय तर्क और नींव (मॉडल सिद्धांत, संगणनीयता सिद्धांत, सेट सिद्धांत, प्रमाण सिद्धांत और बीजगणितीय तर्क सहित)।

संख्या सिद्धांत

Lua error: Internal error: The interpreter exited with status 1.

File:Spirale Ulam 150.jpg
यह उलम सर्पिल है, जो प्रमुख संख्याओं के वितरण को दर्शाता है।सर्पिल संकेत में अंधेरे विकर्ण रेखाएं प्राइम होने और एक द्विघात बहुपद का मूल्य होने के बीच अनुमानित स्वतंत्रता पर परिकल्पना की गई, एक अनुमान जिसे अब उलम सर्पिल#हार्डी और लिटिलवुड के अनुमान के रूप में जाना जाता है। हार्डी और लिटिलवुड के अनुमान एफ।

संख्या सिद्धांत संख्याओं के हेरफेर के साथ शुरू हुआ, अर्थात, प्राकृतिक संख्याएं और बाद में पूर्णांक और परिमेय संख्या तक विस्तारित हुईं। पहले संख्या सिद्धांत को अंकगणित कहा जाता था, लेकिन आजकल इस शब्द का प्रयोग संख्यात्मक गणना के लिए किया जाता है।

कई आसानी से बताई गई संख्या की समस्याओं के समाधान होते हैं जिनके लिए गणित से परिष्कृत विधियों की आवश्यकता होती है। एक प्रमुख उदाहरण फ़र्मेट का अंतिम प्रमेय है। यह अनुमान 1637 में पियरे डी फ़र्मेट द्वारा कहा गया था, लेकिन यह केवल 1994 में एंड्रयू विल्स द्वारा साबित हुआ था, जिन्होंने बीजगणितीय ज्यामिति, श्रेणी सिद्धांत और समरूप बीजगणित से योजना सिद्धांत सहित उपकरणों का उपयोग किया था। एक अन्य उदाहरण गोल्डबैक का अनुमान है, जिसमें दावा किया गया है कि 2 से बड़ा प्रत्येक सम पूर्णांक दो अभाज्य संख्याओं का योग होता है। 1742 में क्रिश्चियन गोल्डबैक द्वारा कहा गया, यह काफी प्रयास के बावजूद आज तक अप्रमाणित है।

संख्या सिद्धांत में विश्लेषणात्मक संख्या सिद्धांत, बीजगणितीय संख्या सिद्धांत, संख्याओं की ज्यामिति (विधि उन्मुख), डायोफैंटाइन समीकरण और पारगमन सिद्धांत (समस्या उन्मुख) सहित कई उपक्षेत्र शामिल हैं।

ज्यामिति

Lua error: Internal error: The interpreter exited with status 1. ज्यामिति गणित की प्राचीनतम शाखाओं में से एक है। यह आकृतियों से संबंधित अनुभवजन्य व्यंजनों के साथ शुरू हुआ, जैसे कि रेखाएं, कोण और मंडल, जिन्हें मुख्य रूप से सर्वेक्षण और वास्तुकला की जरूरतों के लिए विकसित किया गया था, लेकिन तब से कई अन्य उपक्षेत्रों में खिल गए हैं।

एक मौलिक नवाचार प्राचीन यूनानियों द्वारा सबूतों की अवधारणा की शुरूआत थी, इस आवश्यकता के साथ कि हर दावे को साबित किया जाना चाहिए। उदाहरण के लिए, माप द्वारा सत्यापित करना पर्याप्त नहीं है कि, मान लीजिए, दो लंबाइयाँ समान हैं; उनकी समानता को पहले स्वीकृत परिणामों (प्रमेय) और कुछ बुनियादी कथनों के तर्क के माध्यम से सिद्ध किया जाना चाहिए। मूल कथन प्रमाण के अधीन नहीं हैं क्योंकि वे स्व-स्पष्ट (अनुमानित) हैं, या वे अध्ययन के विषय (स्वयंसिद्ध) की परिभाषा का हिस्सा हैं। यह सिद्धांत, जो सभी गणित के लिए आधारभूत है, पहले ज्यामिति के लिए विस्तृत किया गया था, और यूक्लिड द्वारा अपनी पुस्तक एलिमेंट्स में लगभग 300 ई.पू. में व्यवस्थित किया गया था।

परिणामी यूक्लिडियन ज्यामिति, यूक्लिडियन तल (प्लेन ज्योमेट्री) और (त्रि-आयामी) यूक्लिडियन स्पेस में रेखाओं, विमानों और वृत्तों से निर्मित आकृतियों और उनकी व्यवस्थाओं का अध्ययन है।[lower-alpha 2]

17 वीं शताब्दी तक यूक्लिडियन ज्यामिति विधियों या दायरे में बदलाव के बिना विकसित की गई थी, जब रेने डेसकार्टेस ने पेश किया जिसे अब कार्टेशियन निर्देशांक कहा जाता है। यह प्रतिमान का एक बड़ा परिवर्तन था, क्योंकि वास्तविक संख्याओं को रेखा खंडों की लंबाई के रूप में परिभाषित करने के बजाय (संख्या रेखा देखें), इसने उनके निर्देशांक (जो संख्याएं हैं) का उपयोग करके बिंदुओं के प्रतिनिधित्व की अनुमति दी। यह किसी को ज्यामितीय समस्याओं को हल करने के लिए बीजगणित (और बाद में, कैलकुलस) का उपयोग करने की अनुमति देता है। इसने ज्यामिति को दो नए उपक्षेत्रों में विभाजित किया: सिंथेटिक ज्यामिति, जो विशुद्ध रूप से ज्यामितीय विधियों का उपयोग करती है, और विश्लेषणात्मक ज्यामिति, जो व्यवस्थित रूप से निर्देशांक का उपयोग करती है।

विश्लेषणात्मक ज्यामिति उन वक्रों के अध्ययन की अनुमति देती है जो वृत्त और रेखाओं से संबंधित नहीं हैं। इस तरह के वक्रों को कार्यों के ग्राफ के रूप में परिभाषित किया जा सकता है (जिसके अध्ययन से अंतर ज्यामिति का नेतृत्व किया गया)। उन्हें निहित समीकरणों के रूप में भी परिभाषित किया जा सकता है, अक्सर बहुपद समीकरण (जो बीजगणितीय ज्यामिति उत्पन्न करते हैं)। विश्लेषणात्मक ज्यामिति भी तीन आयामों से अधिक के रिक्त स्थान पर विचार करना संभव बनाता है।

19वीं सदी में, गणितज्ञों ने गैर-यूक्लिडियन ज्यामिति की खोज की, जो समानांतर अभिधारणा का पालन नहीं करते हैं। उस अभिधारणा की सत्यता पर प्रश्नचिह्न लगाकर, यह खोज रसेल के विरोधाभास में गणित के मूलभूत संकट को प्रकट करने के रूप में शामिल हो जाती है। संकट के इस पहलू को स्वयंसिद्ध पद्धति को व्यवस्थित करके हल किया गया था, और यह स्वीकार कर लिया गया था कि चुने हुए स्वयंसिद्धों की सच्चाई गणितीय समस्या नहीं है। बदले में, स्वयंसिद्ध विधि या तो स्वयंसिद्धों को बदलकर या अंतरिक्ष के विशिष्ट परिवर्तनों के तहत अपरिवर्तनीय गुणों पर विचार करके प्राप्त विभिन्न ज्यामिति के अध्ययन की अनुमति देती है।

आजकल, ज्यामिति के उपक्षेत्रों में निम्न शामिल हैं:

  • 16 वीं शताब्दी में गिरार्ड डेसर्गेस द्वारा पेश की गई प्रोजेक्टिव ज्यामिति, अनंत पर बिंदुओं को जोड़कर यूक्लिडियन ज्यामिति का विस्तार करती है जिस पर समानांतर रेखाएं एक दूसरे को काटती हैं। यह प्रतिच्छेदन और समानांतर रेखाओं के लिए उपचारों को एकीकृत करके शास्त्रीय ज्यामिति के कई पहलुओं को सरल करता है।
  • एफाइन ज्योमेट्री, समानांतरवाद के सापेक्ष गुणों का अध्ययन और लंबाई की अवधारणा से स्वतंत्र।
  • डिफरेंशियल ज्योमेट्री, वक्रों, सतहों और उनके सामान्यीकरणों का अध्ययन, जिन्हें भिन्न कार्यों का उपयोग करके परिभाषित किया गया है
  • मैनिफोल्ड सिद्धांत, आकृतियों का अध्ययन जो जरूरी नहीं कि एक बड़े स्थान में अंतर्निहित हों
  • रीमैनियन ज्यामिति, घुमावदार स्थानों में दूरी गुणों का अध्ययन
  • बीजीय ज्यामिति, वक्रों, सतहों और उनके सामान्यीकरणों का अध्ययन, जिन्हें बहुपदों का उपयोग करके परिभाषित किया जाता है
  • टोपोलॉजी, उन गुणों का अध्ययन जिन्हें निरंतर विकृतियों के तहत रखा जाता है
    • बीजगणितीय टोपोलॉजी, बीजीय विधियों की टोपोलॉजी में उपयोग, मुख्यतः समरूप बीजगणित
  • असतत ज्यामिति, ज्यामिति में परिमित विन्यासों का अध्ययन
  • उत्तल ज्यामिति, उत्तल समुच्चयों का अध्ययन, जो अनुकूलन में अपने अनुप्रयोगों से इसका महत्व लेता है
  • जटिल ज्यामिति, वास्तविक संख्याओं को सम्मिश्र संख्याओं से प्रतिस्थापित करके प्राप्त ज्यामिति

Lua error: Internal error: The interpreter exited with status 1.

बीजगणित

Lua error: Internal error: The interpreter exited with status 1. बीजगणित समीकरणों और सूत्रों में हेरफेर की कला है। डायोफैंटस (तीसरी शताब्दी) और अल-ख्वारिज्मी (9वीं शताब्दी) बीजगणित के दो प्रमुख अग्रदूत थे। पहले व्यक्ति ने कुछ समीकरणों को हल किया जिसमें अज्ञात प्राकृतिक संख्याएं शामिल थीं, जब तक कि वह समाधान प्राप्त नहीं कर लेता। दूसरे ने समीकरणों को बदलने के लिए व्यवस्थित तरीकों की शुरुआत की (जैसे कि एक समीकरण के एक तरफ से दूसरी तरफ एक शब्द को स्थानांतरित करना)। बीजगणित शब्द अरबी शब्द अल-जबर से लिया गया है जिसका अर्थ है "टूटे हुए हिस्सों के लिए पुनर्मिलन" जिसका उपयोग उन्होंने अपने मुख्य ग्रंथ के शीर्षक में इन विधियों में से एक के नामकरण के लिए किया था।

File:Quadratic formula.svg
द्विघात सूत्र, जो सभी द्विघात समीकरणों के समाधानों को व्यक्त करता है

बीजगणित केवल फ्रांकोइस विएते (1540-1603) के साथ अपने आप में एक क्षेत्र बन गया, जिन्होंने अज्ञात या अनिर्दिष्ट संख्याओं का प्रतिनिधित्व करने के लिए अक्षरों (चर) का उपयोग शुरू किया। यह गणितज्ञों को उन संक्रियाओं का वर्णन करने की अनुमति देता है जो गणितीय सूत्रों का उपयोग करके प्रदर्शित संख्याओं पर की जानी हैं।

19वीं शताब्दी तक, बीजगणित में मुख्य रूप से रैखिक समीकरणों (वर्तमान में रैखिक बीजगणित), और एक अज्ञात में बहुपद समीकरणों का अध्ययन शामिल था, जिसे बीजीय समीकरण (एक शब्द जो अभी भी उपयोग में है, हालांकि यह अस्पष्ट हो सकता है) कहा जाता था। 19वीं शताब्दी के दौरान, गणितज्ञों ने संख्याओं के अलावा अन्य चीजों का प्रतिनिधित्व करने के लिए चर का उपयोग करना शुरू किया (जैसे कि मैट्रिक्स, मॉड्यूलर पूर्णांक और ज्यामितीय परिवर्तन), जिस पर अंकगणितीय संचालन के सामान्यीकरण अक्सर मान्य होते हैं। बीजगणितीय संरचना की अवधारणा इसे संबोधित करती है, जिसमें एक सेट होता है, जिसके तत्व अनिर्दिष्ट होते हैं, सेट के तत्वों पर कार्य करने वाले संचालन, और नियम जिनका इन संचालनों का पालन करना चाहिए। इस परिवर्तन के कारण, बीजगणितीय संरचनाओं के अध्ययन को शामिल करने के लिए बीजगणित के क्षेत्र में वृद्धि हुई। बीजगणित की इस वस्तु को आधुनिक बीजगणित या अमूर्त बीजगणित कहा गया। (उत्तरार्द्ध शब्द मुख्य रूप से एक शैक्षिक संदर्भ में प्रकट होता है, प्राथमिक बीजगणित के विरोध में, जो सूत्रों में हेरफेर करने के पुराने तरीके से संबंधित है।)

File:Rubik's cube.svg
रुबिक क्यूब: द स्टडी ऑफ इट्स टाइटल मूव्स ग्रुप थ्योरी का एक ठोस अनुप्रयोग है

गणित के कई क्षेत्रों में कुछ प्रकार की बीजीय संरचनाओं में उपयोगी और अक्सर मूलभूत गुण होते हैं। उनका अध्ययन बीजगणित के स्वायत्त हिस्से बन गए, और इसमें शामिल हैं:

  • समूह सिद्धांत;
  • क्षेत्र सिद्धांत;
  • सदिश समष्टि, जिसका अध्ययन अनिवार्य रूप से रैखिक बीजगणित के समान है;
  • वलय सिद्धांत;
  • कम्यूटेटिव बीजगणित, जो कम्यूटेटिव रिंगों का अध्ययन है, इसमें बहुपदों का अध्ययन शामिल है, और यह बीजीय ज्यामिति का एक आधारभूत हिस्सा है;
  • समजातीय बीजगणित
  • झूठ बीजगणित और झूठ समूह सिद्धांत;
  • बूलियन बीजगणित, जो कंप्यूटर की तार्किक संरचना के अध्ययन के लिए व्यापक रूप से उपयोग किया जाता है।

गणितीय वस्तुओं के रूप में बीजगणितीय संरचनाओं के प्रकार का अध्ययन सार्वभौमिक बीजगणित और श्रेणी सिद्धांत का उद्देश्य है। उत्तरार्द्ध प्रत्येक गणितीय संरचना पर लागू होता है (न केवल बीजीय वाले)। इसके मूल में, गैर-बीजीय वस्तुओं जैसे टोपोलॉजिकल रिक्त स्थान के बीजगणितीय अध्ययन की अनुमति देने के लिए, समरूप बीजगणित के साथ इसे पेश किया गया था; अनुप्रयोग के इस विशेष क्षेत्र को बीजगणितीय टोपोलॉजी कहा जाता है।

कलन और विश्लेषण

Lua error: Internal error: The interpreter exited with status 1. कैलकुलस, जिसे पहले इनफिनिट्सिमल कैलकुलस कहा जाता था, को स्वतंत्र रूप से और साथ ही साथ 17 वीं शताब्दी के गणितज्ञ न्यूटन और लाइबनिज़ द्वारा पेश किया गया था। यह मूल रूप से एक दूसरे पर निर्भर चरों के संबंध का अध्ययन है। कैलकुलस का विस्तार 18वीं शताब्दी में यूलर द्वारा एक फलन की अवधारणा और कई अन्य परिणामों के साथ किया गया था। वर्तमान में, "कैलकुलस" मुख्य रूप से इस सिद्धांत के प्रारंभिक भाग को संदर्भित करता है, और "विश्लेषण" का उपयोग आमतौर पर उन्नत भागों के लिए किया जाता है।

विश्लेषण को वास्तविक विश्लेषण में और उप-विभाजित किया जाता है, जहां चर वास्तविक संख्याओं का प्रतिनिधित्व करते हैं, और जटिल विश्लेषण, जहां चर जटिल संख्याओं का प्रतिनिधित्व करते हैं। विश्लेषण में गणित के अन्य क्षेत्रों द्वारा साझा किए गए कई उपक्षेत्र शामिल हैं जिनमें निम्न शामिल हैं:

  • बहुचर कलन
  • कार्यात्मक विश्लेषण, जहां चर भिन्न-भिन्न कार्यों का प्रतिनिधित्व करते हैं;
  • एकीकरण, माप सिद्धांत और संभावित सिद्धांत, सभी संभाव्यता सिद्धांत से दृढ़ता से संबंधित हैं;
  • सामान्य अवकल समीकरण;
  • आंशिक अंतर समीकरण;
  • संख्यात्मक विश्लेषण, मुख्य रूप से कई अनुप्रयोगों में उत्पन्न होने वाले सामान्य और आंशिक अंतर समीकरणों के समाधान के कंप्यूटर पर गणना के लिए समर्पित है।

विविक्त गणित

Lua error: Internal error: The interpreter exited with status 1. असतत गणित, मोटे तौर पर, परिमित गणितीय वस्तुओं का अध्ययन है। क्योंकि यहां अध्ययन की वस्तुएं असतत हैं, कैलकुलस और गणितीय विश्लेषण के तरीके सीधे लागू नहीं होते हैं।[lower-alpha 3] एल्गोरिदम - विशेष रूप से उनके कार्यान्वयन और कम्प्यूटेशनल जटिलता - असतत गणित में एक प्रमुख भूमिका निभाते हैं।

असतत गणित में शामिल हैं:

  • कॉम्बिनेटरिक्स, गणितीय वस्तुओं की गणना करने की कला जो कुछ दी गई बाधाओं को संतुष्ट करती है। मूल रूप से, ये ऑब्जेक्ट दिए गए सेट के तत्व या सबसेट थे; इसे विभिन्न वस्तुओं तक बढ़ा दिया गया है, जो संयोजन और असतत गणित के अन्य भागों के बीच एक मजबूत संबंध स्थापित करता है। उदाहरण के लिए, असतत ज्यामिति में ज्यामितीय आकृतियों की गिनती विन्यास शामिल हैं
  • ग्राफ सिद्धांत और हाइपरग्राफ
  • कोडिंग सिद्धांत, जिसमें त्रुटि सुधार कोड और क्रिप्टोग्राफी का एक भाग शामिल है
  • मैट्रॉइड सिद्धांत
  • असतत ज्यामिति
  • असतत प्रायिकता बंटन
  • गेम थ्योरी (हालांकि निरंतर खेलों का भी अध्ययन किया जाता है, शतरंज और पोकर जैसे अधिकांश सामान्य खेल असतत होते हैं)
  • असतत अनुकूलन, जिसमें संयोजन अनुकूलन, पूर्णांक प्रोग्रामिंग, बाधा प्रोग्रामिंग शामिल हैं

चार रंग प्रमेय और इष्टतम क्षेत्र पैकिंग 20 वीं शताब्दी के उत्तरार्ध में असतत गणित की दो प्रमुख समस्याएं हल की गईं। P बनाम NP समस्या, जो आज भी खुली है, असतत गणित के लिए भी महत्वपूर्ण है, क्योंकि इसका समाधान इसे बहुत प्रभावित करेगा।Lua error: Internal error: The interpreter exited with status 1.


गणितीय तर्क और सेट सिद्धांत

Lua error: Internal error: The interpreter exited with status 1. गणितीय तर्क और सेट सिद्धांत के दो विषय दोनों 19 वीं शताब्दी के अंत से गणित से संबंधित हैं। इस अवधि से पहले, सेटों को गणितीय वस्तुएं नहीं माना जाता था, और तर्क, हालांकि गणितीय प्रमाणों के लिए उपयोग किया जाता था, दर्शन से संबंधित था, और विशेष रूप से गणितज्ञों द्वारा अध्ययन नहीं किया गया था।

कैंटर के अनंत समुच्चयों के अध्ययन से पहले, गणितज्ञ वास्तव में अनंत संग्रहों पर विचार करने के लिए अनिच्छुक थे, और अनंत को अनंत गणना का परिणाम मानते थे। कैंटर के काम ने कई गणितज्ञों को न केवल वास्तव में अनंत सेटों पर विचार करके, बल्कि यह दिखाते हुए कि यह अनंत के विभिन्न आकारों (कैंटोर के विकर्ण तर्क को देखें) और गणितीय वस्तुओं के अस्तित्व को दर्शाता है, जिनकी गणना नहीं की जा सकती है, या यहां तक ​​कि स्पष्ट रूप से वर्णित नहीं किया जा सकता है (उदाहरण के लिए, हेमल बेस परिमेय संख्याओं की तुलना में वास्तविक संख्याओं का) इससे कैंटर के सेट थ्योरी को लेकर विवाद पैदा हो गया।

इसी अवधि में, गणित के विभिन्न क्षेत्रों ने निष्कर्ष निकाला कि मूल गणितीय वस्तुओं की पूर्व सहज परिभाषाएं गणितीय कठोरता सुनिश्चित करने के लिए अपर्याप्त थीं। ऐसी सहज परिभाषाओं के उदाहरण हैं "एक सेट वस्तुओं का एक संग्रह है", "प्राकृतिक संख्या वह है जो गिनती के लिए उपयोग की जाती है", "एक बिंदु हर दिशा में शून्य लंबाई वाला एक आकार है", "एक वक्र एक निशान है एक गतिमान बिंदु", आदि।

यह गणित का आधारभूत संकट बन गया।[14] औपचारिक रूप से सेट सिद्धांत के अंदर स्वयंसिद्ध पद्धति को व्यवस्थित करके इसे अंततः मुख्यधारा के गणित में हल किया गया। मोटे तौर पर, प्रत्येक गणितीय वस्तु को सभी समान वस्तुओं के समुच्चय और इन वस्तुओं के गुणों के द्वारा परिभाषित किया जाता है। उदाहरण के लिए, पीनो अंकगणित में, प्राकृतिक संख्याओं को "शून्य एक संख्या है", "प्रत्येक संख्या को एक अद्वितीय उत्तराधिकारी के रूप में", "प्रत्येक संख्या लेकिन शून्य में एक अद्वितीय पूर्ववर्ती है", और तर्क के कुछ नियम हैं। इस तरह से परिभाषित वस्तुओं की "प्रकृति" एक दार्शनिक समस्या है जिसे गणितज्ञ दार्शनिकों के पास छोड़ देते हैं, भले ही कई गणितज्ञों की इस प्रकृति पर राय हो, और अपनी राय का उपयोग करें - कभी-कभी "अंतर्ज्ञान" कहा जाता है - अपने अध्ययन और प्रमाणों का मार्गदर्शन करने के लिए।

यह दृष्टिकोण गणितीय वस्तुओं के रूप में "लॉजिक्स" (अर्थात अनुमत कटौती नियमों के सेट), प्रमेयों, प्रमाणों आदि पर विचार करने और उनके बारे में प्रमेयों को सिद्ध करने की अनुमति देता है। उदाहरण के लिए, गोडेल की अपूर्णता प्रमेय जोर देते हैं, मोटे तौर पर बोलते हुए, हर सिद्धांत में प्राकृतिक संख्याएं होती हैं, ऐसे प्रमेय होते हैं जो सत्य होते हैं (जो कि एक बड़े सिद्धांत में सिद्ध होता है), लेकिन सिद्धांत के अंदर सिद्ध नहीं होता है।

गणित की नींव के इस दृष्टिकोण को 20 वीं शताब्दी के पूर्वार्द्ध के दौरान ब्रौवर के नेतृत्व में गणितज्ञों द्वारा चुनौती दी गई थी, जिन्होंने अंतर्ज्ञानवादी तर्क को बढ़ावा दिया था, जिसमें स्पष्ट रूप से बहिष्कृत मध्य के कानून का अभाव था।

इन समस्याओं और बहसों ने गणितीय तर्क का व्यापक विस्तार किया, जैसे मॉडल सिद्धांत (अन्य सिद्धांतों के अंदर कुछ तार्किक सिद्धांतों का मॉडलिंग), सबूत सिद्धांत, प्रकार सिद्धांत, संगणना सिद्धांत और कम्प्यूटेशनल जटिलता सिद्धांत जैसे उपक्षेत्रों के साथ। हालांकि गणितीय तर्क के इन पहलुओं को कंप्यूटर के उदय से पहले पेश किया गया था, लेकिन संकलक डिजाइन, प्रोग्राम प्रमाणन, प्रूफ सहायक और कंप्यूटर विज्ञान के अन्य पहलुओं में उनके उपयोग ने इन तार्किक सिद्धांतों के विस्तार में योगदान दिया।[15]

अनुप्रयुक्त गणित

Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1. अनुप्रयुक्त गणित विज्ञान, इंजीनियरिंग, व्यवसाय और उद्योग में उपयोग किए जाने वाले गणितीय तरीकों का अध्ययन है। इस प्रकार, "अनुप्रयुक्त गणित" विशिष्ट ज्ञान वाला गणितीय विज्ञान है। व्यावहारिक गणित शब्द उस पेशेवर विशेषता का भी वर्णन करता है जिसमें गणितज्ञ व्यावहारिक समस्याओं पर कार्य करते हैं; व्यावहारिक समस्याओं पर केंद्रित एक पेशे के रूप में, अनुप्रयुक्त गणित "गणितीय मॉडल के निर्माण, अध्ययन और उपयोग" पर केंद्रित है।Lua error: Internal error: The interpreter exited with status 1.

अतीत में, व्यावहारिक अनुप्रयोगों ने गणितीय सिद्धांतों के विकास को प्रेरित किया है, जो तब शुद्ध गणित में अध्ययन का विषय बन गया, जहां गणित को मुख्य रूप से अपने लिए विकसित किया गया है। इस प्रकार, अनुप्रयुक्त गणित की गतिविधि विशुद्ध रूप से शुद्ध गणित में अनुसंधान के साथ जुड़ी हुई है।Lua error: Internal error: The interpreter exited with status 1.

सांख्यिकी और अन्य निर्णय विज्ञान

Lua error: Internal error: The interpreter exited with status 1. व्यावहारिक गणित में सांख्यिकी के अनुशासन के साथ महत्वपूर्ण ओवरलैप है, जिसका सिद्धांत गणितीय रूप से तैयार किया गया है, विशेष रूप से संभाव्यता सिद्धांत।Lua error: Internal error: The interpreter exited with status 1. सांख्यिकीविद (एक शोध परियोजना के हिस्से के रूप में काम कर रहे हैं) यादृच्छिक नमूने और यादृच्छिक प्रयोगों के साथ "डेटा बनाएं जो समझ में आता है";[16] सांख्यिकीय नमूने या प्रयोग का डिजाइन डेटा के विश्लेषण को निर्दिष्ट करता है (डेटा उपलब्ध होने से पहले)। प्रयोगों और नमूनों से डेटा पर पुनर्विचार करते समय या अवलोकन संबंधी अध्ययनों से डेटा का विश्लेषण करते समय, सांख्यिकीविद मॉडलिंग की कला और अनुमान के सिद्धांत का उपयोग करके मॉडल चयन और अनुमान के साथ "डेटा का अर्थ बनाते हैं"; नए डेटा पर अनुमानित मॉडल और परिणामी भविष्यवाणियों का परीक्षण किया जाना चाहिए।Lua error: Internal error: The interpreter exited with status 1.[lower-alpha 4]

सांख्यिकीय सिद्धांत निर्णय की समस्याओं का अध्ययन करता है जैसे कि सांख्यिकीय कार्रवाई के जोखिम (अपेक्षित नुकसान) को कम करना, जैसे कि एक प्रक्रिया का उपयोग करना, उदाहरण के लिए, पैरामीटर अनुमान, परिकल्पना परीक्षण, और सर्वोत्तम का चयन करना। गणितीय आँकड़ों के इन पारंपरिक क्षेत्रों में, विशिष्ट बाधाओं के तहत, अपेक्षित हानि या लागत जैसे एक उद्देश्य समारोह को कम करके एक सांख्यिकीय-निर्णय समस्या तैयार की जाती है: उदाहरण के लिए, एक सर्वेक्षण को डिजाइन करने में अक्सर किसी दिए गए जनसंख्या माध्य का अनुमान लगाने की लागत को कम करना शामिल होता है आत्मविश्वास का स्तर।[17] इसके अनुकूलन के उपयोग के कारण, सांख्यिकी का गणितीय सिद्धांत अन्य निर्णय विज्ञानों, जैसे संचालन अनुसंधान, नियंत्रण सिद्धांत और गणितीय अर्थशास्त्र के साथ अतिव्याप्त है।[18]

अभिकलन गणित

Lua error: Internal error: The interpreter exited with status 1. कम्प्यूटेशनल गणित गणितीय समस्याओं का अध्ययन है जो आम तौर पर मानव, संख्यात्मक क्षमता के लिए बहुत बड़ी होती है। कार्यात्मक विश्लेषण और सन्निकटन सिद्धांत का उपयोग करके विश्लेषण में समस्याओं के लिए संख्यात्मक विश्लेषण अध्ययन विधियों; संख्यात्मक विश्लेषण में मोटे तौर पर सन्निकटन और विवेकीकरण का अध्ययन शामिल है, जिसमें गोल करने वाली त्रुटियों पर विशेष ध्यान दिया जाता है। संख्यात्मक विश्लेषण और, अधिक व्यापक रूप से, वैज्ञानिक कंप्यूटिंग गणितीय विज्ञान के गैर-विश्लेषणात्मक विषयों, विशेष रूप से एल्गोरिथम-मैट्रिक्स-एंड-ग्राफ सिद्धांत का भी अध्ययन करती है। कम्प्यूटेशनल गणित के अन्य क्षेत्रों में कंप्यूटर बीजगणित और प्रतीकात्मक संगणना शामिल है।

इतिहास

Lua error: Internal error: The interpreter exited with status 1.

प्राचीन

गणित का इतिहास अमूर्तन की एक निरंतर बढ़ती श्रृंखला है। विकास की दृष्टि से, अब तक खोजा जाने वाला पहला अमूर्तन, कई जानवरों द्वारा साझा किया गया,[19] शायद संख्याओं का था: यह अहसास कि, उदाहरण के लिए, दो सेबों का एक संग्रह और दो संतरे का संग्रह (जैसे) में कुछ है सामान्य, अर्थात् उनमें से दो हैं। जैसा कि हड्डी पर पाए जाने वाले टांगों से प्रमाणित होता है, भौतिक वस्तुओं की गणना करने के तरीके को पहचानने के अलावा, प्रागैतिहासिक लोगों को यह भी पता हो सकता है कि समय-दिन, मौसम या वर्षों जैसी अमूर्त मात्राओं की गणना कैसे की जाती है।[20][21]

File:Plimpton 322.jpg
बेबीलोनियन गणितीय टैबलेट प्लिम्पटन 322, दिनांकित 1800 & nbsp; bc

अधिक जटिल गणित के प्रमाण लगभग 3000 ईसा पूर्व तक प्रकट नहीं होते, जब बेबीलोनियों और मिस्रवासियों ने कराधान और अन्य वित्तीय गणनाओं के लिए, भवन और निर्माण और खगोल विज्ञान के लिए अंकगणित, बीजगणित और ज्यामिति का उपयोग करना शुरू किया।Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1. मेसोपोटामिया और मिस्र के सबसे पुराने गणितीय ग्रंथ 2000 से 1800 ई.पू. के हैं। कई प्रारंभिक ग्रंथों में पाइथागोरस त्रिगुणों का उल्लेख है और इसलिए, अनुमान से, पाइथागोरस प्रमेय बुनियादी अंकगणित और ज्यामिति के बाद सबसे प्राचीन और व्यापक गणितीय अवधारणा प्रतीत होती है। यह बेबीलोन के गणित में है कि प्रारंभिक अंकगणित (जोड़, घटाव, गुणा और भाग) पहले पुरातात्विक रिकॉर्ड में दिखाई देते हैं। बेबीलोनियाई लोगों के पास एक स्थान-मूल्य प्रणाली भी थी और उन्होंने एक सेक्सेजिमल अंक प्रणाली का उपयोग किया था जो आज भी कोण और समय को मापने के लिए उपयोग में है।Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1.

File:Archimedes pi.svg
आर्किमिडीज ने थकावट की विधि का उपयोग किया, यहां चित्रित, पीआई के मूल्य को अनुमानित करने के लिए।

छठी शताब्दी ईसा पूर्व में, ग्रीक गणित एक विशिष्ट विषय के रूप में उभरने लगा और कुछ प्राचीन यूनानियों जैसे पाइथागोरस ने इसे अपने आप में एक विषय माना।[22] लगभग 300 ईसा पूर्व, यूक्लिड ने अभिधारणाओं और पहले सिद्धांतों के माध्यम से गणितीय ज्ञान को व्यवस्थित किया, जो कि स्वयंसिद्ध पद्धति में विकसित हुआ, जिसका उपयोग आज गणित में किया जाता है, जिसमें परिभाषा, अभिगृहीत, प्रमेय और प्रमाण शामिल हैं।Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1. उनकी पुस्तक, एलिमेंट्स, व्यापक रूप से अब तक की सबसे सफल और प्रभावशाली पाठ्यपुस्तक मानी जाती है। [27] पुरातनता के महानतम गणितज्ञ को अक्सर सिरैक्यूज़ का आर्किमिडीज़ (सी. 287-212 ईसा पूर्व) माना जाता है।Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1. उन्होंने सतह क्षेत्र और क्रांति के ठोसों की मात्रा की गणना के लिए सूत्र विकसित किए और एक अनंत श्रृंखला के योग के साथ एक परवलय के चाप के नीचे के क्षेत्र की गणना करने के लिए थकावट की विधि का इस्तेमाल किया, जो आधुनिक कलन से बहुत भिन्न नहीं है।Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1. ग्रीक गणित की अन्य उल्लेखनीय उपलब्धियां हैं शंकु वर्ग (पेर्गा का अपोलोनियस, तीसरी शताब्दी ईसा पूर्व),Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1. त्रिकोणमिति (निकेआ का हिप्पार्कस, दूसरी शताब्दी ईसा पूर्व),Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1. और बीजगणित की शुरुआत (डायोफैंटस, तीसरी शताब्दी ई।)Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1.

File:Bakhshali numerals 2.jpg
2 वीं शताब्दी ईसा पूर्व और दूसरी शताब्दी ईस्वी के बीच दिनांकित बखमली पांडुलिपि में इस्तेमाल किए गए अंक,

हिंदू-अरबी अंक प्रणाली और इसके संचालन के उपयोग के नियम, आज दुनिया भर में उपयोग में हैं, भारत में पहली सहस्राब्दी ईस्वी के दौरान विकसित हुए और इस्लामी गणित के माध्यम से पश्चिमी दुनिया में प्रसारित किए गए। भारतीय गणित के अन्य उल्लेखनीय विकासों में साइन और कोसाइन की आधुनिक परिभाषा और सन्निकटन, और अनंत श्रृंखला का प्रारंभिक रूप शामिल है।

File:Image-Al-Kitāb al-muḫtaṣar fī ḥisāb al-ğabr wa-l-muqābala.jpg
अल-ख्वारिज़मी के बीजगणित का एक पृष्ठ
File:Fibonacci.jpg
लियोनार्डो फाइबोनैचि, इतालवी गणितज्ञ, जिन्होंने हिंदू -अरबिक अंक प्रणाली की शुरुआत की, जो कि 1 और 4 वें & nbsp के बीच भारतीय गणितज्ञों द्वारा, पश्चिमी दुनिया के लिए आविष्कार किया गया था।

इस्लाम के स्वर्ण युग के दौरान, विशेष रूप से 9वीं और 10वीं शताब्दी के दौरान, गणित ने यूनानी गणित पर कई महत्वपूर्ण नवाचारों का निर्माण देखा। इस्लामिक गणित की सबसे उल्लेखनीय उपलब्धि बीजगणित का विकास था। इस्लामी काल की अन्य उपलब्धियों में गोलाकार त्रिकोणमिति में प्रगति और अरबी अंक प्रणाली में दशमलव बिंदु का जोड़ शामिल है।[23] इस काल के कई उल्लेखनीय गणितज्ञ फारसी थे, जैसे अल-ख्वारिस्मी, उमर खय्याम और शराफ अल-दीन अल-इस्सी।

प्रारंभिक आधुनिक काल के दौरान, पश्चिमी यूरोप में गणित का तेजी से विकास होना शुरू हुआ। 17वीं सदी में आइजैक न्यूटन और गॉटफ्रीड लाइबनिज द्वारा कलन के विकास ने गणित में क्रांति ला दी। लियोनहार्ड यूलर 18वीं सदी के सबसे उल्लेखनीय गणितज्ञ थे, जिन्होंने कई प्रमेयों और खोजों का योगदान दिया। शायद 19वीं सदी के सबसे अग्रणी गणितज्ञ जर्मन गणितज्ञ कार्ल गॉस थे, जिन्होंने बीजगणित, विश्लेषण, अंतर ज्यामिति, मैट्रिक्स सिद्धांत, संख्या सिद्धांत और सांख्यिकी जैसे क्षेत्रों में कई योगदान दिए। 20वीं शताब्दी की शुरुआत में, कर्ट गोडेल ने अपने अपूर्णता प्रमेयों को प्रकाशित करके गणित को बदल दिया, जो इस बात को दर्शाता है कि किसी भी सुसंगत स्वयंसिद्ध प्रणाली-यदि अंकगणित का वर्णन करने के लिए पर्याप्त शक्तिशाली है- में सच्चे प्रस्ताव होंगे जिन्हें साबित नहीं किया जा सकता है।

तब से गणित का बहुत विस्तार हुआ है, और गणित और विज्ञान के बीच एक उपयोगी अंतःक्रिया हुई है, जिससे दोनों को लाभ हुआ है। आज भी गणितीय खोजें जारी हैं। अमेरिकी गणितीय सोसायटी के बुलेटिन के जनवरी 2006 के अंक में मिखाइल बी. सेवरीुक के अनुसार, "1940 (एमआर के संचालन का पहला वर्ष) से गणितीय समीक्षा डेटाबेस में शामिल पत्रों और पुस्तकों की संख्या अब 1.9 से अधिक है मिलियन, और प्रत्येक वर्ष डेटाबेस में 75 हजार से अधिक आइटम जोड़े जाते हैं। इस महासागर में अधिकांश कार्यों में नए गणितीय प्रमेय और उनके प्रमाण शामिल हैं।"Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1.

व्युत्पत्ति

गणित शब्द प्राचीन ग्रीक मथम से आता है (Lua error: Internal error: The interpreter exited with status 1.), जिसका अर्थ है कि जो सीखा है,[24] किसी को क्या पता है, इसलिए अध्ययन और विज्ञान भी।गणित के लिए शब्द शास्त्रीय समय में भी संकीर्ण और अधिक तकनीकी अर्थ गणितीय अध्ययन था।[25] इसका विशेषण Mathēmatikós है (Lua error: Internal error: The interpreter exited with status 1.), सीखने या अध्ययनशील से संबंधित अर्थ, जो आगे भी गणितीय का अर्थ था।विशेष रूप से, Mathēmatikḗ tékhnē (Lua error: Internal error: The interpreter exited with status 1.; Lua error: Internal error: The interpreter exited with status 1.) गणितीय कला का मतलब था।

इसी तरह, पाइथागोरसिज़्म में विचार के दो मुख्य स्कूलों में से एक को मैथमैटिकोई (μαθηματικοί) के रूप में जाना जाता था, जो उस समय आधुनिक अर्थों में गणितज्ञों के बजाय शिक्षार्थियों का मतलब था।

लैटिन में, और अंग्रेजी में लगभग 1700 तक, गणित शब्द का अर्थ आमतौर पर गणित के बजाय ज्योतिष (या कभी -कभी खगोल विज्ञान) होता है;अर्थ धीरे -धीरे लगभग 1500 से 1800 तक अपने वर्तमान में बदल गया। इसके परिणामस्वरूप कई गलतियाँ हुईं।उदाहरण के लिए, सेंट ऑगस्टीन की चेतावनी कि ईसाइयों को गणितज्ञ से सावधान रहना चाहिए, जिसका अर्थ है ज्योतिषी, कभी -कभी गणितज्ञों की निंदा के रूप में गलत तरीके से किया जाता है।[26] फ्रांसीसी बहुवचन रूप की तरह अंग्रेजी में स्पष्ट बहुवचन रूप Lua error: Internal error: The interpreter exited with status 1. (और कम आमतौर पर उपयोग किए जाने वाले विलक्षण व्युत्पन्न Lua error: Internal error: The interpreter exited with status 1.), लैटिन न्यूटर बहुवचन में वापस चला जाता है Lua error: Internal error: The interpreter exited with status 1. (Cikero), Mathēmatiká के लिए ग्रीक बहुवचन पर आधारित है (Lua error: Internal error: The interpreter exited with status 1.), अरस्तू द्वारा उपयोग किया जाता है (384–322 & nbsp; bc), और जिसका अर्थ है कि लगभग सभी चीजें गणितीय हैं, हालांकि यह प्रशंसनीय है कि अंग्रेजी ने केवल विशेषण गणितिक (अल) को उधार लिया और संज्ञा गणित का गठन किया, जो भौतिकी और तत्वमीमांसा के पैटर्न के बाद, जोग्रीक से विरासत में मिले थे।[27] अंग्रेजी में, संज्ञा गणित एक विलक्षण क्रिया लेती है।यह अक्सर गणित के लिए या उत्तरी अमेरिका, गणित में छोटा किया जाता है।[28]


प्रस्तावित परिभाषाएँ

Lua error: Internal error: The interpreter exited with status 1. गणित की सटीक परिभाषा या महामारी विज्ञान की स्थिति के बारे में कोई आम सहमति नहीं है।[29][30] एक महान कई पेशेवर गणितज्ञ गणित की परिभाषा में कोई दिलचस्पी नहीं लेते हैं, या इसे अपरिहार्य मानते हैं।[29]इस बात पर भी सहमति नहीं है कि गणित एक कला या विज्ञान है या नहीं।[30]कुछ लोग सिर्फ यह कहते हैं, गणित, गणितज्ञ क्या करते हैं।[29]

अरस्तू ने गणित को मात्रा के विज्ञान के रूप में परिभाषित किया और यह परिभाषा 18 वीं शताब्दी तक प्रबल रही।हालांकि, अरस्तू ने यह भी नोट किया कि अकेले मात्रा पर ध्यान केंद्रित किया जा सकता है, जो गणित को भौतिकी जैसे विज्ञान से अलग नहीं कर सकता है;उनके विचार में, वास्तविक उदाहरणों से विचार में अलग -अलग संपत्ति के रूप में अमूर्तता और अध्ययन की मात्रा गणित को अलग करती है।[31]

19 वीं शताब्दी में, जब गणित के अध्ययन में कठोरता में वृद्धि हुई और समूह सिद्धांत और प्रक्षेप्य ज्यामिति जैसे अमूर्त विषयों को संबोधित करना शुरू किया, जिनका मात्रा और माप के लिए कोई स्पष्ट संबंध नहीं है, गणितज्ञों और दार्शनिकों ने विभिन्न प्रकार की नई परिभाषाओं का प्रस्ताव करना शुरू किया।।[32] आज तक, दार्शनिक गणित के दर्शन में सवालों से निपटना जारी रखते हैं, जैसे कि गणितीय प्रमाण की प्रकृति।[33]


तार्किक तर्क

Lua error: Internal error: The interpreter exited with status 1. गणितज्ञ गलत प्रमेय से बचने के लिए व्यवस्थित तर्क के साथ अपने परिणाम विकसित करने का प्रयास करते हैं। ये झूठे प्रमाण अक्सर गिरने योग्य अंतर्ज्ञान से उत्पन्न होते हैं और गणित के इतिहास में आम रहे हैं। डिडक्टिव तर्क की अनुमति देने के लिए, कुछ बुनियादी मान्यताओं को स्पष्ट रूप से स्वयंसिद्ध के रूप में भर्ती करने की आवश्यकता है। परंपरागत रूप से, इन स्वयंसिद्धों को सामान्य ज्ञान के आधार पर चुना गया था, लेकिन आधुनिक स्वयंसिद्ध आमतौर पर आदिम धारणाओं के लिए औपचारिक गारंटी व्यक्त करते हैं, जैसे कि सरल वस्तुओं और संबंधों।

गणितीय प्रमाण की वैधता मौलिक रूप से कठोरता का मामला है, और गलतफहमी कठोरता गणित के बारे में कुछ सामान्य गलत धारणाओं के लिए एक उल्लेखनीय कारण है। गणितीय भाषा रोजमर्रा के भाषण की तुलना में सामान्य शब्दों जैसे या केवल और केवल सटीकता दे सकती है। अन्य शब्दों जैसे कि खुले और क्षेत्र को विशिष्ट गणितीय अवधारणाओं के लिए नए अर्थ दिए जाते हैं। कभी -कभी, गणितज्ञ भी पूरी तरह से नए शब्दों (जैसे होमोमोर्फिज्म) को सिकोड़ते हैं। यह तकनीकी शब्दावली सटीक और कॉम्पैक्ट दोनों है, जिससे मानसिक रूप से जटिल विचारों को संसाधित करना संभव है। गणितज्ञ भाषा और तर्क की इस सटीकता को कठोरता के रूप में संदर्भित करते हैं।

गणित में अपेक्षित कठोरता समय के साथ अलग -अलग है: प्राचीन यूनानियों ने विस्तृत तर्कों की अपेक्षा की है, लेकिन इसहाक न्यूटन के समय में, नियोजित तरीके कम कठोर थे (गणित की एक अलग अवधारणा के कारण नहीं, बल्कि गणितीय तरीकों की कमी के कारण जो कि गणितीय तरीकों की कमी के कारण हैं। कठोरता तक पहुंचने के लिए आवश्यक)। न्यूटन के दृष्टिकोण में निहित समस्याएं केवल 19 वीं शताब्दी के दूसरे भाग में हल की गई थीं, वास्तविक संख्या, सीमा और अभिन्न की औपचारिक परिभाषाओं के साथ। बाद में 20 वीं शताब्दी की शुरुआत में, बर्ट्रेंड रसेल और अल्फ्रेड नॉर्थ व्हाइटहेड अपने प्रिंसिपिया मैथमेटिका को प्रकाशित करेंगे, यह दिखाने का प्रयास कि सभी गणितीय अवधारणाओं और बयानों को परिभाषित किया जा सकता है, फिर पूरी तरह से प्रतीकात्मक तर्क के माध्यम से साबित हुआ। यह एक व्यापक दार्शनिक कार्यक्रम का हिस्सा था जिसे लॉजिकिज्म के रूप में जाना जाता है, जो गणित को मुख्य रूप से तर्क के विस्तार के रूप में देखता है।

गणित की मान्यता के बावजूद, कई प्रमाणों को व्यक्त करने के लिए सैकड़ों पृष्ठों की आवश्यकता होती है। कंप्यूटर-सहायता प्राप्त प्रमाणों के उद्भव ने प्रूफ लंबाई को और विस्तार करने की अनुमति दी है। यदि साबित करने वाले सॉफ़्टवेयर में खामियां हैं और यदि वे लंबे हैं, तो जांच करना मुश्किल है।[lower-alpha 5][34] दूसरी ओर, प्रूफ असिस्टेंट उन विवरणों के सत्यापन के लिए अनुमति देते हैं जो हाथ से लिखे गए प्रमाण में नहीं दिए जा सकते हैं, और 255-पृष्ठ Feit-Thompson प्रमेय जैसे लंबे प्रमाणों की शुद्धता की निश्चितता प्रदान करते हैं।[lower-alpha 6]


प्रतीकात्मक संकेतन

Lua error: Internal error: The interpreter exited with status 1.

File:Leonhard Euler 2.jpg
लियोनहार्ड यूलर ने आज इस्तेमाल किए गए गणितीय संकेतन का बहुत कुछ बनाया और लोकप्रिय बनाया।

विशेष भाषा के अलावा, समकालीन गणित विशेष संकेतन का भारी उपयोग करता है।ये प्रतीक भी कठोरता में योगदान करते हैं, दोनों गणितीय विचारों की अभिव्यक्ति को सरल बनाकर और लगातार नियमों का पालन करने वाले नियमित संचालन की अनुमति देते हैं।आधुनिक संकेतन गणित को निपुण के लिए अधिक कुशल बनाता है, हालांकि शुरुआती लोग इसे चुनौती दे सकते हैं।

विशेष रूप से लियोनहार्ड यूलर (1707-1783) द्वारा कई योगदानों के साथ, 15 वीं शताब्दी के बाद आज के अधिकांश गणितीय संकेतन का आविष्कार किया गया था।[35]Lua error: Internal error: The interpreter exited with status 1. तब से पहले, गणितीय तर्क आमतौर पर शब्दों में लिखे गए थे, गणितीय खोज को सीमित करते हुए।Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1. 19 वीं शताब्दी में शुरू, औपचारिकता के रूप में जाना जाने वाला एक स्कूल विकसित हुआ। एक औपचारिक व्यक्ति के लिए, गणित मुख्य रूप से उन्हें संयोजन के लिए प्रतीकों और नियमों की औपचारिक प्रणालियों के बारे में है। इस बिंदु-दृश्य से, यहां तक ​​कि स्वयंसिद्ध भी एक स्वयंसिद्ध प्रणाली में विशेषाधिकार प्राप्त सूत्र हैं, सिस्टम में अन्य तत्वों से प्रक्रियात्मक रूप से व्युत्पन्न किए बिना दिए गए हैं। औपचारिकता का एक अधिकतम उदाहरण 20 वीं शताब्दी की शुरुआत में डेविड हिल्बर्ट की कॉल थी, जिसे अक्सर हिल्बर्ट का कार्यक्रम कहा जाता था, ताकि इस तरह से सभी गणित को एनकोड किया जा सके।

कर्ट गोडेल ने साबित कर दिया कि यह लक्ष्य अपने गोडेल के अपूर्णता प्रमेय के साथ मौलिक रूप से असंभव था। अपूर्णता प्रमेय, जो किसी भी औपचारिक प्रणाली को दिखाती थी कि साधारण अंकगणित भी सिंपल अंकगणित का वर्णन करने के लिए अपनी पूर्णता या स्थिरता की गारंटी नहीं दे सकता है। बहरहाल, औपचारिक अवधारणाएं गणित को बहुत प्रभावित करती रहती हैं, बिंदु विवरणों को डिफ़ॉल्ट रूप से सेट-थ्योरिटिक फॉर्मूला में स्पष्ट होने की उम्मीद की जाती है। केवल बहुत असाधारण परिणाम एक स्वयंसिद्ध प्रणाली या किसी अन्य में फिटिंग के रूप में स्वीकार किए जाते हैं।[36]


सार ज्ञान

Lua error: Internal error: The interpreter exited with status 1.

व्यवहार में, गणितज्ञों को आमतौर पर वैज्ञानिकों के साथ समूहीकृत किया जाता है, और गणित भौतिक विज्ञान के साथ सामान्य रूप से बहुत कुछ साझा करता है, विशेष रूप से मान्यताओं से कटौतीत्मक तर्क।गणितज्ञ गणितीय परिकल्पनाओं का विकास करते हैं, जिन्हें अनुमान के रूप में जाना जाता है, अंतर्ज्ञान के साथ परीक्षण और त्रुटि का उपयोग करते हुए, वैज्ञानिकों के समान भी।[37] सिमुलेशन जैसे प्रायोगिक गणित और कम्प्यूटेशनल तरीके भी गणित के भीतर महत्व में बढ़ते रहते हैं।

आज, सभी विज्ञान गणितज्ञों द्वारा अध्ययन की गई समस्याओं को जन्म देते हैं, और इसके विपरीत, गणित के परिणाम अक्सर विज्ञान में नए प्रश्न और अहसास का कारण बनते हैं।उदाहरण के लिए, भौतिक विज्ञानी रिचर्ड फेनमैन ने क्वांटम यांत्रिकी के पथ अभिन्न सूत्रीकरण का आविष्कार करने के लिए गणितीय तर्क और भौतिक अंतर्दृष्टि को संयुक्त किया।दूसरी ओर, स्ट्रिंग थ्योरी, आधुनिक भौतिकी के अधिकांश को एकजुट करने के लिए एक प्रस्तावित ढांचा है जिसने गणित में नई तकनीकों और परिणामों को प्रेरित किया है।[38]

Error creating thumbnail:
कार्ल फ्रेडरिक गॉस, जिसे गणितज्ञों के राजकुमार के रूप में जाना जाता है

जर्मन गणितज्ञ कार्ल फ्रेडरिक गॉस ने गणित को विज्ञान की रानी कहा,Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1. और हाल ही में, मार्कस डू सौतॉय ने गणित को वैज्ञानिक खोज के पीछे मुख्य ड्राइविंग बल के रूप में वर्णित किया है।[39] हालांकि, कुछ लेखक इस बात पर जोर देते हैं कि गणित विज्ञान की आधुनिक धारणा से एक प्रमुख तरीके से भिन्न होता है: यह अनुभवजन्य साक्ष्य पर भरोसा नहीं करता है।[40][41][42][43]

वैज्ञानिक क्रांति के बाद से गणितीय ज्ञान ने दायरे में विस्फोट किया है, और अध्ययन के अन्य क्षेत्रों के साथ, इसने विशेषज्ञता को संचालित किया है।2010 तक, अमेरिकन मैथमेटिकल सोसाइटी का नवीनतम गणित विषय वर्गीकरण सैकड़ों उपक्षेत्रों को मान्यता देता है, जिसमें पूर्ण वर्गीकरण 46 पृष्ठों तक पहुंच जाता है।[44] आमतौर पर, एक सबफील्ड में कई अवधारणाएं गणित की अन्य शाखाओं से अनिश्चित काल तक अलग -थलग रह सकती हैं; परिणाम मुख्य रूप से अन्य प्रमेयों और तकनीकों का समर्थन करने के लिए मचान के रूप में काम कर सकते हैं, या उनके पास सबफील्ड के बाहर किसी भी चीज़ से स्पष्ट संबंध नहीं हो सकता है।

गणित हालांकि विकसित होने के लिए एक उल्लेखनीय प्रवृत्ति दिखाता है, और समय में, गणितज्ञ अक्सर अवधारणाओं के बीच आश्चर्यजनक अनुप्रयोगों या लिंक की खोज करते हैं। इसका एक बहुत ही प्रभावशाली उदाहरण फेलिक्स क्लेन का एर्लेंजेन कार्यक्रम था, जिसने ज्यामिति और बीजगणित के बीच अभिनव और गहन संबंध स्थापित किए। यह बदले में दोनों क्षेत्रों को अधिक से अधिक अमूर्तता के लिए खोल दिया और पूरी तरह से नए उपक्षेत्रों को जन्म दिया।

एक अंतर अक्सर लागू गणित और गणित के बीच किया जाता है जो पूरी तरह से अमूर्त प्रश्नों और अवधारणाओं की ओर उन्मुख होता है, जिसे शुद्ध गणित के रूप में जाना जाता है। गणित के अन्य प्रभागों के साथ, हालांकि, सीमा तरल है। विचार जो शुरू में एक विशिष्ट अनुप्रयोग को ध्यान में रखते हुए विकसित होते हैं, अक्सर बाद में सामान्यीकृत होते हैं, इसके बाद गणितीय अवधारणाओं के सामान्य स्टॉक में शामिल होते हैं। लागू गणित के कई क्षेत्रों में भी व्यावहारिक क्षेत्रों के साथ विलय कर दिया गया है, जो अपने आप में अनुशासन बन गए हैं, जैसे कि सांख्यिकी, संचालन अनुसंधान और कंप्यूटर विज्ञान।

शायद और भी अधिक आश्चर्य की बात है जब विचार दूसरी दिशा में बहते हैं, और यहां तक ​​कि शुद्धतम गणित भी अप्रत्याशित भविष्यवाणियों या अनुप्रयोगों को जन्म देता है। उदाहरण के लिए, नंबर सिद्धांत आधुनिक क्रिप्टोग्राफी में एक केंद्रीय स्थान पर है, और भौतिकी में, मैक्सवेल के समीकरणों से व्युत्पन्न रेडियो तरंगों के प्रयोगात्मक साक्ष्य और प्रकाश की गति की निरंतरता को पूर्व निर्धारित किया गया है। भौतिक विज्ञानी यूजीन विग्नर ने इस घटना को गणित की अनुचित प्रभावशीलता का नाम दिया है।[7] अमूर्त गणित और भौतिक वास्तविकता के बीच अनजाने संबंध ने कम से कम पाइथागोरस के समय से दार्शनिक बहस का नेतृत्व किया है।प्राचीन दार्शनिक प्लेटो ने तर्क दिया कि यह संभव था क्योंकि भौतिक वास्तविकता अमूर्त वस्तुओं को दर्शाती है जो समय से बाहर मौजूद हैं।नतीजतन, गणितीय वस्तुएं किसी भी तरह से अमूर्तता में मौजूद हैं, अक्सर इसे प्लैटोनिज्म के रूप में संदर्भित किया जाता है।जबकि अधिकांश गणितज्ञ आमतौर पर प्लैटोनिज्म द्वारा उठाए गए सवालों के साथ खुद को चिंता नहीं करते हैं, कुछ और दार्शनिक रूप से दिमाग वाले लोग समकालीन समय में भी प्लैटोनिस्ट के रूप में पहचान करते हैं।[45]

रचनात्मकता और अंतर्ज्ञान

Lua error: Internal error: The interpreter exited with status 1.

File:Wikidata-wikiproject-mathematics.png
यूलर की पहचान, जिसे रिचर्ड फेनमैन ने एक बार गणित में सबसे उल्लेखनीय सूत्र कहा था [46]

शुद्धता और कठोरता की आवश्यकता का मतलब यह नहीं है कि गणित की रचनात्मकता के लिए कोई जगह नहीं है।इसके विपरीत, रोटे की गणना से परे अधिकांश गणितीय काम के लिए चतुर समस्या-समाधान की आवश्यकता होती है और उपन्यास के दृष्टिकोण को सहजता से खोजने की आवश्यकता होती है।

गणितीय रूप से झुकाव अक्सर गणित में न केवल रचनात्मकता को देखता है, बल्कि एक सौंदर्य मूल्य भी है, जिसे आमतौर पर लालित्य के रूप में वर्णित किया जाता है।सादगी, समरूपता, पूर्णता और सामान्यता जैसे गुण विशेष रूप से प्रमाण और तकनीकों में मूल्यवान हैं।एक गणितज्ञ की माफी में जी। एच। हार्डी ने यह विश्वास व्यक्त किया कि ये सौंदर्य विचार, अपने आप में, शुद्ध गणित के अध्ययन को सही ठहराने के लिए पर्याप्त हैं।उन्होंने अन्य मानदंडों जैसे कि महत्व, अप्रत्याशितता और अनिवार्यता की भी पहचान की, जो गणितीय सौंदर्य में योगदान करते हैं।[47] पॉल एर्ड्स ने इस भावना को पुस्तक की बात करके अधिक विडंबनापूर्ण रूप से व्यक्त किया, जो सबसे सुंदर प्रमाणों का एक दिव्य संग्रह है।1998 की पुस्तक के प्रमाण, एर्ड्स से प्रेरित पुस्तक से, विशेष रूप से रसीला और रहस्योद्घाटन गणितीय तर्कों का एक संग्रह है।विशेष रूप से सुरुचिपूर्ण परिणामों के कुछ उदाहरण यूक्लिड के प्रमाण हैं कि असीम रूप से कई प्रमुख संख्याएं हैं और हार्मोनिक विश्लेषण के लिए फास्ट फूरियर रूपांतरण हैं।

कुछ लोगों को लगता है कि गणित पर विचार करने के लिए एक विज्ञान सात पारंपरिक उदार कलाओं में अपनी कलात्मकता और इतिहास को कम करना है।[48] दृष्टिकोण का यह अंतर एक तरह से दार्शनिक बहस में है कि क्या गणितीय परिणाम (कला में) या खोजे गए हैं (जैसा कि विज्ञान में)।[49] मनोरंजक गणित की लोकप्रियता गणितीय प्रश्नों को हल करने में कई लोगों को खुशी का एक और संकेत है।

20 वीं शताब्दी में, गणितज्ञ एल। ई। जे। ब्रूवर ने भी एक दार्शनिक परिप्रेक्ष्य की शुरुआत की, जिसे अंतर्ज्ञानवाद के रूप में जाना जाता है, जो मुख्य रूप से मन में कुछ रचनात्मक प्रक्रियाओं के साथ गणित की पहचान करता है।[50] अंतर्ज्ञानवाद एक रुख के एक स्वाद के बदले में होता है, जिसे कंस्ट्रक्टिविज्म के रूप में जाना जाता है, जो केवल एक गणितीय वस्तु को मान्य मानता है यदि इसका सीधे निर्माण किया जा सकता है, न कि केवल अप्रत्यक्ष रूप से तर्क द्वारा गारंटी दी जाती है।यह प्रतिबद्ध रचनाकारों को कुछ परिणामों को अस्वीकार करने के लिए प्रेरित करता है, विशेष रूप से बहिष्कृत मध्य के कानून के आधार पर अस्तित्व के प्रमाण जैसे तर्क।[51] अंत में, न तो रचनावाद और न ही अंतर्ज्ञानवाद ने शास्त्रीय गणित को विस्थापित किया या मुख्यधारा की स्वीकृति प्राप्त की।हालांकि, इन कार्यक्रमों ने विशिष्ट विकास को प्रेरित किया है, जैसे कि अंतर्ज्ञानवादी तर्क और अन्य मूलभूत अंतर्दृष्टि, जो अपने आप में सराहना की जाती हैं।[51]

समाज में

Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1. गणित में सांस्कृतिक सीमाओं और समय अवधि को पार करने की एक उल्लेखनीय क्षमता है।एक मानवीय गतिविधि के रूप में, गणित के अभ्यास में एक सामाजिक पक्ष होता है, जिसमें शिक्षा, करियर, मान्यता, लोकप्रियकरण, और इसी तरह शामिल हैं।

पुरस्कार और पुरस्कार समस्याएं

Lua error: Internal error: The interpreter exited with status 1.

File:FieldsMedalFront.jpg
फील्ड्स मेडल के सामने की ओर

गणित में सबसे प्रतिष्ठित पुरस्कार फील्ड्स मेडल है,Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1. 1936 में स्थापित किया गया और हर चार साल (द्वितीय विश्व युद्ध के अलावा) को चार व्यक्तियों को सम्मानित किया गया।[52][53] इसे नोबेल पुरस्कार के गणितीय समकक्ष माना जाता है।[53]

अन्य प्रतिष्ठित गणित पुरस्कारों में शामिल हैं:

  • एबेल पुरस्कार, 2002 में स्थापित किया गया[54] और पहली बार 2003 में सम्मानित किया गया[55]
  • लाइफटाइम अचीवमेंट के लिए चेर्न मेडल, 2009 में पेश किया गया[56] और पहली बार 2010 में सम्मानित किया गया[57]
  • गणित में भेड़िया पुरस्कार, भी आजीवन उपलब्धि के लिए,[58] 1978 में स्थापित किया गया[59]

हिल्बर्ट की समस्याओं नामक 23 खुली समस्याओं की एक प्रसिद्ध सूची, 1900 में जर्मन गणितज्ञ डेविड हिल्बर्ट द्वारा संकलित की गई थी। <रेफ नाम =: 0>Lua error: Internal error: The interpreter exited with status 1.</ref> इस सूची ने गणितज्ञों के बीच महान सेलिब्रिटी हासिल की है ref>Lua error: Internal error: The interpreter exited with status 1.</ref>Lua error: Internal error: The interpreter exited with status 1., और, 2022 के रूप में, समस्याओं में से कम से कम तेरह (कुछ की व्याख्या कैसे की जाती है) को हल किया गया है। <रेफ नाम =: 0>Lua error: Internal error: The interpreter exited with status 1.</ref> मिलेनियम प्राइज़ प्रॉब्लम शीर्षक से सात महत्वपूर्ण समस्याओं की एक नई सूची, 2000 में प्रकाशित की गई थी। उनमें से केवल एक, रीमैन परिकल्पना, हिल्बर्ट की समस्याओं में से एक को डुप्लिकेट करता है।इनमें से किसी भी समस्या का समाधान 1 मिलियन डॉलर का इनाम देता है।[60] आज तक, इन समस्याओं में से केवल एक, Poincaré अनुमान, हल किया गया है।[61]


यह भी देखें

Lua error: Internal error: The interpreter exited with status 1.

Lua error: Internal error: The interpreter exited with status 1.
  • गणित की रूपरेखा
  • गणित के विषयों की सूची
  • गणितीय शब्दजाल की सूची
  • गणित का दर्शन
  • गणित और भौतिकी के बीच संबंध
  • गणितीय विज्ञान
  • गणित और कला
  • गणित शिक्षा
  • विज्ञान, प्रौद्योगिकी, इंजीनियरिंग और गणित
  • गणितज्ञों की सूची


टिप्पणियाँ

  1. No likeness or description of Euclid's physical appearance made during his lifetime survived antiquity. Therefore, Euclid's depiction in works of art depends on the artist's imagination (see Euclid).
  2. This includes conic sections, which are intersections of circular cylinders and planes.
  3. However, some advanced methods of analysis are sometimes used; for example, methods of complex analysis applied to generating series.
  4. Like other mathematical sciences such as physics and computer science, statistics is an autonomous discipline rather than a branch of applied mathematics. Like research physicists and computer scientists, research statisticians are mathematical scientists. Many statisticians have a degree in mathematics, and some statisticians are also mathematicians.
  5. For considering as reliable a large computation occurring in a proof, one generally requires two computations using independent software
  6. The book containing the complete proof has more than 1,000 pages.

Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1.


संदर्भ

  1. 1.0 1.1 Lua error: Internal error: The interpreter exited with status 1.
  2. Lua error: Internal error: The interpreter exited with status 1.
  3. Lua error: Internal error: The interpreter exited with status 1.
  4. Lua error: Internal error: The interpreter exited with status 1.
  5. Lua error: Internal error: The interpreter exited with status 1.
  6. Peterson 2001, p. 12.
  7. 7.0 7.1 Lua error: Internal error: The interpreter exited with status 1.
  8. Lua error: Internal error: The interpreter exited with status 1.
  9. Lua error: Internal error: The interpreter exited with status 1.
  10. Both meanings can be found in Plato, the narrower in Republic 510c Lua error: Internal error: The interpreter exited with status 1., but Plato did not use a math- word; Aristotle did, commenting on it. Lua error: Internal error: The interpreter exited with status 1.. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the Perseus Project. OED Online, "Mathematics".
  11. Lua error: Internal error: The interpreter exited with status 1.
  12. The Oxford Dictionary of English Etymology, Oxford English Dictionary, sub "mathematics", "mathematic", "mathematics"
  13. "maths, n." and "math, n.3" Lua error: Internal error: The interpreter exited with status 1.. Oxford English Dictionary, on-line version (2012).
  14. Luke Howard Hodgkin & Luke Hodgkin, A History of Mathematics, Oxford University Press, 2005.
  15. Lua error: Internal error: The interpreter exited with status 1.
  16. Rao, C.R. (1997) Statistics and Truth: Putting Chance to Work, World Scientific. Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1.
  17. Lua error: Internal error: The interpreter exited with status 1.
  18. Lua error: Internal error: The interpreter exited with status 1.: Lua error: Internal error: The interpreter exited with status 1.
  19. Lua error: Internal error: The interpreter exited with status 1.
  20. See, for example, Raymond L. Wilder, Evolution of Mathematical Concepts; an Elementary Study, passim
  21. Lua error: Internal error: The interpreter exited with status 1.
  22. Lua error: Internal error: The interpreter exited with status 1.
  23. Lua error: Internal error: The interpreter exited with status 1.
  24. Lua error: Internal error: The interpreter exited with status 1.
  25. Both meanings can be found in Plato, the narrower in Republic 510c Lua error: Internal error: The interpreter exited with status 1., but Plato did not use a math- word; Aristotle did, commenting on it. Lua error: Internal error: The interpreter exited with status 1.. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the Perseus Project. OED Online, "Mathematics".
  26. Lua error: Internal error: The interpreter exited with status 1.
  27. The Oxford Dictionary of English Etymology, Oxford English Dictionary, sub "mathematics", "mathematic", "mathematics"
  28. "maths, n." and "math, n.3" Lua error: Internal error: The interpreter exited with status 1.. Oxford English Dictionary, on-line version (2012).
  29. 29.0 29.1 29.2 Lua error: Internal error: The interpreter exited with status 1.
  30. 30.0 30.1 Lua error: Internal error: The interpreter exited with status 1.
  31. Lua error: Internal error: The interpreter exited with status 1.
  32. Lua error: Internal error: The interpreter exited with status 1.
  33. Lua error: Internal error: The interpreter exited with status 1.
  34. Ivars Peterson, The Mathematical Tourist, Freeman, 1988, Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1.. p. 4 "A few complain that the computer program can't be verified properly", (in reference to the Haken–Apple proof of the Four Color Theorem).
  35. Lua error: Internal error: The interpreter exited with status 1.
  36. Patrick Suppes, Axiomatic Set Theory, Dover, 1972, Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1.. p. 1, "Among the many branches of modern mathematics set theory occupies a unique place: with a few rare exceptions the entities which are studied and analyzed in mathematics may be regarded as certain particular sets or classes of objects."
  37. Lua error: Internal error: The interpreter exited with status 1.
  38. Lua error: Internal error: The interpreter exited with status 1.
  39. Lua error: Internal error: The interpreter exited with status 1.
  40. Lua error: Internal error: The interpreter exited with status 1.
  41. Lua error: Internal error: The interpreter exited with status 1.
  42. Lua error: Internal error: The interpreter exited with status 1.
  43. Lua error: Internal error: The interpreter exited with status 1.
  44. Lua error: Internal error: The interpreter exited with status 1.
  45. Lua error: Internal error: The interpreter exited with status 1.
  46. Lua error: Internal error: The interpreter exited with status 1. — Actually, Feynman referred to the more general formula , known as Euler's formula.
  47. Lua error: Internal error: The interpreter exited with status 1.
  48. See, for example Bertrand Russell's statement "Mathematics, rightly viewed, possesses not only truth, but supreme beauty ..." in his History of Western Philosophy
  49. Lua error: Internal error: The interpreter exited with status 1.
  50. Lua error: Internal error: The interpreter exited with status 1.
  51. 51.0 51.1 Lua error: Internal error: The interpreter exited with status 1.
  52. Lua error: Internal error: The interpreter exited with status 1.
  53. 53.0 53.1 Lua error: Internal error: The interpreter exited with status 1.
  54. Lua error: Internal error: The interpreter exited with status 1.
  55. Lua error: Internal error: The interpreter exited with status 1.
  56. Lua error: Internal error: The interpreter exited with status 1.
  57. Lua error: Internal error: The interpreter exited with status 1.
  58. Lua error: Internal error: The interpreter exited with status 1.
  59. Lua error: Internal error: The interpreter exited with status 1.
  60. Lua error: Internal error: The interpreter exited with status 1.
  61. Lua error: Internal error: The interpreter exited with status 1.

Lua error: Internal error: The interpreter exited with status 1.


ग्रन्थसूची

  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1..
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.


अग्रिम पठन

Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1. Lua error: Internal error: The interpreter exited with status 1. Lua error: Internal error: The interpreter exited with status 1.

  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1. – A translated and expanded version of a Soviet mathematics encyclopedia, in ten volumes. Also in paperback and on CD-ROM, and online Lua error: Internal error: The interpreter exited with status 1..
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.

{{Navbox

| name =गणित के क्षेत्र

|state = autocollapse


| title =अंक शास्त्र | bodyclass = hlist

|above =


| group1 = नींव | list1 =* श्रेणी सिद्धांत

| group2 =बीजगणित | list2 =* सार

| group3 = विश्लेषण | list3 =* पथरी

| group4 = असतत | list4 =* कॉम्बीनेटरिक्स

| group5 =ज्यामिति | list5 =* बीजगणितीय

| group6 =संख्या सिद्धांत | list6 =* अंकगणित

| group7 =टोपोलॉजी | list7 =* सामान्य

| group8 = लागू | list8 =* इंजीनियरिंग गणित

| group9 = कम्प्यूटेशनल | list9 =* कंप्यूटर विज्ञान

| group10 = संबंधित विषय | list10 =* अनौपचारिक गणित

| below =* 'Lua error: Internal error: The interpreter exited with status 1. '

  • Lua error: Internal error: The interpreter exited with status 1. ' श्रेणी' '
  • Lua error: Internal error: The interpreter exited with status 1. ' कॉमन्स'
  • Lua error: Internal error: The interpreter exited with status 1. [[gikewikipedia: wikiproject matics | wikiproject]

}}

Lua error: Internal error: The interpreter exited with status 1.