पॉलीटॉप: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 10: Line 10:
|[[File:First stellation of icosahedron.png|50px]]
|[[File:First stellation of icosahedron.png|50px]]
|-
|-
| colspan="6" | एक बहुतल एक 3-आयामी पॉलीटॉप है
| colspan="6" | एक बहुकोणीय आकृति  एक 3-आयामी पॉलीटॉप है
|}
|}
[[File:Assorted polygons.svg|thumb|400px|right|एक [[बहुभुज]] एक 2-आयामी पॉलीटॉप है। बहुभुज को विभिन्न मानदंडों के अनुसार चित्रित किया जा सकता है। कुछ उदाहरण है, खुला (इसकी सीमा को छोड़कर), केवल बाउंडिंग सर्किट (इसके आंतरिक भाग को अनदेखा करना), बंद (इसकी सीमा और इसके आंतरिक दोनों सहित), और विभिन्न क्षेत्रों के अलग-अलग घनत्व के साथ स्व-प्रतिच्छेद करना]]प्रारंभिक ज्यामिति में, एक पॉलीटोप एक ज्यामितीय ऑब्जेक्ट है जिसमें समतल [[फेसेस]] होते है। पॉलीटोप्स किसी भी संख्या के आयामों के लिए त्रि-आयामी [[ बहुतल ]] का सामान्यीकरण होता हैं। पॉलीटोप्स किसी भी सामान्य संख्या में आयाम {{mvar|n}} में {{mvar|n}}-विमीय पॉलीटोप या {{mvar|n}}-पॉलीटोप के रूप में उपलब्ध हो सकते हैं। उदाहरण के लिए, एक द्वि-आयामी बहुभुज एक 2-पॉलीटॉप है और एक त्रि-आयामी बहुतल 3-पॉलीटॉप है। इस संदर्भ में, चपटी भुजाओं का अर्थ है कि a की भुजाएँ {{math|(''k'' + 1)}} पॉलीटोप से मिलकर बनाता है और {{mvar|k}}-पॉलीटोप्स होते हैं जिनमें {{math|(''k'' – 1)}} पॉलीटोप्स समान हो सकते हैं।
[[File:Assorted polygons.svg|thumb|400px|right|एक [[बहुभुज]] एक 2-आयामी पॉलीटॉप है। बहुभुज को विभिन्न मानदंडों के अनुसार चित्रित किया जा सकता है। कुछ उदाहरण है, खुला (इसकी सीमा को छोड़कर), केवल बाउंडिंग सर्किट (इसके आंतरिक भाग को अनदेखा करना), बंद (इसकी सीमा और इसके आंतरिक दोनों सहित), और विभिन्न क्षेत्रों के अलग-अलग घनत्व के साथ स्व-प्रतिच्छेद करना]]प्रारंभिक ज्यामिति में, पॉलीटोप एक ज्यामितीय ऑब्जेक्ट है जिसमें समतल [[फेसेस]] होते है। पॉलीटोप्स किसी भी संख्या के आयामों के लिए त्रि-आयामी [[ बहुतल | बहुकोणीय आकृति]] का सामान्यीकरण होता हैं। पॉलीटोप्स किसी भी सामान्य संख्या में आयाम {{mvar|n}} में {{mvar|n}}-विमीय पॉलीटोप या {{mvar|n}}-पॉलीटोप के रूप में उपलब्ध हो सकते हैं। उदाहरण के लिए, एक द्वि-आयामी बहुभुज एक 2-पॉलीटॉप है और एक त्रि-आयामी बहुकोणीय आकृति  3-पॉलीटॉप है। इस संदर्भ में, चपटी भुजाओं का अर्थ है कि (k + 1)-पॉलीटॉप की भुजाओं में k-पॉलीटोप्स होते हैं जिनमें (k - 1) पॉलीटोप्स समान हो सकते हैं।  


कुछ सिद्धांतों ने इस विचार को सामान्य बना दिया है जैसे कि अपरिबद्ध [[ अनंतता |अनंतता]] और चौकोर, अपघटन या घुमावदार मैनिफोल्ड्स की टाइलिंग जिसमें [[गोलाकार पॉलीहेड्रा,]] और सम्मुचय-सैद्धांतिक सार पॉलीटोप्स में सम्मिलित होते हैं।
कुछ सिद्धांतों ने इस विचार को सामान्य बना दिया है जैसे कि अपरिबद्ध [[ अनंतता |अनंतता]] और चौकोर, अपघटन या घुमावदार मैनिफोल्ड्स की टाइलिंग जिसमें [[गोलाकार पॉलीहेड्रा,|गोलाकार बहुकोणीय आकृति,]] और सम्मुचय-सैद्धांतिक का सार पॉलीटोप्स में सम्मिलित होता हैं।


1853 से पहले लुडविग श्लाफली द्वारा पहली बार तीन से अधिक आयामों के पॉलीटोप्स की खोज की गई थी, जिन्होंने इस तरह के एक आंकड़े को एक पॉलीसेम कहा था।{{Sfn|Coxeter|1973|pp=141-144|loc=§7-x. Historical remarks}} [[ जर्मन भाषा ]] का शब्द पॉलीटॉप गणितज्ञ [[ रेनहोल्ड हॉपी ]] द्वारा निर्मित किया गया था, और [[ एलिसिया बोले स्टॉट ]] द्वारा अंग्रेजी गणितज्ञों को पॉलीटॉप के रूप में पेश किया गया था।
1853 से पहले लुडविग श्लाफली द्वारा पहली बार तीन से अधिक आयामों के पॉलीटोप्स की खोज की गई थी, जिन्होंने इस तरह के एक आंकड़े को पॉलीसेम कहा था।{{Sfn|Coxeter|1973|pp=141-144|loc=§7-x. Historical remarks}} [[ जर्मन भाषा ]] का शब्द पॉलीटॉप गणितज्ञ [[ रेनहोल्ड हॉपी ]] द्वारा निर्मित किया गया था, और [[ एलिसिया बोले स्टॉट ]] द्वारा अंग्रेजी गणितज्ञों को पॉलीटॉप के रूप में पेश किया गया था।


== परिभाषा के दृष्टिकोण ==
== परिभाषा के दृष्टिकोण ==
आजकल, पॉलीटॉप शब्द एक व्यापक शब्द है जिसमें ऑब्जेक्ट्स की एक विस्तृत श्रेणी सम्मिलित है, और गणितीय साहित्य में विभिन्न परिभाषाएँ दिखाई देती हैं। इनमें से कई परिभाषाएँ एक-दूसरे के समतुल्य नहीं हैं, जिसके परिणामस्वरूप ऑब्जेक्ट्स के अलग-अलग अतिव्यापी सम्मुचयों को पॉलीटॉप्स कहा जाता है। वे समान गुणों वाली अन्य ऑब्जेक्ट्स को सम्मिलित करने के लिए उत्तल पॉलीटोप्स को सामान्य बनाने के लिए विभिन्न दृष्टिकोणों का प्रतिनिधित्व करते हैं।
आजकल, पॉलीटॉप शब्द एक व्यापक शब्द है जिसमें ऑब्जेक्ट्स की एक विस्तृत श्रेणी सम्मिलित है, और गणितीय साहित्य में विभिन्न परिभाषाएँ दिखाई देती हैं। इनमें से कई परिभाषाएँ एक-दूसरे के समतुल्य नहीं हैं, जिसके परिणामस्वरूप ऑब्जेक्ट्स के अलग-अलग अतिव्यापी सम्मुचयों को पॉलीटॉप्स कहा जाता है। वे समान गुणों वाली अन्य ऑब्जेक्ट्स को सम्मिलित करने के लिए उत्तल पॉलीटोप्स को सामान्य बनाने के लिए विभिन्न दृष्टिकोणों का प्रतिनिधित्व करते हैं।


मूल दृष्टिकोण सामान्तया लुडविग श्लाफली, [[थोरोल्ड गॉसेट|थोरोल्ड गॉसम्मुचय]] और अन्य द्वारा व्यापक रूप से अनुसरण किया जाता है, क्रमशः दो या तीन आयामों में बहुभुज और बहुतल के विचार के चार या अधिक आयामों में सादृश्य द्वारा विस्तार के साथ शुरू होता है।<ref name="coxeter1973">Coxeter (1973)</ref>
लुडविग श्लाफली, [[थोरोल्ड गॉसेट]] द्वारा मूल दृष्टिकोण का व्यापक रूप से पालन किया जाता है, और अन्य क्रमशः दो और तीन आयामों में बहुभुज और बहुकोणीय आकृति की अवधारणाक को चार या अधिक आयामों में सादृश्य विस्तार के साथ शुरू होते हैं।<ref name="coxeter1973">Coxeter (1973)</ref>


पॉलीहेड्रा की [[यूलर विशेषता]] को उच्च-आयामी पॉलीटोप्स के सामान्यीकरण के प्रयासों ने टोपोलॉजी के विकास और एक अपघटन या [[ स.ग.-जटिल |सीडब्ल्यू-जटिल]] के उपचार को एक पॉलीटॉप के अनुरूप बनाया गया है।<ref>{{cite book|author-link=David Richeson|last=Richeson|first=D.|title=यूलर का रत्न: पॉलीहेड्रॉन फॉर्मूला और टोपोलॉजी का जन्म|title-link= Euler's Gem|publisher=Princeton University Press|year=2008}}</ref> इस दृष्टिकोण में, एक पॉलीटॉप को कुछ दिए गए कई गुना के चौकोर या अपघटन के रूप में माना जा सकता है। इस दृष्टिकोण का एक उदाहरण एक पॉलीटॉप को उन बिंदुओं के एक सम्मुचय के रूप में परिभाषित करता है जो एक साधारण परिसर को स्वीकार करते हैं। इस परिभाषा में, एक पॉलीटॉप, अतिरिक्त संपत्ति के साथ, बहुत से [[ सरल |सरलताओं]] का संघ है, जो किसी भी दो सरलताओं के लिए, एक गैर-रिक्त प्रतिच्छेदन है। उनका प्रतिच्छेदन दोनों का एक शीर्ष, किनारा या उच्च आयामी फेस है।<ref name="Grünbaum2003">ग्रुनबाम (2003) </ रेफ> हालांकि यह परिभाषा आंतरिक संरचनाओं के साथ [[ स्टार पॉलीटॉप ]]्स की अनुमति नहीं देती है, और इसलिए यह गणित के कुछ क्षेत्रों तक ही सीमित है।
बहुकोणीय आकृत की [[यूलर विशेषता]] को उच्च-आयामी पॉलीटोप्स के सामान्यीकरण के प्रयासों ने टोपोलॉजी के विकास और अपघटन या [[ स.ग.-जटिल |सीडब्ल्यू-जटिल]] के निरूपण को एक पॉलीटॉप के अनुरूप बनाया गया है।<ref>{{cite book|author-link=David Richeson|last=Richeson|first=D.|title=यूलर का रत्न: पॉलीहेड्रॉन फॉर्मूला और टोपोलॉजी का जन्म|title-link= Euler's Gem|publisher=Princeton University Press|year=2008}}</ref> इस दृष्टिकोण में, पॉलीटॉप, किसी दिए गए मैनिफोल्ड के उत्कीर्णन या अपघटन के रूप में माना जा सकता है। इस दृष्टिकोण का एक उदाहरण पॉलीटॉप को उन बिंदुओं के एक सम्मुचय के रूप में परिभाषित करता है जो एक साधारण परिसर को स्वीकार करते हैं। इस परिभाषा में, पॉलीटॉप अतिरिक्त गुण धर्म के साथ, बहुत से [[ सरल |सरलताओं]] का संघ है, जो किसी भी दो सरलताओं के लिए, एक गैर-रिक्त प्रतिच्छेदन है। और उनका प्रतिच्छेदन दोनों का एक शीर्ष, किनारा या उच्च आयामी फेस है।<ref name="Grünbaum2003">ग्रुनबाम (2003) </ रेफ> हालांकि यह परिभाषा आंतरिक संरचनाओं के साथ [[ स्टार पॉलीटॉप ]]्स की अनुमति नहीं देती है, और इसलिए यह गणित के कुछ क्षेत्रों तक ही सीमित है।


[[ स्टार पॉलीहेड्रॉन ]] और अन्य असामान्य निर्माणों की खोज ने इसके इंटीरियर की अनदेखी करते हुए एक पॉलीहेड्रॉन को एक बाउंडिंग सतह के रूप में देखा। रेफरी> क्रॉमवेल, पी।; पॉलीहेड्रा, सीयूपी (पीपीबीके 1999) पीपी 205 एफएफ।</ref> चूँकि, यह परिभाषा आंतरिक संरचनाओं के साथ तारक (स्टार) पॉलीटोप्स की अनुमति नहीं देती है, और इसलिए यह गणित के कुछ क्षेत्रों तक ही सीमित है।  
[[ स्टार पॉलीहेड्रॉन ]] और अन्य असामान्य निर्माणों की खोज ने इसके इंटीरियर की अनदेखी करते हुए एक पॉलीहेड्रॉन को एक बाउंडिंग सतह के रूप में देखा। रेफरी> क्रॉमवेल, पी।; पॉलीहेड्रा, सीयूपी (पीपीबीके 1999) पीपी 205 एफएफ।</ref> चूँकि, यह परिभाषा आंतरिक संरचनाओं के साथ तारक (स्टार) पॉलीटोप्स की अनुमति नहीं देती है, और इसलिए यह गणित के कुछ क्षेत्रों तक ही सीमित है।


तारक(स्टार) पॉलीहेड्रा और अन्य असामान्य निर्माणों की खोज ने एक बहुतल को एक बाउंडिंग सतह के रूप में देखा, इसके आंतरिक भाग की अनदेखी की। इस प्रकाश के पी-स्पेस में उत्तल पॉलीटोप्स (पी-1) क्षेत्र के टाइलिंग के बराबर हैं, जबकि अन्य अर्धवृत्ताकार, फ्लैट या टोरॉयडल(पी-1) सतहों के टाइलिंग हो सकते हैं, उदाहरण के लिए [[अंडाकार टाइलिंग|अर्धवृत्ताकार टाइलिंग]] और [[टोरॉयडल पॉलीहेड्रॉन|टोरॉयडल]] बहुतल देखें। बहुतल को एक ऐसी सतह के रूप में समझा जाता है जिसके फेस  [[ बहुभुज |ज्यामिति बहुभुज]] के होते हैं, एक [[ 4-पॉलीटॉप | 4-पॉलीटॉप]] एक हाइपरसर्फेस के रूप में होता है। जिसके फेस ज्यामिति पॉलीहेड्रा के होते हैं।
तारक(स्टार) बहुकोणीय आकृति  और अन्य असामान्य निर्माणों की खोज ने एक बहुकोणीय आकृति  को एक बाउंडिंग सतह के रूप में देखा, इसके आंतरिक भाग की अनदेखी की। इस प्रकाश के पी-स्पेस में उत्तल पॉलीटोप्स (पी-1) क्षेत्र के टाइलिंग के बराबर हैं, जबकि अन्य अर्धवृत्ताकार, फ्लैट या टोरॉयडल(पी-1) सतहों के टाइलिंग हो सकते हैं, उदाहरण के लिए [[अंडाकार टाइलिंग|अर्धवृत्ताकार टाइलिंग]] और [[टोरॉयडल पॉलीहेड्रॉन|टोरॉयडल]] बहुकोणीय आकृति  देखें। बहुकोणीय आकृति  को एक ऐसी सतह के रूप में समझा जाता है जिसके फेस  [[ बहुभुज |ज्यामिति बहुभुज]] के होते हैं, एक [[ 4-पॉलीटॉप | 4-पॉलीटॉप]] एक हाइपरसर्फेस के रूप में होता है। जिसके फेस ज्यामिति बहुकोणीय आकृति  के होते हैं।


निचले आयाम वाले लोगों से एक उच्च पॉलीटोप का निर्माण करने का विचार कभी-कभी आयाम में नीचे की ओर बढ़ाया जाता है, जिसमें एक किनारे को एक बिंदु जोड़ी द्वारा बंधे [[1-पॉलीटॉप]] के रूप में देखा जाता है, और एक बिंदु या [[शीर्ष]] को 0-पॉलीटॉप के रूप में देखा जाता है। इस दृष्टिकोण का उपयोग उदाहरण के लिए अमूर्त पॉलीटोप्स के सिद्धांत में किया जाता है।
निचले आयाम वाले लोगों से एक उच्च पॉलीटोप का निर्माण करने का विचार कभी-कभी आयाम में नीचे की ओर बढ़ाया जाता है, जिसमें एक किनारे को एक बिंदु जोड़ी द्वारा बंधे [[1-पॉलीटॉप]] के रूप में देखा जाता है, और एक बिंदु या [[शीर्ष]] को 0-पॉलीटॉप के रूप में देखा जाता है। इस दृष्टिकोण का उपयोग उदाहरण के लिए अमूर्त पॉलीटोप्स के सिद्धांत में किया जाता है।


गणित के कुछ क्षेत्रों में, पॉलीटोप और बहुतल शब्द एक अलग अर्थ में उपयोग किए जाते हैं: एक बहुतल किसी भी आयाम में सामान्य वस्तु है (इस आलेख में पॉलीटोप के रूप में संदर्भित) और पॉलीटोप का अर्थ है एक [[ घिरा हुआ सेट | घिरा हुआ सम्मुचय]] पॉलीहेड्रॉन। <nowiki><ref>नेमहौसर और वोल्सी, इंटीजर और कॉम्बिनेटोरियल ऑप्टिमाइजेशन, 1999, </nowiki>{{isbn|978-0471359432}}, परिभाषा 2.2।<nowiki></ref></nowiki> यह शब्दावली विशिष्ट रूप से पॉलीटोप्स और पॉलीहेड्रा तक ही सीमित है जो [[उत्तल]] हैं। इस शब्दावली के साथ, एक उत्तल बहुतल अर्ध स्थानों की एक परिमित संख्या का प्रतिच्छेदन है और इसके पक्षों द्वारा परिभाषित किया गया है, जबकि एक उत्तल पॉलीटोप बिंदुओं की एक परिमित संख्या का [[उत्तल पतवार]] है और इसके शीर्षों द्वारा परिभाषित किया गया है।
गणित के कुछ क्षेत्रों में, पॉलीटोप और बहुकोणीय आकृति  शब्द एक अलग अर्थ में उपयोग किए जाते हैं: एक बहुकोणीय आकृति  किसी भी आयाम में सामान्य वस्तु है (इस आलेख में पॉलीटोप के रूप में संदर्भित) और पॉलीटोप का अर्थ है एक [[ घिरा हुआ सेट | घिरा हुआ सम्मुचय]] पॉलीहेड्रॉन। <nowiki><ref>नेमहौसर और वोल्सी, इंटीजर और कॉम्बिनेटोरियल ऑप्टिमाइजेशन, 1999, </nowiki>{{isbn|978-0471359432}}, परिभाषा 2.2।<nowiki></ref></nowiki> यह शब्दावली विशिष्ट रूप से पॉलीटोप्स और बहुकोणीय आकृति  तक ही सीमित है जो [[उत्तल]] हैं। इस शब्दावली के साथ, एक उत्तल बहुकोणीय आकृति  अर्ध स्थानों की एक परिमित संख्या का प्रतिच्छेदन है और इसके पक्षों द्वारा परिभाषित किया गया है, जबकि एक उत्तल पॉलीटोप बिंदुओं की एक परिमित संख्या का [[उत्तल पतवार]] है और इसके शीर्षों द्वारा परिभाषित किया गया है।


आयामों की कम संख्या वाले पॉलीटोप्स के मानक नाम हैं।
आयामों की कम संख्या वाले पॉलीटोप्स के मानक नाम हैं।
Line 106: Line 106:
|पॉलीटॉप ही
|पॉलीटॉप ही
|}
|}
एक n-आयामी पॉलीटोप कई (n − 1) आयामी [[ पहलू (गणित) | पहलुओं गणित]] से घिरा होता है। ये पहलू स्वयं पॉलीटोप हैं, जिनके पहलू मूल पॉलीटोप के (n -2) आयामी [[ रिज (ज्यामिति) | रिज (ज्यामिति)]] के हैं। प्रत्येक रिज दो पहलुओं के प्रतिच्छेदन के रूप में उत्पन्न होती है लेकिन दो पहलुओं के प्रतिच्छेदन को एक रिज होना आवश्यक नहीं है। रिज एक बार फिर से पॉलीटोप हैं जिनके पहलू मूल पॉलीटोप की(n - 3) आयामी सीमाओं को निर्मित करते हैं, और इसी तरह इन बाउंडिंग सब-पॉलीटॉप्स को फेस(ज्यामिति), या विशेष रूप से जे-विमीय फेस या जे-फेस के रूप में संदर्भित किया जा सकता है। एक 0-आयामी फेसेस को एक शीर्ष कहा जाता है, और इसमें एक बिंदु होता है। 1-आयामी फेसेस को किनारा कहा जाता है, और इसमें एक रेखा खंड होता है। एक 2-आयामी फेसेस में एक बहुभुज होता है, और एक 3-आयामी फेस, जिसे कभी-कभी [[ सेल (गणित) |सेल (गणित)]] कहा जाता है, और इसमें एक बहुतल होता है।
एक n-आयामी पॉलीटोप कई (n − 1) आयामी [[ पहलू (गणित) | पहलुओं गणित]] से घिरा होता है। ये पहलू स्वयं पॉलीटोप हैं, जिनके पहलू मूल पॉलीटोप के (n -2) आयामी [[ रिज (ज्यामिति) | रिज (ज्यामिति)]] के हैं। प्रत्येक रिज दो पहलुओं के प्रतिच्छेदन के रूप में उत्पन्न होती है लेकिन दो पहलुओं के प्रतिच्छेदन को एक रिज होना आवश्यक नहीं है। रिज एक बार फिर से पॉलीटोप हैं जिनके पहलू मूल पॉलीटोप की(n - 3) आयामी सीमाओं को निर्मित करते हैं, और इसी तरह इन बाउंडिंग सब-पॉलीटॉप्स को फेस(ज्यामिति), या विशेष रूप से जे-विमीय फेस या जे-फेस के रूप में संदर्भित किया जा सकता है। एक 0-आयामी फेसेस को एक शीर्ष कहा जाता है, और इसमें एक बिंदु होता है। 1-आयामी फेसेस को किनारा कहा जाता है, और इसमें एक रेखा खंड होता है। एक 2-आयामी फेसेस में एक बहुभुज होता है, और एक 3-आयामी फेस, जिसे कभी-कभी [[ सेल (गणित) |सेल (गणित)]] कहा जाता है, और इसमें एक बहुकोणीय आकृति  होता है।


==बहुलकों के महत्वपूर्ण वर्ग ==
==बहुलकों के महत्वपूर्ण वर्ग ==
Line 116: Line 116:
यदि इसके सभी शीर्षों में पूर्णांक निर्देशांक हैं, तो यह एक [[ अभिन्न पॉलीटॉप ]] है।
यदि इसके सभी शीर्षों में पूर्णांक निर्देशांक हैं, तो यह एक [[ अभिन्न पॉलीटॉप ]] है।


उत्तल पॉलीटॉप्स का एक निश्चित वर्ग प्रतिवर्ती पॉलीटोप्स हैं। एक अभिन्न {{nobr|<math>d</math>-पॉलीटॉप}} <math>\mathcal{P}</math> कुछ [[ पूर्णांक मैट्रिक्स ]] के लिए प्रतिवर्ती है <math>\mathbf{A}</math>, <math>\mathcal{P} = \{\mathbf{x} \in \mathbb{R}^d : \mathbf{Ax} \leq \mathbf{1}\}</math>, जहां पे <math>\mathbf{1}</math> सभी के सदिश को दर्शाता है, और असमानता घटक-वार है। और इस परिभाषा से हमें पता चलता कि <math>\mathcal{P}</math> प्रतिवर्ती है अगर और केवल अगर <math>(t+1)\mathcal{P}^\circ \cap \mathbb{Z}^d = t\mathcal{P} \cap \mathbb{Z}^d</math> सभी के लिए है <math>t \in \mathbb{Z}_{\geq 0}</math>. दूसरे शब्दों में, ए {{nobr|<math>(t + 1)</math>-डाईलेट}} का <math>\mathcal{P}</math> भिन्न, पूर्णांक जालक बिंदुओं के संदर्भ में, a {{nobr|<math>t</math>-dilate}} का <math>\mathcal{P}</math> केवल सीमा पर प्राप्त जाली बिंदुओं से समान रूप से, <math>\mathcal{P}</math> प्रतिवर्ती है अगर और केवल अगर यह [[ दोहरी पॉलीहेड्रॉन | दोहरी बहुतल]] है तो <math>\mathcal{P}^*</math> एक अभिन्न पॉलीटॉप है।<ref>Beck, Matthias; Robins, Sinai (2007), ''[[Computing the Continuous Discretely|Computing the Continuous Discretely: Integer-point enumeration in polyhedra]]'', Undergraduate Texts in Mathematics, New York: Springer-Verlag, {{ISBN|978-0-387-29139-0}}, MR 2271992</ref>
उत्तल पॉलीटॉप्स का एक निश्चित वर्ग प्रतिवर्ती पॉलीटोप्स हैं। एक अभिन्न {{nobr|<math>d</math>-पॉलीटॉप}} <math>\mathcal{P}</math> कुछ [[ पूर्णांक मैट्रिक्स ]] के लिए प्रतिवर्ती है <math>\mathbf{A}</math>, <math>\mathcal{P} = \{\mathbf{x} \in \mathbb{R}^d : \mathbf{Ax} \leq \mathbf{1}\}</math>, जहां पे <math>\mathbf{1}</math> सभी के सदिश को दर्शाता है, और असमानता घटक-वार है। और इस परिभाषा से हमें पता चलता कि <math>\mathcal{P}</math> प्रतिवर्ती है अगर और केवल अगर <math>(t+1)\mathcal{P}^\circ \cap \mathbb{Z}^d = t\mathcal{P} \cap \mathbb{Z}^d</math> सभी के लिए है <math>t \in \mathbb{Z}_{\geq 0}</math>. दूसरे शब्दों में, ए {{nobr|<math>(t + 1)</math>-डाईलेट}} का <math>\mathcal{P}</math> भिन्न, पूर्णांक जालक बिंदुओं के संदर्भ में, a {{nobr|<math>t</math>-dilate}} का <math>\mathcal{P}</math> केवल सीमा पर प्राप्त जाली बिंदुओं से समान रूप से, <math>\mathcal{P}</math> प्रतिवर्ती है अगर और केवल अगर यह [[ दोहरी पॉलीहेड्रॉन | दोहरी बहुकोणीय आकृति]] है तो <math>\mathcal{P}^*</math> एक अभिन्न पॉलीटॉप है।<ref>Beck, Matthias; Robins, Sinai (2007), ''[[Computing the Continuous Discretely|Computing the Continuous Discretely: Integer-point enumeration in polyhedra]]'', Undergraduate Texts in Mathematics, New York: Springer-Verlag, {{ISBN|978-0-387-29139-0}}, MR 2271992</ref>
=== नियमित पॉलीटोप्स ===
=== नियमित पॉलीटोप्स ===
{{Main|नियमित पॉलीटॉप}}
{{Main|नियमित पॉलीटॉप}}
Line 130: Line 130:
आयाम दो, तीन और चार में नियमित आंकड़े सम्मिलित होते हैं जिनमें पांच गुना समरूपता होती है और जिनमें से कुछ गैर-उत्तल तारक (तारक (स्टार)) होते हैं, और दो आयामों में अनंत रूप से एन-गुना समरूपता के कई नियमित बहुभुज होते हैं, दोनों उत्तल और n ≥ 5 के लिए तारक (तारक (स्टार)) होते हैं। लेकिन उच्च आयामों में कोई अन्य नियमित पॉलीटॉप्स नहीं होते हैं।
आयाम दो, तीन और चार में नियमित आंकड़े सम्मिलित होते हैं जिनमें पांच गुना समरूपता होती है और जिनमें से कुछ गैर-उत्तल तारक (तारक (स्टार)) होते हैं, और दो आयामों में अनंत रूप से एन-गुना समरूपता के कई नियमित बहुभुज होते हैं, दोनों उत्तल और n ≥ 5 के लिए तारक (तारक (स्टार)) होते हैं। लेकिन उच्च आयामों में कोई अन्य नियमित पॉलीटॉप्स नहीं होते हैं।


तीन आयामों में उत्तल [[ प्लेटोनिक ठोस | प्लेटोनिक ठोस]] में पांच गुना-सममित [[ द्वादशफ़लक | द्वादशफ़लक]] और [[ विंशतिफलक | विंशतिफलक]] सम्मिलित हैं, और पांच गुना समरूपता के साथ चार तारक (तारक (स्टार))[[ केप्लर-पॉइन्सॉट पॉलीहेड्रा | केप्लर-पॉइन्सॉट पॉलीहेड्रा]] भी हैं, जो कुल नौ नियमित पॉलीहेड्रा लाते हैं।
तीन आयामों में उत्तल [[ प्लेटोनिक ठोस | प्लेटोनिक ठोस]] में पांच गुना-सममित [[ द्वादशफ़लक | द्वादशफ़लक]] और [[ विंशतिफलक | विंशतिफलक]] सम्मिलित हैं, और पांच गुना समरूपता के साथ चार तारक (तारक (स्टार))[[ केप्लर-पॉइन्सॉट पॉलीहेड्रा | केप्लर-पॉइन्सॉट बहुकोणीय आकृति]] भी हैं, जो कुल नौ नियमित बहुकोणीय आकृति  लाते हैं।


चार आयामों में नियमित 4-पॉलीटॉप में चार गुना समरूपता के साथ एक अतिरिक्त उत्तल ठोस और पांच गुना समरूपता के साथ सम्मिलित हैं। दस तारक (तारक (स्टार)) श्लाफली-हेस 4-पॉलीटॉप हैं, और सभी पांच गुना समरूपता के साथ, सभी सोलह नियमित 4-पॉलीटॉप में दे रहे हैं।
चार आयामों में नियमित 4-पॉलीटॉप में चार गुना समरूपता के साथ एक अतिरिक्त उत्तल ठोस और पांच गुना समरूपता के साथ सम्मिलित हैं। दस तारक (तारक (स्टार)) श्लाफली-हेस 4-पॉलीटॉप हैं, और सभी पांच गुना समरूपता के साथ, सभी सोलह नियमित 4-पॉलीटॉप में दे रहे हैं।
Line 147: Line 147:
:<math>\chi = n_0 - n_1 + n_2 - \cdots \plusmn n_{d-1} = 1 + (-1)^{d-1}</math>, कहाँ पे <math>n_j</math> की संख्या है <math>j</math>-आयामी फेसेस ।
:<math>\chi = n_0 - n_1 + n_2 - \cdots \plusmn n_{d-1} = 1 + (-1)^{d-1}</math>, कहाँ पे <math>n_j</math> की संख्या है <math>j</math>-आयामी फेसेस ।


यह पॉलीहेड्रा के लिए यूलर के सूत्र को सामान्यीकृत करता है।<ref name="pands"/>
यह बहुकोणीय आकृति  के लिए यूलर के सूत्र को सामान्यीकृत करता है।<ref name="pands"/>


=== आंतरिक कोण ===
=== आंतरिक कोण ===
ग्राम-यूलर प्रमेय इसी तरह [[ आंतरिक और बाहरी कोण | आंतरिक और बाहरी कोणों]] के वैकल्पिक योग को सामान्य करता है <math display="inline"> \sum \varphi</math> उत्तल पॉलीहेड्रा के लिए उच्च-आयामी पॉलीटोप्स के लिए है<ref name="pands">M. A. Perles and G. C. Shephard. 1967. "Angle sums of convex polytopes". ''Math. Scandinavica'', Vol 21, No 2. March 1967. pp. 199–218.</ref>
ग्राम-यूलर प्रमेय इसी तरह [[ आंतरिक और बाहरी कोण | आंतरिक और बाहरी कोणों]] के वैकल्पिक योग को सामान्य करता है <math display="inline"> \sum \varphi</math> उत्तल बहुकोणीय आकृति  के लिए उच्च-आयामी पॉलीटोप्स के लिए है<ref name="pands">M. A. Perles and G. C. Shephard. 1967. "Angle sums of convex polytopes". ''Math. Scandinavica'', Vol 21, No 2. March 1967. pp. 199–218.</ref>
: <math>\sum \varphi = (-1)^{d-1}</math>
: <math>\sum \varphi = (-1)^{d-1}</math>


Line 160: Line 160:
सभी गुण परिमित नहीं होते। जहां एक पॉलीटॉप को मैनिफोल्ड के टाइलिंग या अपघटन के रूप में समझा जाता है, इस विचार को अनंत मैनिफोल्ड तक बढ़ाया जा सकता है। टेसलेशन, स्पेस-फिलिंग, हनीकॉम्ब ज्यामिति और [[ अतिशयोक्तिपूर्ण टाइलिंग ]] इस अर्थ में पॉलीटोप्स हैं, और कभी-कभी इन्हें एपिरोटोप्स कहा जाता है क्योंकि उनमें असीम रूप से कई कोशिकाएं होती हैं।
सभी गुण परिमित नहीं होते। जहां एक पॉलीटॉप को मैनिफोल्ड के टाइलिंग या अपघटन के रूप में समझा जाता है, इस विचार को अनंत मैनिफोल्ड तक बढ़ाया जा सकता है। टेसलेशन, स्पेस-फिलिंग, हनीकॉम्ब ज्यामिति और [[ अतिशयोक्तिपूर्ण टाइलिंग ]] इस अर्थ में पॉलीटोप्स हैं, और कभी-कभी इन्हें एपिरोटोप्स कहा जाता है क्योंकि उनमें असीम रूप से कई कोशिकाएं होती हैं।


इनमें [[ नियमित तिरछा पॉलीहेड्रॉन | नियमित तिरछा बहुतल]] और नियमित एपिरोगोन, स्क्वायर टाइलिंग, क्यूबिक मधुकोश, और इतने पर प्रतिनिधित्व करने वाली टाइलिंग की अनंत श्रृंखला सहित नियमित रूप से हैं।
इनमें [[ नियमित तिरछा पॉलीहेड्रॉन | नियमित तिरछा बहुकोणीय आकृति]] और नियमित एपिरोगोन, स्क्वायर टाइलिंग, क्यूबिक मधुकोश, और इतने पर प्रतिनिधित्व करने वाली टाइलिंग की अनंत श्रृंखला सहित नियमित रूप से हैं।


=== सार पॉलीटोप्स ===
=== सार पॉलीटोप्स ===
Line 178: Line 178:
एक अमूर्त पॉलीटोप के लिए, यह केवल सम्मुचय के क्रम को उलट देता है। यह उत्क्रमण नियमित पॉलीटोप्स के लिए श्लाफली प्रतीकों में देखा जाता है, जहां दोहरी पॉलीटोप के लिए प्रतीक मूल के विपरीत होता है। उदाहरण के लिए, {4, 3, 3}, {3, 3, 4} से दोहरा है।
एक अमूर्त पॉलीटोप के लिए, यह केवल सम्मुचय के क्रम को उलट देता है। यह उत्क्रमण नियमित पॉलीटोप्स के लिए श्लाफली प्रतीकों में देखा जाता है, जहां दोहरी पॉलीटोप के लिए प्रतीक मूल के विपरीत होता है। उदाहरण के लिए, {4, 3, 3}, {3, 3, 4} से दोहरा है।


एक ज्यामितीय पॉलीटोप के मामले में, दोहरीकरण के लिए कुछ ज्यामितीय नियम आवश्यक हैं, उदाहरण के लिए दोहरे पॉलीहेड्रा के लिए वर्णित नियम देखें। परिस्थिति के आधार पर, दोहरी आकृति और ज्यामितीय पॉलीटॉप हो सकती है या नहीं भी हो सकती है।<ref>Wenninger, M.; ''Dual Models'', CUP (1983).</ref>
एक ज्यामितीय पॉलीटोप के मामले में, दोहरीकरण के लिए कुछ ज्यामितीय नियम आवश्यक हैं, उदाहरण के लिए दोहरे बहुकोणीय आकृति  के लिए वर्णित नियम देखें। परिस्थिति के आधार पर, दोहरी आकृति और ज्यामितीय पॉलीटॉप हो सकती है या नहीं भी हो सकती है।<ref>Wenninger, M.; ''Dual Models'', CUP (1983).</ref>
यदि दोहरे को उलट दिया जाता है, तो मूल पॉलीटोप पुनः प्राप्त हो जाता है। इस प्रकार, पॉलीटोप्स दोहरे जोड़े में उपलब्ध हैं।
यदि दोहरे को उलट दिया जाता है, तो मूल पॉलीटोप पुनः प्राप्त हो जाता है। इस प्रकार, पॉलीटोप्स दोहरे जोड़े में उपलब्ध हैं।


Line 197: Line 197:
अगस्त 1827 में फर्डिनैंड मोबियस को पता चला कि दर्पण छवि के दो ठोस तत्वों को एक को चौथे गणितीय आयाम में घुमा कर परतदार किया जाता है। 1850 के दशक तक, मुट्ठी भर अन्य गणितज्ञों जैसे [[ आर्थर केली ]] और [[ हरमन ग्रासमैन ]] ने भी उच्च आयामों पर विचार किया था।
अगस्त 1827 में फर्डिनैंड मोबियस को पता चला कि दर्पण छवि के दो ठोस तत्वों को एक को चौथे गणितीय आयाम में घुमा कर परतदार किया जाता है। 1850 के दशक तक, मुट्ठी भर अन्य गणितज्ञों जैसे [[ आर्थर केली ]] और [[ हरमन ग्रासमैन ]] ने भी उच्च आयामों पर विचार किया था।


लुडविग श्लाफली इन उच्च स्थानों में बहुभुज और पॉलीहेड्रा के अनुरूपों पर विचार करने वाले पहले व्यक्ति थे। उन्होंने 1852 में छह उत्तल नियमित 4-पॉलीटोप्स का वर्णन किया लेकिन उनकी मृत्यु के छह साल बाद 1901 तक उनका काम प्रकाशित नहीं हुआ। 1854 तक, [[ बर्नहार्ड रीमैन ]] की [[ आवास थीसिस ]] ने उच्च आयामों की ज्यामिति को दृढ़ता से स्थापित किया था, और इस प्रकार एन-आयामी पॉलीटोप्स की अवधारणा को स्वीकार्य बना दिया गया था। श्लाफली के पॉलीटॉप्स को उनके जीवनकाल में भी, बाद के दशकों में कई बार फिर से खोजा गया।
लुडविग श्लाफली इन उच्च स्थानों में बहुभुज और बहुकोणीय आकृति  के अनुरूपों पर विचार करने वाले पहले व्यक्ति थे। उन्होंने 1852 में छह उत्तल नियमित 4-पॉलीटोप्स का वर्णन किया लेकिन उनकी मृत्यु के छह साल बाद 1901 तक उनका काम प्रकाशित नहीं हुआ। 1854 तक, [[ बर्नहार्ड रीमैन ]] की [[ आवास थीसिस ]] ने उच्च आयामों की ज्यामिति को दृढ़ता से स्थापित किया था, और इस प्रकार एन-आयामी पॉलीटोप्स की अवधारणा को स्वीकार्य बना दिया गया था। श्लाफली के पॉलीटॉप्स को उनके जीवनकाल में भी, बाद के दशकों में कई बार फिर से खोजा गया।


1882 में जर्मन में लिखते हुए रीनहोल्ड होप ने बहुभुज और पॉलीहेड्रा की इस अधिक सामान्य अवधारणा को संदर्भित करने के लिए डी पॉलीटॉप (ज्यामिति) शब्द बनाया। नियत समय में तर्कशास्त्री [[ जॉर्ज बूले ]] की बेटी एलिसिया बूल स्टॉट ने अंग्रेजी भाषा में पॉलीटॉप पेश किया।<ref name="coxeter1973"/>{{rp|vi}}
1882 में जर्मन में लिखते हुए रीनहोल्ड होप ने बहुभुज और बहुकोणीय आकृति  की इस अधिक सामान्य अवधारणा को संदर्भित करने के लिए डी पॉलीटॉप (ज्यामिति) शब्द बनाया। नियत समय में तर्कशास्त्री [[ जॉर्ज बूले ]] की बेटी एलिसिया बूल स्टॉट ने अंग्रेजी भाषा में पॉलीटॉप पेश किया।<ref name="coxeter1973"/>{{rp|vi}}


1895 में, थोरल्ड कोणिका की न केवल शीलफली की नियमित पोलिटोप की खोज की बल्कि [[ अर्धनियमित पॉलीटोप |अर्धनियमित पॉलीटोप]] पोलिटोप और स्पेस भरने की चौकोर के उच्च आयामों में खोज की। पॉलीटोप्स का अध्ययन गैर यूक्लिडियन स्पेस जैसे हाइपरबोलिक स्पेस में भी शुरू हुआ।
1895 में, थोरल्ड कोणिका की न केवल शीलफली की नियमित पोलिटोप की खोज की बल्कि [[ अर्धनियमित पॉलीटोप |अर्धनियमित पॉलीटोप]] पोलिटोप और स्पेस भरने की चौकोर के उच्च आयामों में खोज की। पॉलीटोप्स का अध्ययन गैर यूक्लिडियन स्पेस जैसे हाइपरबोलिक स्पेस में भी शुरू हुआ।

Revision as of 23:28, 24 November 2022

First stellation of octahedron.png First stellation of dodecahedron.png File:Second stellation of dodecahedron.png File:Third stellation of dodecahedron.png File:Sixteenth stellation of icosahedron.png File:First stellation of icosahedron.png
एक बहुकोणीय आकृति एक 3-आयामी पॉलीटॉप है
File:Assorted polygons.svg
एक बहुभुज एक 2-आयामी पॉलीटॉप है। बहुभुज को विभिन्न मानदंडों के अनुसार चित्रित किया जा सकता है। कुछ उदाहरण है, खुला (इसकी सीमा को छोड़कर), केवल बाउंडिंग सर्किट (इसके आंतरिक भाग को अनदेखा करना), बंद (इसकी सीमा और इसके आंतरिक दोनों सहित), और विभिन्न क्षेत्रों के अलग-अलग घनत्व के साथ स्व-प्रतिच्छेद करना

प्रारंभिक ज्यामिति में, पॉलीटोप एक ज्यामितीय ऑब्जेक्ट है जिसमें समतल फेसेस होते है। पॉलीटोप्स किसी भी संख्या के आयामों के लिए त्रि-आयामी बहुकोणीय आकृति का सामान्यीकरण होता हैं। पॉलीटोप्स किसी भी सामान्य संख्या में आयाम n में n-विमीय पॉलीटोप या n-पॉलीटोप के रूप में उपलब्ध हो सकते हैं। उदाहरण के लिए, एक द्वि-आयामी बहुभुज एक 2-पॉलीटॉप है और एक त्रि-आयामी बहुकोणीय आकृति 3-पॉलीटॉप है। इस संदर्भ में, चपटी भुजाओं का अर्थ है कि (k + 1)-पॉलीटॉप की भुजाओं में k-पॉलीटोप्स होते हैं जिनमें (k - 1) पॉलीटोप्स समान हो सकते हैं।

कुछ सिद्धांतों ने इस विचार को सामान्य बना दिया है जैसे कि अपरिबद्ध अनंतता और चौकोर, अपघटन या घुमावदार मैनिफोल्ड्स की टाइलिंग जिसमें गोलाकार बहुकोणीय आकृति, और सम्मुचय-सैद्धांतिक का सार पॉलीटोप्स में सम्मिलित होता हैं।

1853 से पहले लुडविग श्लाफली द्वारा पहली बार तीन से अधिक आयामों के पॉलीटोप्स की खोज की गई थी, जिन्होंने इस तरह के एक आंकड़े को पॉलीसेम कहा था।[1] जर्मन भाषा का शब्द पॉलीटॉप गणितज्ञ रेनहोल्ड हॉपी द्वारा निर्मित किया गया था, और एलिसिया बोले स्टॉट द्वारा अंग्रेजी गणितज्ञों को पॉलीटॉप के रूप में पेश किया गया था।

परिभाषा के दृष्टिकोण

आजकल, पॉलीटॉप शब्द एक व्यापक शब्द है जिसमें ऑब्जेक्ट्स की एक विस्तृत श्रेणी सम्मिलित है, और गणितीय साहित्य में विभिन्न परिभाषाएँ दिखाई देती हैं। इनमें से कई परिभाषाएँ एक-दूसरे के समतुल्य नहीं हैं, जिसके परिणामस्वरूप ऑब्जेक्ट्स के अलग-अलग अतिव्यापी सम्मुचयों को पॉलीटॉप्स कहा जाता है। वे समान गुणों वाली अन्य ऑब्जेक्ट्स को सम्मिलित करने के लिए उत्तल पॉलीटोप्स को सामान्य बनाने के लिए विभिन्न दृष्टिकोणों का प्रतिनिधित्व करते हैं।

लुडविग श्लाफली, थोरोल्ड गॉसेट द्वारा मूल दृष्टिकोण का व्यापक रूप से पालन किया जाता है, और अन्य क्रमशः दो और तीन आयामों में बहुभुज और बहुकोणीय आकृति की अवधारणाक को चार या अधिक आयामों में सादृश्य विस्तार के साथ शुरू होते हैं।[2]

बहुकोणीय आकृत की यूलर विशेषता को उच्च-आयामी पॉलीटोप्स के सामान्यीकरण के प्रयासों ने टोपोलॉजी के विकास और अपघटन या सीडब्ल्यू-जटिल के निरूपण को एक पॉलीटॉप के अनुरूप बनाया गया है।[3] इस दृष्टिकोण में, पॉलीटॉप, किसी दिए गए मैनिफोल्ड के उत्कीर्णन या अपघटन के रूप में माना जा सकता है। इस दृष्टिकोण का एक उदाहरण पॉलीटॉप को उन बिंदुओं के एक सम्मुचय के रूप में परिभाषित करता है जो एक साधारण परिसर को स्वीकार करते हैं। इस परिभाषा में, पॉलीटॉप अतिरिक्त गुण धर्म के साथ, बहुत से सरलताओं का संघ है, जो किसी भी दो सरलताओं के लिए, एक गैर-रिक्त प्रतिच्छेदन है। और उनका प्रतिच्छेदन दोनों का एक शीर्ष, किनारा या उच्च आयामी फेस है।[4] चूँकि, यह परिभाषा आंतरिक संरचनाओं के साथ तारक (स्टार) पॉलीटोप्स की अनुमति नहीं देती है, और इसलिए यह गणित के कुछ क्षेत्रों तक ही सीमित है।

तारक(स्टार) बहुकोणीय आकृति और अन्य असामान्य निर्माणों की खोज ने एक बहुकोणीय आकृति को एक बाउंडिंग सतह के रूप में देखा, इसके आंतरिक भाग की अनदेखी की। इस प्रकाश के पी-स्पेस में उत्तल पॉलीटोप्स (पी-1) क्षेत्र के टाइलिंग के बराबर हैं, जबकि अन्य अर्धवृत्ताकार, फ्लैट या टोरॉयडल(पी-1) सतहों के टाइलिंग हो सकते हैं, उदाहरण के लिए अर्धवृत्ताकार टाइलिंग और टोरॉयडल बहुकोणीय आकृति देखें। बहुकोणीय आकृति को एक ऐसी सतह के रूप में समझा जाता है जिसके फेस ज्यामिति बहुभुज के होते हैं, एक 4-पॉलीटॉप एक हाइपरसर्फेस के रूप में होता है। जिसके फेस ज्यामिति बहुकोणीय आकृति के होते हैं।

निचले आयाम वाले लोगों से एक उच्च पॉलीटोप का निर्माण करने का विचार कभी-कभी आयाम में नीचे की ओर बढ़ाया जाता है, जिसमें एक किनारे को एक बिंदु जोड़ी द्वारा बंधे 1-पॉलीटॉप के रूप में देखा जाता है, और एक बिंदु या शीर्ष को 0-पॉलीटॉप के रूप में देखा जाता है। इस दृष्टिकोण का उपयोग उदाहरण के लिए अमूर्त पॉलीटोप्स के सिद्धांत में किया जाता है।

गणित के कुछ क्षेत्रों में, पॉलीटोप और बहुकोणीय आकृति शब्द एक अलग अर्थ में उपयोग किए जाते हैं: एक बहुकोणीय आकृति किसी भी आयाम में सामान्य वस्तु है (इस आलेख में पॉलीटोप के रूप में संदर्भित) और पॉलीटोप का अर्थ है एक घिरा हुआ सम्मुचय पॉलीहेड्रॉन। <ref>नेमहौसर और वोल्सी, इंटीजर और कॉम्बिनेटोरियल ऑप्टिमाइजेशन, 1999, ISBN 978-0471359432, परिभाषा 2.2।</ref> यह शब्दावली विशिष्ट रूप से पॉलीटोप्स और बहुकोणीय आकृति तक ही सीमित है जो उत्तल हैं। इस शब्दावली के साथ, एक उत्तल बहुकोणीय आकृति अर्ध स्थानों की एक परिमित संख्या का प्रतिच्छेदन है और इसके पक्षों द्वारा परिभाषित किया गया है, जबकि एक उत्तल पॉलीटोप बिंदुओं की एक परिमित संख्या का उत्तल पतवार है और इसके शीर्षों द्वारा परिभाषित किया गया है।

आयामों की कम संख्या वाले पॉलीटोप्स के मानक नाम हैं।

आयाम

पॉलीटोप का

विवरण
−1 नुलिटोप
0 Monon
1 डायोन
2 बहुभुज
3 बहुतल
4 पॉलीकोरोन


तत्व

एक पॉलीटोप में विभिन्न आयामों के तत्व सम्मिलित होते हैं जैसे कोने, किनारे, फेसेस, कोशिकाएं आदि। इनके लिए शब्दावली विभिन्न लेखकों के बीच पूरी तरह से संगत नहीं है। उदाहरण के लिए, कुछ लेखक एक (n − 1) आयामी तत्व को संदर्भित करने के लिए फेसेस का उपयोग करते हैं जबकि अन्य विशेष रूप से 2-फेसेस को निरूपित करने के लिए फेसेस का उपयोग करते हैं। जे आयामों के एक तत्व को इंगित करने के लिए लेखक जे फेस या जे फलक का उपयोग कर सकते हैं। कुछ किनारे का उपयोग रिज को संदर्भित करने के लिए करते हैं, जबकि एच.एस.एम. कॉक्सम्मुचयर सेल का उपयोग एन -1 आयामी तत्व को निरूपित करने के लिए सेल का उपयोग करता है।[5][citation needed] इस लेख में अपनाई गई शर्तें नीचे दी गई तालिका में दी गई हैं।

आयाम

तत्व का

शर्त

(एन-पॉलीटॉप में)

−1 शून्यता (अमूर्त सिद्धांत में आवश्यक))[6]
0 शिखर
1 किनारा
2 फेस
3 कक्ष
 
j j-फेस – पद का तत्व j = −1, 0, 1, 2, 3, ..., n
 
n − 3 शिखर – (n − 3)-फेस
n − 2 चोटी or subfacet – (n − 2)-फेस
n − 1 पहलू– (n − 1)-फेस
n पॉलीटॉप ही

एक n-आयामी पॉलीटोप कई (n − 1) आयामी पहलुओं गणित से घिरा होता है। ये पहलू स्वयं पॉलीटोप हैं, जिनके पहलू मूल पॉलीटोप के (n -2) आयामी रिज (ज्यामिति) के हैं। प्रत्येक रिज दो पहलुओं के प्रतिच्छेदन के रूप में उत्पन्न होती है लेकिन दो पहलुओं के प्रतिच्छेदन को एक रिज होना आवश्यक नहीं है। रिज एक बार फिर से पॉलीटोप हैं जिनके पहलू मूल पॉलीटोप की(n - 3) आयामी सीमाओं को निर्मित करते हैं, और इसी तरह इन बाउंडिंग सब-पॉलीटॉप्स को फेस(ज्यामिति), या विशेष रूप से जे-विमीय फेस या जे-फेस के रूप में संदर्भित किया जा सकता है। एक 0-आयामी फेसेस को एक शीर्ष कहा जाता है, और इसमें एक बिंदु होता है। 1-आयामी फेसेस को किनारा कहा जाता है, और इसमें एक रेखा खंड होता है। एक 2-आयामी फेसेस में एक बहुभुज होता है, और एक 3-आयामी फेस, जिसे कभी-कभी सेल (गणित) कहा जाता है, और इसमें एक बहुकोणीय आकृति होता है।

बहुलकों के महत्वपूर्ण वर्ग

उत्तल पॉलीटोप्स

पॉलीटॉप उत्तल भी हो सकता है। उत्तल पॉलीटोप्स सबसे सरल प्रकार के पॉलीटोप्स होते हैं, और पॉलीटोप्स की अवधारणा कई अलग-अलग सामान्यीकरणों के लिए आधार बनाते हैं। एक उत्तल पॉलीटॉप को कभी-कभी अर्ध-रिक्त स्थान के सम्मुचय को प्रतिच्छेदन के रूप में परिभाषित किया जाता है। यह परिभाषा पॉलीटॉप को न तो बाध्य और न ही परिमित होने की अनुमति देती है। पॉलीटोप्स को इस तरह परिभाषित किया जाता है, उदाहरण के लिए, रैखिक फलन में एक पॉलीटोप को बांधा जाता है यदि परिमित त्रिज्या की एक गेंद होती है। इसमें पॉलीटॉप को पॉइंटेड कहा जाता है यदि इसमें कम से कम एक शीर्ष होता है। और हर घिरा हुआ गैर-खाली पॉलीटॉप पॉइंटेड होता है। यह एक गैर-पॉइंटेड पॉलीटॉप का उदाहरण सम्मुचय है , पॉलीटॉप परिमित है यदि इसे परिमित संख्या में ऑब्जेक्ट्स के रूप में परिभाषित जाता है, उदाहरण के लिए, अर्ध समतल की परिमित संख्या के प्रतिच्छेदन के रूप में है। यदि इसके सभी शीर्षों में पूर्णांक निर्देशांक हैं, तो यह एक अभिन्न पॉलीटॉप है।

उत्तल पॉलीटॉप्स का एक निश्चित वर्ग प्रतिवर्ती पॉलीटोप्स हैं। एक अभिन्न -पॉलीटॉप कुछ पूर्णांक मैट्रिक्स के लिए प्रतिवर्ती है , , जहां पे सभी के सदिश को दर्शाता है, और असमानता घटक-वार है। और इस परिभाषा से हमें पता चलता कि प्रतिवर्ती है अगर और केवल अगर सभी के लिए है . दूसरे शब्दों में, ए -डाईलेट का भिन्न, पूर्णांक जालक बिंदुओं के संदर्भ में, a -dilate का केवल सीमा पर प्राप्त जाली बिंदुओं से समान रूप से, प्रतिवर्ती है अगर और केवल अगर यह दोहरी बहुकोणीय आकृति है तो एक अभिन्न पॉलीटॉप है।[7]

नियमित पॉलीटोप्स

नियमित पॉलीटोप्स में सभी पॉलीटॉप्स की समरूपता का उच्चतम स्तर होता है। एक नियमित पॉलीटॉप का समरूपता समूह अपने निशान पर सकर्मक रूप से कार्य करता है, इसलिए, एक नियमित पॉलीटॉप का दोहरा पॉलीटॉप भी नियमित होता है।

नियमित पॉलीटोप के तीन मुख्य वर्ग हैं जो किसी भी आयाम में होते हैं

आयाम दो, तीन और चार में नियमित आंकड़े सम्मिलित होते हैं जिनमें पांच गुना समरूपता होती है और जिनमें से कुछ गैर-उत्तल तारक (तारक (स्टार)) होते हैं, और दो आयामों में अनंत रूप से एन-गुना समरूपता के कई नियमित बहुभुज होते हैं, दोनों उत्तल और n ≥ 5 के लिए तारक (तारक (स्टार))। लेकिन उच्च आयामों में कोई अन्य नियमित पॉलीटॉप नहीं होता हैं।[2]

आयाम दो, तीन और चार में नियमित आंकड़े सम्मिलित होते हैं जिनमें पांच गुना समरूपता होती है और जिनमें से कुछ गैर-उत्तल तारक (तारक (स्टार)) होते हैं, और दो आयामों में अनंत रूप से एन-गुना समरूपता के कई नियमित बहुभुज होते हैं, दोनों उत्तल और n ≥ 5 के लिए तारक (तारक (स्टार)) होते हैं। लेकिन उच्च आयामों में कोई अन्य नियमित पॉलीटॉप्स नहीं होते हैं।

तीन आयामों में उत्तल प्लेटोनिक ठोस में पांच गुना-सममित द्वादशफ़लक और विंशतिफलक सम्मिलित हैं, और पांच गुना समरूपता के साथ चार तारक (तारक (स्टार)) केप्लर-पॉइन्सॉट बहुकोणीय आकृति भी हैं, जो कुल नौ नियमित बहुकोणीय आकृति लाते हैं।

चार आयामों में नियमित 4-पॉलीटॉप में चार गुना समरूपता के साथ एक अतिरिक्त उत्तल ठोस और पांच गुना समरूपता के साथ सम्मिलित हैं। दस तारक (तारक (स्टार)) श्लाफली-हेस 4-पॉलीटॉप हैं, और सभी पांच गुना समरूपता के साथ, सभी सोलह नियमित 4-पॉलीटॉप में दे रहे हैं।

तारक (स्टार) पॉलीटोप्स

एक गैर-उत्तल पॉलीटोप स्वयं प्रतिच्छेदन हो सकता है, पॉलीटोप्स के इस वर्ग में तारक (स्टार) पॉलीटोप्स में सम्मिलित हैं। कुछ नियमित पॉलीटॉप तारक (स्टार)) हैं।[2]


गुण

यूलर विशेषता

चूँकि d आयामों में एक भरा हुआ उत्तल पॉलीटॉप P एक बिंदु के लिए संकुचन क्षम है, इसकी सीमा ∂P की यूलर विशेषता x वैकल्पिक योग द्वारा दी गई है

, कहाँ पे की संख्या है -आयामी फेसेस ।

यह बहुकोणीय आकृति के लिए यूलर के सूत्र को सामान्यीकृत करता है।[8]

आंतरिक कोण

ग्राम-यूलर प्रमेय इसी तरह आंतरिक और बाहरी कोणों के वैकल्पिक योग को सामान्य करता है उत्तल बहुकोणीय आकृति के लिए उच्च-आयामी पॉलीटोप्स के लिए है[8]


पॉलीटोप के सामान्यीकरण

अनंत पॉलीटोप्स

सभी गुण परिमित नहीं होते। जहां एक पॉलीटॉप को मैनिफोल्ड के टाइलिंग या अपघटन के रूप में समझा जाता है, इस विचार को अनंत मैनिफोल्ड तक बढ़ाया जा सकता है। टेसलेशन, स्पेस-फिलिंग, हनीकॉम्ब ज्यामिति और अतिशयोक्तिपूर्ण टाइलिंग इस अर्थ में पॉलीटोप्स हैं, और कभी-कभी इन्हें एपिरोटोप्स कहा जाता है क्योंकि उनमें असीम रूप से कई कोशिकाएं होती हैं।

इनमें नियमित तिरछा बहुकोणीय आकृति और नियमित एपिरोगोन, स्क्वायर टाइलिंग, क्यूबिक मधुकोश, और इतने पर प्रतिनिधित्व करने वाली टाइलिंग की अनंत श्रृंखला सहित नियमित रूप से हैं।

सार पॉलीटोप्स

अमूर्त पॉलीटॉप्स का सिद्धांत उनके विशुद्ध रूप से संयोजी गुणों पर विचार करते हुए, उन्हें युक्त स्थान से पॉलीटोप्स को अलग करने का प्रयास करता है। यह उन ऑब्जेक्ट्स को सम्मिलित करने के लिए शब्द की परिभाषा को विस्तृत करने की अनुमति देता है जिनके लिए एक सहज अंतर्निहित स्थान को परिभाषित करना मुश्किल है, जैसे कि 11-कोशिका

एक अमूर्त पॉलीटॉप तत्वों या सदस्यों का आंशिक रूप से आदेशित सम्मुचय है, जो कुछ नियमों का पालन करता है। यह एक विशुद्ध रूप से बीजगणितीय संरचना है, और सिद्धांत को कुछ विषय से बचने के लिए विकसित किया गया था, जिससे एक सुसंगत गणितीय ढांचे के भीतर विभिन्न ज्यामितीय वर्गों का संग्रह मुश्किल हो जाता है। और संबंधित अमूर्त पॉलीटोप के कुछ वास्तविक स्थानो को एक ज्यामितीय पॉलीटोप के प्रत्यक्षीकरण के रूप में जाना जाता है।[9]

जटिल पॉलीटोप्स

जटिल हिल्बर्ट रिक्त स्थान में पॉलीटोप्स में समान संरचनाएं उपलब्ध हैं जहाँ n वास्तविक आयामों के साथ n काल्पनिक संख्याए हैं। नियमित रूप से जटिल पॉलीटॉप्स को अधिक उचित रूप से विन्यास (पॉलीटोप) के रूप में जाना जाता है।[10]

द्वैत

प्रत्येक n-पॉलीटॉप में एक दोहरी संरचना होती है, जो पहलुओं के लिए इसके शीर्षों को परस्पर बदलकर प्राप्त की जाती है, लकीरों के लिए किनारों, और इसी तरह अधिकांशता इसके (j - 1) -आयामी तत्वों को (n - j) -आयामी तत्वों (j = 1 से n − 1) के लिए परस्पर बदलते तत्वों के बीच संपर्क या घटना को बनाए रखता है।

एक अमूर्त पॉलीटोप के लिए, यह केवल सम्मुचय के क्रम को उलट देता है। यह उत्क्रमण नियमित पॉलीटोप्स के लिए श्लाफली प्रतीकों में देखा जाता है, जहां दोहरी पॉलीटोप के लिए प्रतीक मूल के विपरीत होता है। उदाहरण के लिए, {4, 3, 3}, {3, 3, 4} से दोहरा है।

एक ज्यामितीय पॉलीटोप के मामले में, दोहरीकरण के लिए कुछ ज्यामितीय नियम आवश्यक हैं, उदाहरण के लिए दोहरे बहुकोणीय आकृति के लिए वर्णित नियम देखें। परिस्थिति के आधार पर, दोहरी आकृति और ज्यामितीय पॉलीटॉप हो सकती है या नहीं भी हो सकती है।[11] यदि दोहरे को उलट दिया जाता है, तो मूल पॉलीटोप पुनः प्राप्त हो जाता है। इस प्रकार, पॉलीटोप्स दोहरे जोड़े में उपलब्ध हैं।

स्व-दोहरी पॉलीटोप्स

File:Schlegel wireframe 5-cell.png
5-कोशिका (4-सिम्प्लेक्स) 5 कोने और 5 टेट्राहेड्रल कोशिकाओं के साथ स्व-दोहरी है।

यदि एक पॉलीटॉप में किनारों की संख्या समान है tatha किनारों par लकीरें हैं, iske sath आगे समान संयोजकताएं bhi sammlit ho, तो yein दोहरी आकृति wale मूल के समान hongi और पॉलीटॉप स्व-दोहरी hogi।

कुछ सामान्य स्व-दोहरी पॉलीटोप्स में सम्मिलित हैं।

इतिहास

बहुभुज और बहुफलक प्राचीन काल से जाने जाते हैं।

अगस्त 1827 में फर्डिनैंड मोबियस को पता चला कि दर्पण छवि के दो ठोस तत्वों को एक को चौथे गणितीय आयाम में घुमा कर परतदार किया जाता है। 1850 के दशक तक, मुट्ठी भर अन्य गणितज्ञों जैसे आर्थर केली और हरमन ग्रासमैन ने भी उच्च आयामों पर विचार किया था।

लुडविग श्लाफली इन उच्च स्थानों में बहुभुज और बहुकोणीय आकृति के अनुरूपों पर विचार करने वाले पहले व्यक्ति थे। उन्होंने 1852 में छह उत्तल नियमित 4-पॉलीटोप्स का वर्णन किया लेकिन उनकी मृत्यु के छह साल बाद 1901 तक उनका काम प्रकाशित नहीं हुआ। 1854 तक, बर्नहार्ड रीमैन की आवास थीसिस ने उच्च आयामों की ज्यामिति को दृढ़ता से स्थापित किया था, और इस प्रकार एन-आयामी पॉलीटोप्स की अवधारणा को स्वीकार्य बना दिया गया था। श्लाफली के पॉलीटॉप्स को उनके जीवनकाल में भी, बाद के दशकों में कई बार फिर से खोजा गया।

1882 में जर्मन में लिखते हुए रीनहोल्ड होप ने बहुभुज और बहुकोणीय आकृति की इस अधिक सामान्य अवधारणा को संदर्भित करने के लिए डी पॉलीटॉप (ज्यामिति) शब्द बनाया। नियत समय में तर्कशास्त्री जॉर्ज बूले की बेटी एलिसिया बूल स्टॉट ने अंग्रेजी भाषा में पॉलीटॉप पेश किया।[2]: vi 

1895 में, थोरल्ड कोणिका की न केवल शीलफली की नियमित पोलिटोप की खोज की बल्कि अर्धनियमित पॉलीटोप पोलिटोप और स्पेस भरने की चौकोर के उच्च आयामों में खोज की। पॉलीटोप्स का अध्ययन गैर यूक्लिडियन स्पेस जैसे हाइपरबोलिक स्पेस में भी शुरू हुआ।

सन् 1948 में एच. एस. एम. कोक्सेटर की पुस्तक नियमित रूप से पॉलिटोपस के साथ 1948 में एक महत्वपूर्ण मील का पत्थर साबित हुई।

इस बीच, फ्रांसीसी गणितज्ञ हेनरी पोंकारे ने एक पॉलीटोप के टोपोलॉजी विचार को कई गुना (टोपोलॉजी) के टुकड़े-टुकड़े अपघटन जैसे सीडब्ल्यू-कॉम्प्लेक्स के रूप में विकसित किया था। ब्रैंको ग्रुनबाम ने 1967 में उत्तल पॉलीटोप्स पर अपना प्रभावशाली काम प्रकाशित किया।

1952 में जेफ्री कॉलिन शेफर्ड ने इस विचार को जटिल रूप में जटिल पॉलीटोप्स के रूप में सामान्यीकृत किया, जहां प्रत्येक वास्तविक आयाम के साथ एक काल्पनिक जुड़ा होता है। कॉक्सम्मुचयर ने सिद्धांत को और विकसित किया।

जटिल पॉलीटोप्स, गैर-उत्तलता, द्वैत और अन्य घटनाओं द्वारा उठाए गए वैचारिक विषय ने ग्रुनबाम और अन्य को शिखर, किनारों, फेसेस आदि से संबंधित अमूर्त संयोजन गुणों के अधिक सामान्य अध्ययन के लिए प्रेरित किया। एक संबंधित विचार घटना परिसरों का था, जो एक दूसरे के साथ विभिन्न तत्वों की घटनाओं या संयोजन का अध्ययन करता था। इन विकासों ने अंततः ऐसे तत्वों के आंशिक रूप से आदेशित सम्मुचय, या पॉसम्मुचय के रूप में अमूर्त पॉलीटोप्स के सिद्धांत का नेतृत्व किया। पीटर मैकमुलेन और एगॉन शुल्ते ने 2002 में अपनी पुस्तक एब्सट्रैक्ट रेगुलर पॉलीटोप्स प्रकाशित की।

चार या अधिक आयामों में एक समान पॉलीटॉप, उत्तल और गैर-उत्तल की गणना करना एक उत्कृष्ट समस्या बनी हुई है। जॉन कॉनवे और माइकल गाइ द्वारा 1965 में कंप्यूटर का उपयोग करते हुए उत्तल वर्दी 4-पॉलीटॉप्स की पूरी तरह से गणना की गई थी;[12][13] उच्च आयामों में यह समस्या अभी भी 1997 तक खुली थी।[14] 2008 के रूप में गैर-उत्तल समान पॉलीटोप्स के लिए पूर्ण गणना चार और उच्चतर आयामों में ज्ञात नहीं है।[15] आधुनिक समय में, पॉलीटोप्स और संबंधित अवधारणाओं ने कंप्यूटर ग्राफिक्स , अनुकूलन (गणित) , खोज इंजन (कंप्यूटिंग) , ब्रह्माण्ड विज्ञान , क्वांटम यांत्रिकी और कई अन्य क्षेत्रों जैसे विविध क्षेत्रों में कई महत्वपूर्ण अनुप्रयोग पाए हैं। 2013 में सैद्धांतिक भौतिकी की कुछ गणनाओं में एम्प्लिट्यूहेड्रोन को एक सरल निर्माण के रूप में खोजा गया था।

अनुप्रयोग

अनुकूलन (गणित) के क्षेत्र में, रैखिक फलन रैखिक कार्यों के अधिकतम और न्यूनतम का अध्ययन करती है, ये मैक्सिमा और मिनिमा एक एन-विमीय पॉलीटॉप की सीमा टोपोलॉजी पर होते हैं। रैखिक फलन में, सामान्यीकृत बैरीसेंट्रिक निर्देशांक और सुस्त चर के उपयोग में पॉलीटॉप होते हैं।

ट्विस्टर सिद्धांत में, सैद्धांतिक भौतिकी की एक शाखा, एम्प्लिटुहेड्रोन नामक एक पॉलीटॉप का उपयोग उप-परमाणु कणों के प्रकीर्णन आयामों की गणना करने के लिए किया जाता है जब वे टकराते हैं। निर्माण विशुद्ध रूप से सैद्धांतिक है जिसमें कोई ज्ञात भौतिक अभिव्यक्ति नहीं है, लेकिन कुछ गणनाओं को सरल बनाने के लिए कहा जाता है।[16]


यह भी देखें


संदर्भ

उद्धरण

  1. Coxeter 1973, pp. 141–144, §7-x. Historical remarks.
  2. 2.0 2.1 2.2 2.3 Coxeter (1973)
  3. Richeson, D. (2008). यूलर का रत्न: पॉलीहेड्रॉन फॉर्मूला और टोपोलॉजी का जन्म. Princeton University Press.
  4. ग्रुनबाम (2003) </ रेफ> हालांकि यह परिभाषा आंतरिक संरचनाओं के साथ स्टार पॉलीटॉप ्स की अनुमति नहीं देती है, और इसलिए यह गणित के कुछ क्षेत्रों तक ही सीमित है। स्टार पॉलीहेड्रॉन और अन्य असामान्य निर्माणों की खोज ने इसके इंटीरियर की अनदेखी करते हुए एक पॉलीहेड्रॉन को एक बाउंडिंग सतह के रूप में देखा। रेफरी> क्रॉमवेल, पी।; पॉलीहेड्रा, सीयूपी (पीपीबीके 1999) पीपी 205 एफएफ।
  5. Regular polytopes, p. 127 The part of the polytope that lies in one of the hyperplanes is called a cell
  6. Johnson, Norman W.; Geometries and Transformations, Cambridge University Press, 2018, p.224.
  7. Beck, Matthias; Robins, Sinai (2007), Computing the Continuous Discretely: Integer-point enumeration in polyhedra, Undergraduate Texts in Mathematics, New York: Springer-Verlag, ISBN 978-0-387-29139-0, MR 2271992
  8. 8.0 8.1 M. A. Perles and G. C. Shephard. 1967. "Angle sums of convex polytopes". Math. Scandinavica, Vol 21, No 2. March 1967. pp. 199–218.
  9. McMullen, Peter; Schulte, Egon (December 2002), Abstract Regular Polytopes (1st ed.), Cambridge University Press, ISBN 0-521-81496-0
  10. Coxeter, H.S.M.; Regular Complex Polytopes, 1974
  11. Wenninger, M.; Dual Models, CUP (1983).
  12. John Horton Conway: Mathematical Magus - Richard K. Guy
  13. Curtis, Robert Turner (June 2022). "जॉन हॉर्टन कॉनवे। 26 दिसंबर 1937-11 अप्रैल 2020". Biographical Memoirs of Fellows of the Royal Society. 72: 117–138. doi:10.1098/rsbm.2021.0034.
  14. Symmetry of Polytopes and Polyhedra, Egon Schulte. p. 12: "However, there are many more uniform polytopes but a complete list is known only for d = 4 [Joh]."
  15. John Horton Conway, Heidi Burgiel, and Chaim Goodman-Strauss: The Symmetries of Things, p. 408. "There are also starry analogs of the Archimedean polyhedra...So far as we know, nobody has yet enumerated the analogs in four or higher dimensions."
  16. Arkani-Hamed, Nima; Trnka, Jaroslav (2013). "एम्प्लिट्यूहेड्रोन". Journal of High Energy Physics. 2014. arXiv:1312.2007. Bibcode:2014JHEP...10..030A. doi:10.1007/JHEP10(2014)030.


ग्रन्थसूची


बाहरी संबंध

Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds