हॉसडॉर्फ आयाम: Difference between revisions
(Text) |
(Text) |
||
| Line 42: | Line 42: | ||
हॉसडॉर्फ आयाम <math>\dim_{\operatorname{H}}{(X)}</math> एक्स के द्वारा परिभाषित किया गया है। | हॉसडॉर्फ आयाम <math>\dim_{\operatorname{H}}{(X)}</math> एक्स के द्वारा परिभाषित किया गया है। | ||
यह d ∈ [0, ∞) के समुच्चय के सर्वोच्च के समान है, जैसे कि X का d-आयामी हौसडॉर्फ माप अनंत है (सिवाय इसके कि जब संख्याओं का यह बाद वाला सेट खाली है तो हौसडॉर्फ आयाम शून्य है)। | |||
=== हॉसडॉर्फ सामग्री === | === हॉसडॉर्फ सामग्री === | ||
S की d-आयामी 'असीमित हॉसडॉर्फ सामग्री' द्वारा परिभाषित की गई है | |||
:<math>C_H^d(S):= H_\infty^d(S) = \inf\left \{ \sum_{k=1}^\infty (\operatorname{diam} U_k)^d: \bigcup_{k=1}^\infty U_k\supseteq S \right \}</math> | :<math>C_H^d(S):= H_\infty^d(S) = \inf\left \{ \sum_{k=1}^\infty (\operatorname{diam} U_k)^d: \bigcup_{k=1}^\infty U_k\supseteq S \right \}</math> | ||
दूसरे शब्दों में, <math>C_H^d(S)</math> हौसडॉर्फ माप का निर्माण किया है जहां कवरिंग सेटों को | दूसरे शब्दों में, <math>C_H^d(S)</math> हौसडॉर्फ माप का निर्माण किया है जहां कवरिंग सेटों को स्वेच्छा से बड़े आकार की अनुमति है (यहां, हम मानक सम्मेलन का उपयोग करते हैं कि i[[:en:Infimum_and_supremum|nf Ø = ∞]])।<ref>{{Cite arXiv| last1=Farkas| first1=Abel| last2=Fraser| first2=Jonathan| title=हॉसडॉर्फ माप और हॉसडॉर्फ सामग्री की समानता पर| date=30 July 2015| class=math.MG| eprint=1411.0867}}</ref> हौसडॉर्फ माप और हौसडॉर्फ सामग्री दोनों का उपयोग एक सेट के आयाम को निर्धारित करने के लिए किया जा सकता है, लेकिन यदि सेट का माप गैर-शून्य है, तो उनके वास्तविक मान असहमत हो सकते हैं। | ||
== उदाहरण == | ====== उदाहरण ====== | ||
[[Image:Sierpinski deep.svg|thumb|upright=1.2|एक और भग्न उदाहरण का आयाम। सिएरपिंस्की त्रिकोण, लॉग(3)/लॉग(2)≈1.58 के हॉसडॉर्फ आयाम के साथ एक वस्तु।<ref name=ClaytonSCTPLS96/>]]* [[ गणनीय सेट ]] में हॉसडॉर्फ आयाम 0 है।<ref name="schleicher">{{cite journal |last1=Schleicher |first1=Dierk |title=हॉसडॉर्फ आयाम, इसके गुण, और इसके आश्चर्य|journal=The American Mathematical Monthly |date=June 2007 |volume=114 |issue=6 |pages=509–528 |doi=10.1080/00029890.2007.11920440 |language=en |issn=0002-9890|arxiv=math/0505099 |s2cid=9811750 }}</ref> | [[Image:Sierpinski deep.svg|thumb|upright=1.2|एक और भग्न उदाहरण का आयाम। सिएरपिंस्की त्रिकोण, लॉग(3)/लॉग(2)≈1.58 के हॉसडॉर्फ आयाम के साथ एक वस्तु।<ref name=ClaytonSCTPLS96/>]]* [[:en:Countable_set|गणनीय सेट]] में हॉसडॉर्फ आयाम 0 है।<ref name="schleicher">{{cite journal |last1=Schleicher |first1=Dierk |title=हॉसडॉर्फ आयाम, इसके गुण, और इसके आश्चर्य|journal=The American Mathematical Monthly |date=June 2007 |volume=114 |issue=6 |pages=509–528 |doi=10.1080/00029890.2007.11920440 |language=en |issn=0002-9890|arxiv=math/0505099 |s2cid=9811750 }}</ref> | ||
* यूक्लिडियन अंतरिक्ष<sup>n</sup> में हॉसडॉर्फ आयाम n है, और वृत्त 'S' है<sup>1</sup> में हॉसडॉर्फ आयाम 1 है।<ref name="schleicher" />* | * [[:en:Euclidean_space|यूक्लिडियन अंतरिक्ष<sup>n</sup>]] में हॉसडॉर्फ आयाम n है, और वृत्त 'S' है<sup>1</sup> में हॉसडॉर्फ आयाम 1 है।<ref name="schleicher" />* भग्न अक्सर ऐसे स्थान होते हैं जिनका हॉसडॉर्फ आयाम सख्ती से [[:en:Lebesgue_covering_dimension|सांस्थितिक आयाम]] से अधिक होता है।<ref name="mandelbrot" />उदाहरण के लिए, [[:en:Cantor_set|कैंटर सेट]] , एक [[:en:Zero-dimensional_space|शून्य-आयामी स्थान]] |शून्य-आयामी ट स्पेस, स्वयं की दो प्रतियों का एक संघ है, प्रत्येक प्रतिलिपि एक कारक 1/3 से सिकुड़ जाती है; इसलिए, यह दिखाया जा सकता है कि इसका हॉसडॉर्फ आयाम ln(2)/ln(3) ≈ 0.63 है।<ref>{{cite book | last=Falconer | first = Kenneth |title=भग्न ज्यामिति: गणितीय नींव और अनुप्रयोग| publisher=[[John Wiley and Sons]] | edition=2nd | year=2003}}</ref> [[:en:Sierpiński_triangle|सिएरपिंस्की त्रिभुज]] स्वयं की तीन प्रतियों का एक संघ है, प्रत्येक प्रतिलिपि 1/2 के कारक से सिकुड़ती है; इससे ln(3)/ln(2) ≈ 1.58 का हॉसडॉर्फ आयाम प्राप्त होता है।<ref name=CampbellAnnenberg15/>ये हॉसडॉर्फ आयाम एल्गोरिदम के विश्लेषण में [[:en:Recurrence_relation|पुनरावृत्ति संबंध]] को हल करने के लिए [[:en:Master_theorem_(analysis_of_algorithms)|कुशल प्रमेय]] ( [[:en:Analysis_of_algorithms|एल्गोरिदम का विश्लेषण]] ) के महत्वपूर्ण घातांक से संबंधित हैं। | ||
* [[ पीनो कर्व्स ]] की तरह | * [[:en:Peano_curve|पीनो कर्व्स]] की तरह [[:en:Space-filling_curve|समष्टि-भरण घटता]] में हॉसडॉर्फ आयाम समान होता है, जैसा कि वे स्पेस को भरते हैं। | ||
* आयाम 2 और उससे अधिक में [[ ब्राउनियन गति ]] के प्रक्षेपवक्र को हॉसडॉर्फ आयाम 2 माना जाता है।<ref>{{cite book | last=Morters | first=Peres | title= ब्राउनियन गति| publisher=[[Cambridge University Press]] | year=2010 }}</ref> | * आयाम 2 और उससे अधिक में [[:en:Brownian_motion|ब्राउनियन गति]] के प्रक्षेपवक्र को हॉसडॉर्फ आयाम 2 माना जाता है।<ref>{{cite book | last=Morters | first=Peres | title= ब्राउनियन गति| publisher=[[Cambridge University Press]] | year=2010 }}</ref> | ||
[[image:Great Britain Hausdorff.svg|thumb|upright=1.2|ब्रिटेन का तट कितना लंबा है, के हॉसडॉर्फ आयाम का अनुमान लगाना? सांख्यिकीय स्व-समानता और भिन्नात्मक आयाम | [[image:Great Britain Hausdorff.svg|thumb|upright=1.2|ब्रिटेन का तट कितना लंबा है, के हॉसडॉर्फ आयाम का अनुमान लगाना? सांख्यिकीय स्व-समानता और भिन्नात्मक आयाम | ||
* [[ लुईस फ्राई रिचर्डसन ]] ने विभिन्न समुद्र तटों के लिए अनुमानित हॉसडॉर्फ आयाम को मापने के लिए विस्तृत प्रयोग किए हैं। उनके परिणाम [[ दक्षिण अफ्रीका ]] के समुद्र तट के लिए 1.02 से लेकर [[ ग्रेट ब्रिटेन ]] के पश्चिमी तट के लिए 1.25 तक भिन्न हैं।<ref name="mandelbrot" /> | * [[:en:Lewis_Fry_Richardson|लुईस फ्राई रिचर्डसन]] ने विभिन्न समुद्र तटों के लिए अनुमानित हॉसडॉर्फ आयाम को मापने के लिए विस्तृत प्रयोग किए हैं। उनके परिणाम [[:en:South_Africa|दक्षिण अफ्रीका]] के समुद्र तट के लिए 1.02 से लेकर [[:en:Great_Britain|ग्रेट ब्रिटेन]] के पश्चिमी तट के लिए 1.25 तक भिन्न हैं।<ref name="mandelbrot" /> | ||
== हॉसडॉर्फ आयाम के गुण == | === हॉसडॉर्फ आयाम के गुण === | ||
{{refimprove section|date=March 2015}} | {{refimprove section|date=March 2015}} | ||
=== हॉसडॉर्फ आयाम और आगमनात्मक आयाम === | === हॉसडॉर्फ आयाम और आगमनात्मक आयाम === | ||
एक्स को एक | एक्स को एक स्वेच्छाचारी वियोज्य स्पेस मात्रिक समष्टि होने दें। एक्स के लिए आगमनात्मक आयाम की एक [[:en:Topology|सांस्थितिक]] धारणा है जिसे पुनरावर्ती रूप से परिभाषित किया गया है। यह हमेशा एक पूर्णांक (या +∞) होता है और इसे dim . के रूप में दर्शाया जाता है<sub>ind</sub>(एक्स)। | ||
'प्रमेय'। मान लीजिए X खाली नहीं है। फिर | 'प्रमेय'। मान लीजिए X खाली नहीं है। फिर | ||
| Line 68: | Line 68: | ||
इसके अतिरिक्त, | इसके अतिरिक्त, | ||
:<math> \inf_Y \dim_{\operatorname{Haus}}(Y) =\dim_{\operatorname{ind}}(X), </math> | :<math> \inf_Y \dim_{\operatorname{Haus}}(Y) =\dim_{\operatorname{ind}}(X), </math> | ||
जहां Y मीट्रिक रिक्त स्थान पर [[ | जहां Y मीट्रिक रिक्त स्थान पर [[:en:Homeomorphism|समरूपता]] से X तक होता है। दूसरे शब्दों में, X और Y में बिंदुओं का एक ही अंतर्निहित सेट होता है और मीट्रिक d<sub>''Y''</sub> Y का टोपोलॉजिकल रूप से d<sub>''X''</sub> के बराबर है । | ||
ये परिणाम मूल रूप से [[ एडवर्ड स्ज़पिलराजन ]] (1907-1976) द्वारा स्थापित किए गए थे, उदाहरण के लिए, ह्यूरविक्ज़ और वॉलमैन, अध्याय VII देखें।{{full citation needed|date=March 2015}} | ये परिणाम मूल रूप से [[:en:Edward_Marczewski|एडवर्ड स्ज़पिलराजन]] (1907-1976) द्वारा स्थापित किए गए थे, उदाहरण के लिए, ह्यूरविक्ज़ और वॉलमैन, अध्याय VII देखें।{{full citation needed|date=March 2015}} | ||
=== हॉसडॉर्फ आयाम और [[ मिंकोव्स्की आयाम ]] === | === हॉसडॉर्फ आयाम और [[ मिंकोव्स्की आयाम ]] === | ||
मिंकोव्स्की आयाम हॉसडॉर्फ आयाम के समान है, और कम से कम जितना बड़ा है, और वे कई स्थितियों में समान हैं। हालांकि, [0, 1] में [[ परिमेय संख्या ]] बिंदुओं के सेट में हॉसडॉर्फ आयाम शून्य और मिंकोव्स्की आयाम एक है। ऐसे कॉम्पैक्ट सेट भी हैं जिनके लिए मिंकोव्स्की आयाम हॉसडॉर्फ आयाम से सख्ती से बड़ा है। | मिंकोव्स्की आयाम हॉसडॉर्फ आयाम के समान है, और कम से कम उसके जितना बड़ा है, और वे कई स्थितियों में समान हैं। हालांकि, [0, 1] में [[:en:Rational_number|परिमेय संख्या]] बिंदुओं के सेट में हॉसडॉर्फ आयाम शून्य और मिंकोव्स्की आयाम एक है। ऐसे कॉम्पैक्ट सेट भी हैं जिनके लिए मिंकोव्स्की आयाम हॉसडॉर्फ आयाम से सख्ती से बड़ा है। | ||
=== हॉसडॉर्फ आयाम और फ्रॉस्टमैन उपाय === | === हॉसडॉर्फ आयाम और फ्रॉस्टमैन उपाय === | ||
यदि एक मीट्रिक स्पेस X के बोरेल माप उपसमुच्चय पर परिभाषित एक [[ माप (गणित) ]] μ है, जैसे कि μ(X) > 0 और μ(B(x, r)) r<sup>s</sup> कुछ स्थिर s > 0 के लिए और X में प्रत्येक गेंद B(x, r) के लिए होल्ड करता है, फिर मंद<sub>Haus</sub>(एक्स) एस। फ्रॉस्टमैन | यदि एक मीट्रिक स्पेस X के बोरेल माप उपसमुच्चय पर परिभाषित एक [[ माप (गणित) ]] μ है, जैसे कि μ(X) > 0 और μ(B(x, r)) r<sup>s</sup> कुछ स्थिर s > 0 के लिए और X में प्रत्येक गेंद B(x, r) के लिए होल्ड करता है, फिर मंद<sub>Haus</sub>(एक्स) एस। [[:en:Frostman_lemma|फ्रॉस्टमैन लेम्मा]] द्वारा आंशिक बातचीत प्रदान की जाती है।{{citation needed|date=March 2015}}<ref>This Wikipedia article also discusses further useful characterizations of the Hausdorff dimension.{{clarify|date=March 2015}}</ref> | ||
=== यूनियनों और उत्पादों के तहत व्यवहार === | === यूनियनों और उत्पादों के तहत व्यवहार === | ||
यदि <math>X=\bigcup_{i\in I}X_i</math> एक | यदि <math>X=\bigcup_{i\in I}X_i</math> एक संकुचित या गणनीय संघ है, तो | ||
:<math> \dim_{\operatorname{Haus}}(X) =\sup_{i\in I} \dim_{\operatorname{Haus}}(X_i).</math> | :<math> \dim_{\operatorname{Haus}}(X) =\sup_{i\in I} \dim_{\operatorname{Haus}}(X_i).</math> | ||
इसे सीधे परिभाषा से सत्यापित किया जा सकता है। | इसे सीधे परिभाषा से सत्यापित किया जा सकता है। | ||
यदि | यदि X और Y गैर-रिक्त मीट्रिक रिक्त स्थान हैं, तो उनके उत्पाद का हॉसडॉर्फ आयाम संतुष्ट करता है<ref>{{cite journal |author=Marstrand, J. M. |title=कार्टेशियन उत्पाद सेट का आयाम|journal=Proc. Cambridge Philos. Soc. |volume=50 |issue=3 |pages=198–202 |year=1954 |doi=10.1017/S0305004100029236 |bibcode = 1954PCPS...50..198M |s2cid=122475292 }}</ref> | ||
:<math> \dim_{\operatorname{Haus}}(X\times Y)\ge \dim_{\operatorname{Haus}}(X)+ \dim_{\operatorname{Haus}}(Y).</math> | :<math> \dim_{\operatorname{Haus}}(X\times Y)\ge \dim_{\operatorname{Haus}}(X)+ \dim_{\operatorname{Haus}}(Y).</math> | ||
यह असमानता सख्त हो सकती है। आयाम 0 के दो सेट खोजना संभव है जिनके उत्पाद का आयाम 1 है।<ref>{{cite book | last = Falconer | first = Kenneth J. | title = भग्न ज्यामिति। गणितीय नींव और अनुप्रयोग| publisher = John Wiley & Sons, Inc., Hoboken, New Jersey | year = 2003 }}</ref> विपरीत दिशा में, यह ज्ञात है कि | यह असमानता सख्त हो सकती है। आयाम 0 के दो सेट खोजना संभव है जिनके उत्पाद का आयाम 1 है।<ref>{{cite book | last = Falconer | first = Kenneth J. | title = भग्न ज्यामिति। गणितीय नींव और अनुप्रयोग| publisher = John Wiley & Sons, Inc., Hoboken, New Jersey | year = 2003 }}</ref> विपरीत दिशा में, यह भी ज्ञात है कि X और Y 'R'<sup>n</sup> के बोरेल उपवर्ग हैं। X × Y का हॉसडॉर्फ आयाम ऊपर से X के हॉसडॉर्फ आयाम और Y के संकुल आयाम से घिरा है। इन तथ्यों की चर्चा मैटिला (1995) में की गई है। | ||
==स्व-समान सेट == | ====स्व-समान सेट ==== | ||
{{refimprove section|date=March 2015}} | {{refimprove section|date=March 2015}} | ||
स्व-समानता की स्थिति द्वारा परिभाषित कई सेटों में आयाम होते हैं जिन्हें स्पष्ट रूप से निर्धारित किया जा सकता है। | स्व-समानता की स्थिति द्वारा परिभाषित कई सेटों में आयाम होते हैं जिन्हें स्पष्ट रूप से निर्धारित किया जा सकता है। स्थूलतः, एक सेट E स्व-समान है यदि यह एक सेट-मूल्यवान परिवर्तन ψ का निश्चित बिंदु है, जो कि (E) = E है, यद्यपि सटीक परिभाषा नीचे दी गई है। | ||
<blockquote>'प्रमेय'। मान लीजिए | <blockquote>'प्रमेय'। मान लीजिए | ||
:<math> \psi_i: \mathbf{R}^n \rightarrow \mathbf{R}^n, \quad i=1, \ldots , m </math> | :<math> \psi_i: \mathbf{R}^n \rightarrow \mathbf{R}^n, \quad i=1, \ldots , m </math> | ||
R | R<sup>n</sup> पर संकुचन मानचित्रण मानचित्रण हैं संकुचन स्थिरांक rj <1के साथ. फिर एक अद्वितीय गैर-रिक्त कॉम्पैक्ट सेट ए ऐसा है कि | ||
:<math> A = \bigcup_{i=1}^m \psi_i (A). </math> | :<math> A = \bigcup_{i=1}^m \psi_i (A). </math> | ||
</blockquote> | </blockquote> | ||
प्रमेय [[ स्टीफन बानाच ]] के [[ संविदात्मक मानचित्रण प्रमेय ]] से अनुसरण करता है जो आर के गैर-रिक्त कॉम्पैक्ट उपसमुच्चय के पूर्ण मीट्रिक स्थान पर लागू होता है<sup>n</sup> [[ हॉसडॉर्फ दूरी ]] के साथ।<ref>{{cite book |author=Falconer, K. J. |title=फ्रैक्टल सेट की ज्यामिति|publisher=Cambridge University Press |location=Cambridge, UK |year=1985 |isbn=0-521-25694-1 |chapter=Theorem 8.3}}</ref> | प्रमेय [[:en:Stefan_Banach|स्टीफन बानाच]] के [[:en:Banach_fixed-point_theorem|संविदात्मक मानचित्रण प्रमेय]] से अनुसरण करता है जो आर के गैर-रिक्त कॉम्पैक्ट उपसमुच्चय के पूर्ण मीट्रिक स्थान पर लागू होता है<sup>n</sup> [[ हॉसडॉर्फ दूरी ]] के साथ।<ref>{{cite book |author=Falconer, K. J. |title=फ्रैक्टल सेट की ज्यामिति|publisher=Cambridge University Press |location=Cambridge, UK |year=1985 |isbn=0-521-25694-1 |chapter=Theorem 8.3}}</ref> | ||
=== खुले सेट की स्थिति === | === खुले सेट की स्थिति === | ||
{{main|Open set condition}} | {{main|Open set condition}} | ||
स्व-समान सेट | स्व-समान सेट A (कुछ मामलों में) के आयाम को निर्धारित करने के लिए, हमें संकुचन के अनुक्रम पर एक तकनीकी स्थिति की आवश्यकता होती है जिसे ओपन सेट कंडीशन (OSC) कहा जाता है<sub>''i''</sub>. | ||
एक अपेक्षाकृत कॉम्पैक्ट ओपन सेट वी है जैसे कि | एक अपेक्षाकृत कॉम्पैक्ट ओपन सेट वी है जैसे कि | ||
Revision as of 03:58, 16 November 2022
गणित में, हॉसडॉर्फ आयाम 'खुरदरापन', या अधिक विशेष रूप से, फ्रैक्टल आयाम का एक माप है, जिसे पहली बार 1918 में गणितज्ञ फ़ेलिक्स हॉसडॉर्फ़ द्वारा पेश किया गया था।[2] उदाहरण के लिए, एक बिंदु (ज्यामिति) का हॉसडॉर्फ आयाम शून्य है, एक रेखा खंड का 1 है, एक वर्ग का 2 है, और एक घन का 3 है। यानी, उन बिंदुओं के सेट के लिए जो एक समतल आकृति या एक आकार को परिभाषित करते हैं जिसमें कोनों की संख्या छोटी होती है - पारंपरिक ज्यामिति और विज्ञान के आकार- हॉसडॉर्फ आयाम आयाम की सामान्य भावना से सहमत एक पूर्णांक है, जिसे आगमनात्मक आयाम भी कहा जाता है। हालांकि, सूत्र भी विकसित किए गए हैं जो अन्य कम सरल वस्तुओं के आयाम की गणना की अनुमति देते हैं, जहां पूरी तरह से प्रवर्धन और आत्म-समानता के उनके गुणों के आधार पर यह निष्कर्ष निकाला जाता है कि विशेष वस्तुएं- भग्न सहित - गैर-पूर्णांक हॉसडॉर्फ आयाम हैं। अब्राम समोइलोविच बेसिकोविच द्वारा महत्वपूर्ण तकनीकी प्रगति के कारण अत्यधिक अनियमित या मोटे सेट के लिए आयामों की गणना की अनुमति देना, इस आयाम को आमतौर पर हॉसडॉर्फ-बेसिकोविच आयाम के रूप में भी जाना जाता है।
अधिक विशेष रूप से, हॉसडॉर्फ आयाम एक मात्रिक स्थान से एक आयामी संख्या है, अर्थात् एक सेट जहां सभी सदस्यों के बीच की दूरी परिभाषित की जाती है। आयाम विस्तारित वास्तविक संख्या रेखा से खींचा गया है, , आयाम की अधिक सहज धारणा के विपरीत, जो सामान्य मात्रिक रिक्त स्थान से संबद्ध नहीं है, और केवल गैर-ऋणात्मक मूल्यों में मान लेता है।
गणितीय शब्दों में, हॉसडॉर्फ आयाम एक वास्तविक सदिश स्थान के आयाम की धारणा को सामान्य करता है। अर्थात्, n-आयामी आंतरिक उत्पाद स्थान का हॉसडॉर्फ आयाम n के बराबर होता है। यह पहले के कथन को रेखांकित करता है कि एक बिंदु का हॉसडॉर्फ आयाम शून्य है, एक रेखा का एक है, आदि, और उस फ्रैक्टल में गैर-पूर्णांक हॉसडॉर्फ आयाम हो सकते हैं। उदाहरण के लिए, दाईं ओर दिखाया गया कॉख हिमकण एक समबाहु त्रिभुज से निर्मित है; प्रत्येक पुनरावृत्ति में, इसके घटक रेखा खंडों को एकांक लंबाई के 3 खंडों में विभाजित किया जाता है, नव निर्मित मध्य खंड का उपयोग एक नए समबाहु त्रिभुज के आधार के रूप में किया जाता है जो बाहर की ओर इंगित करता है, और 4 की इकाई लंबाई का पुनरावृति इस आधार खंड को फिर से एक अंतिम वस्तु छोड़ने के लिए हटा दिया जाता है।[3] अर्थात्, पहले पुनरावृत्ति के बाद, प्रत्येक मूल रेखा खंड को N=4 से बदल दिया गया है, जहां प्रत्येक स्व-समान प्रतिलिपि मूल के रूप में 1/S = 1/3 है।[1]दूसरे तरीके से वर्णन किया गया है, हमने यूक्लिडियन आयाम, D के साथ एक वस्तु ली है, और प्रत्येक दिशा में इसके रैखिक पैमाने को 1/3 कम कर दिया है, ताकि इसकी लंबाई बढ़कर N=SD हो जाए।[4]
इस समीकरण को D के लिए आसानी से हल किया जाता है, आंकड़ों में दिखाई देने वाले लघुगणक (या प्राकृतिक लघुगणक ) के अनुपात की उपज, और कॉख और अन्य आंशिक मामलों में-इन वस्तुओं के लिए गैर-पूर्णांक आयाम देना।
हॉसडॉर्फ आयाम सरल, लेकिन आमतौर पर समकक्ष, पेटी-गणना या मिंकोव्स्की-बौलिगैंड आयाम का उत्तराधिकारी है।
This section needs additional citations for verification. (March 2015) (Learn how and when to remove this template message) |
अन्तर्ज्ञान
एक ज्यामितीय वस्तु X के आयाम की सहजज्ञ अवधारणा स्वतंत्र मापदंडों की संख्या है जिसे किसी को अंदर एक अद्वितीय बिंदु चुनने की आवश्यकता होती है। तथापि, दो मापदंडों द्वारा विनिर्दिष्ट किसी भी बिंदु को इसके बजाय एक द्वारा विनिर्दिष्ट किया जा सकता है, क्योंकि वास्तविक समतल के गणनांक वास्तविक रेखा के गणनांक के बराबर है (इसे कैंटर के विकर्ण तर्क द्वारा देखा जा सकता है जिसमें दो नंबरों के अंकों को अंतर्गुफन करना शामिल है। जो की एक ही जानकारी को कूटबद्ध करता है)। एक स्थल-भरण वक्र के उदाहरण से पता चलता है कि कोई भी वास्तविक रेखा को वास्तविक तल पर प्रक्षेपित फलन के लिए प्रतिचित्र कर सकता है (एक वास्तविक संख्या को वास्तविक संख्याओं की एक जोड़ी में इस तरह से लेना कि सभी संख्याओं के जोड़ों को कवर किया जाए) और लगातार, इसलिए कि एक आयामी वस्तु एक उच्च-आयामी वस्तु को पूर्ण तरह से भर दे।
प्रत्येक स्थान-भरने वाला वक्र कुछ बिंदुओं पर कई बार प्रहार करता है और इसमें निरंतर प्रतीलोम नहीं होता है। दो आयामों को एक पर इस तरह से प्रतिचित्र करना असंभव है जो निरंतर और लगातार उल्टा हो। सांस्थितिक परिमाप जिसे लेबेस्ग्यू कवरिंग आयाम भी कहा जाता है, बताता है कि क्यों। यह आयाम सबसे बड़ा पूर्णांक n है जैसे कि छोटी खुली गेंदों द्वारा X के प्रत्येक आवरण में कम से कम एक बिंदु होता है जहाँ n + 1 गेंदें अधिव्यापन होती हैं। उदाहरण के लिए, जब कोई छोटे खुले अंतराल के साथ एक रेखा को समाविष्ट करता है, तो कुछ बिंदुओं को आयाम n = 1 देते हुए दो बार समाविष्ट किया जाना चाहिए।
लेकिन सांस्थितिक आयाम एक स्थान के स्थानीय आकार (एक बिंदु के पास आकार) का एक बहुत ही अशोधित माप है। एक वक्र जो लगभग स्थान-भरने वाला है, अभी भी सांस्थितिक आयाम एक हो सकता है, भले ही वह किसी क्षेत्र के अधिकांश क्षेत्र को भरता हो। एक आंशिक में एक पूर्णांक सांस्थितिक आयाम होता है, लेकिन समष्टि की मात्रा के संदर्भ में, यह एक उच्च-आयामी स्थान की तरह व्यवहार करता है।
हॉसडॉर्फ आयाम, अंकों के बीच की दूरी, मापीय स्थान को ध्यान में रखते हुए स्थान के समष्टि आकार को मापता है। त्रिज्या की गेंद (गणित) की संख्या N(r) पर विचार करें, जो X को पूरी तरह से कवर करने के लिए आवश्यक है। जब r बहुत छोटा होता है, N(r) 1/r के साथ बहुपदीय रूप से बढ़ता है। पर्याप्त रूप से अच्छी तरह से व्यवहार किए गए X लिए, हॉसडॉर्फ आयाम अद्वितीय संख्या d है जैसे कि N(r) 1/rd के रूप में बढ़ता है जैसे ही r शून्य के करीब पहुंचता है। यथावत्, यह पेटी-गणन आयाम को परिभाषित करता है, जो हॉसडॉर्फ आयाम के बराबर होता है, जब मूल्य d विकास दर के बीच एक महत्वपूर्ण सीमा होती है जो समष्टि समाविष्ट करने के लिए अपर्याप्त होती है, और विकास दर जो अत्यधिक होती है।
उन आकृतियों के लिए जो निर्बाध हैं, या कम संख्या में कोनों वाली आकृतियों के लिए, पारंपरिक ज्यामिति और विज्ञान के आकार, हॉसडॉर्फ आयाम सांस्थितिक आयाम से सहमत एक पूर्णांक है। लेकिन बेनोइट मंडेलब्रोट ने देखा कि आंशिक, गैर-पूर्णांक हॉसडॉर्फ आयामों के साथ श्रेणी, प्रकृति में हर जगह पाए जाते हैं। उन्होंने देखा कि आपके द्वारा अपने आस-पास दिखाई देने वाली अधिकांश खुरदरी आकृतियों का उचित आदर्शीकरण निर्बाध आदर्शीकृत आकृतियों के संदर्भ में नहीं है, बल्कि भग्न आदर्शित आकृतियों के संदर्भ में है:
बादल गोल नहीं हैं, पहाड़ शंकु नहीं हैं, समुद्र तट वृत्त नहीं हैं, और छाल निर्बाध नहीं है, और न ही बिजली एक सीधी रेखा में यात्रा करती है।[5]
प्रकृति में होने वाले भग्न के लिए, हॉसडॉर्फ और मिंकोव्स्की-बौलिगैंड आयाम | बॉक्स-गिनती आयाम मेल खाते हैं। पैकिंग आयाम अभी तक एक और समान धारणा है जो कई आकारों के लिए समान मूल्य देता है, लेकिन अच्छी तरह से प्रलेखित अपवाद हैं जहां ये सभी आयाम भिन्न होते हैं।[examples needed]
औपचारिक परिभाषा
हॉसडॉर्फ आयाम की औपचारिक परिभाषा पहले हॉसडॉर्फ माप को परिभाषित करके प्राप्त की जाती है, जो लेबेस्ग माप का एक भिन्न-आयाम समधर्मी है। सबसे पहले, एक बाहरी माप का निर्माण किया जाता है: मान लीजिए कि X एक मीट्रिक स्थल है। अगर S ⊂ X and d ∈ [0, ∞),
जहां सभी न्यूनतम कवरों पर सबसे अधिक लिया जाता है Ui S। हॉसडॉर्फ बाहरी माप को तब इस तरह परिभाषित किया जाता है , और गैर मानपीय सेटों के लिए मानचित्रण का प्रतिबंध इसे एक माप के रूप में सही ठहराता है, जिसे D-आयामी हॉसडॉर्फ माप कहा जाता है।[6]
हॉसडॉर्फ आयाम
हॉसडॉर्फ आयाम एक्स के द्वारा परिभाषित किया गया है।
यह d ∈ [0, ∞) के समुच्चय के सर्वोच्च के समान है, जैसे कि X का d-आयामी हौसडॉर्फ माप अनंत है (सिवाय इसके कि जब संख्याओं का यह बाद वाला सेट खाली है तो हौसडॉर्फ आयाम शून्य है)।
हॉसडॉर्फ सामग्री
S की d-आयामी 'असीमित हॉसडॉर्फ सामग्री' द्वारा परिभाषित की गई है
दूसरे शब्दों में, हौसडॉर्फ माप का निर्माण किया है जहां कवरिंग सेटों को स्वेच्छा से बड़े आकार की अनुमति है (यहां, हम मानक सम्मेलन का उपयोग करते हैं कि inf Ø = ∞)।[7] हौसडॉर्फ माप और हौसडॉर्फ सामग्री दोनों का उपयोग एक सेट के आयाम को निर्धारित करने के लिए किया जा सकता है, लेकिन यदि सेट का माप गैर-शून्य है, तो उनके वास्तविक मान असहमत हो सकते हैं।
उदाहरण
* गणनीय सेट में हॉसडॉर्फ आयाम 0 है।[8]
- यूक्लिडियन अंतरिक्षn में हॉसडॉर्फ आयाम n है, और वृत्त 'S' है1 में हॉसडॉर्फ आयाम 1 है।[8]* भग्न अक्सर ऐसे स्थान होते हैं जिनका हॉसडॉर्फ आयाम सख्ती से सांस्थितिक आयाम से अधिक होता है।[5]उदाहरण के लिए, कैंटर सेट , एक शून्य-आयामी स्थान |शून्य-आयामी ट स्पेस, स्वयं की दो प्रतियों का एक संघ है, प्रत्येक प्रतिलिपि एक कारक 1/3 से सिकुड़ जाती है; इसलिए, यह दिखाया जा सकता है कि इसका हॉसडॉर्फ आयाम ln(2)/ln(3) ≈ 0.63 है।[9] सिएरपिंस्की त्रिभुज स्वयं की तीन प्रतियों का एक संघ है, प्रत्येक प्रतिलिपि 1/2 के कारक से सिकुड़ती है; इससे ln(3)/ln(2) ≈ 1.58 का हॉसडॉर्फ आयाम प्राप्त होता है।[1]ये हॉसडॉर्फ आयाम एल्गोरिदम के विश्लेषण में पुनरावृत्ति संबंध को हल करने के लिए कुशल प्रमेय ( एल्गोरिदम का विश्लेषण ) के महत्वपूर्ण घातांक से संबंधित हैं।
- पीनो कर्व्स की तरह समष्टि-भरण घटता में हॉसडॉर्फ आयाम समान होता है, जैसा कि वे स्पेस को भरते हैं।
- आयाम 2 और उससे अधिक में ब्राउनियन गति के प्रक्षेपवक्र को हॉसडॉर्फ आयाम 2 माना जाता है।[10]
[[image:Great Britain Hausdorff.svg|thumb|upright=1.2|ब्रिटेन का तट कितना लंबा है, के हॉसडॉर्फ आयाम का अनुमान लगाना? सांख्यिकीय स्व-समानता और भिन्नात्मक आयाम
- लुईस फ्राई रिचर्डसन ने विभिन्न समुद्र तटों के लिए अनुमानित हॉसडॉर्फ आयाम को मापने के लिए विस्तृत प्रयोग किए हैं। उनके परिणाम दक्षिण अफ्रीका के समुद्र तट के लिए 1.02 से लेकर ग्रेट ब्रिटेन के पश्चिमी तट के लिए 1.25 तक भिन्न हैं।[5]
हॉसडॉर्फ आयाम के गुण
This section needs additional citations for verification. (March 2015) (Learn how and when to remove this template message) |
हॉसडॉर्फ आयाम और आगमनात्मक आयाम
एक्स को एक स्वेच्छाचारी वियोज्य स्पेस मात्रिक समष्टि होने दें। एक्स के लिए आगमनात्मक आयाम की एक सांस्थितिक धारणा है जिसे पुनरावर्ती रूप से परिभाषित किया गया है। यह हमेशा एक पूर्णांक (या +∞) होता है और इसे dim . के रूप में दर्शाया जाता हैind(एक्स)।
'प्रमेय'। मान लीजिए X खाली नहीं है। फिर
इसके अतिरिक्त,
जहां Y मीट्रिक रिक्त स्थान पर समरूपता से X तक होता है। दूसरे शब्दों में, X और Y में बिंदुओं का एक ही अंतर्निहित सेट होता है और मीट्रिक dY Y का टोपोलॉजिकल रूप से dX के बराबर है ।
ये परिणाम मूल रूप से एडवर्ड स्ज़पिलराजन (1907-1976) द्वारा स्थापित किए गए थे, उदाहरण के लिए, ह्यूरविक्ज़ और वॉलमैन, अध्याय VII देखें।[full citation needed]
हॉसडॉर्फ आयाम और मिंकोव्स्की आयाम
मिंकोव्स्की आयाम हॉसडॉर्फ आयाम के समान है, और कम से कम उसके जितना बड़ा है, और वे कई स्थितियों में समान हैं। हालांकि, [0, 1] में परिमेय संख्या बिंदुओं के सेट में हॉसडॉर्फ आयाम शून्य और मिंकोव्स्की आयाम एक है। ऐसे कॉम्पैक्ट सेट भी हैं जिनके लिए मिंकोव्स्की आयाम हॉसडॉर्फ आयाम से सख्ती से बड़ा है।
हॉसडॉर्फ आयाम और फ्रॉस्टमैन उपाय
यदि एक मीट्रिक स्पेस X के बोरेल माप उपसमुच्चय पर परिभाषित एक माप (गणित) μ है, जैसे कि μ(X) > 0 और μ(B(x, r)) rs कुछ स्थिर s > 0 के लिए और X में प्रत्येक गेंद B(x, r) के लिए होल्ड करता है, फिर मंदHaus(एक्स) एस। फ्रॉस्टमैन लेम्मा द्वारा आंशिक बातचीत प्रदान की जाती है।[citation needed][11]
यूनियनों और उत्पादों के तहत व्यवहार
यदि एक संकुचित या गणनीय संघ है, तो
इसे सीधे परिभाषा से सत्यापित किया जा सकता है।
यदि X और Y गैर-रिक्त मीट्रिक रिक्त स्थान हैं, तो उनके उत्पाद का हॉसडॉर्फ आयाम संतुष्ट करता है[12]
यह असमानता सख्त हो सकती है। आयाम 0 के दो सेट खोजना संभव है जिनके उत्पाद का आयाम 1 है।[13] विपरीत दिशा में, यह भी ज्ञात है कि X और Y 'R'n के बोरेल उपवर्ग हैं। X × Y का हॉसडॉर्फ आयाम ऊपर से X के हॉसडॉर्फ आयाम और Y के संकुल आयाम से घिरा है। इन तथ्यों की चर्चा मैटिला (1995) में की गई है।
स्व-समान सेट
This section needs additional citations for verification. (March 2015) (Learn how and when to remove this template message) |
स्व-समानता की स्थिति द्वारा परिभाषित कई सेटों में आयाम होते हैं जिन्हें स्पष्ट रूप से निर्धारित किया जा सकता है। स्थूलतः, एक सेट E स्व-समान है यदि यह एक सेट-मूल्यवान परिवर्तन ψ का निश्चित बिंदु है, जो कि (E) = E है, यद्यपि सटीक परिभाषा नीचे दी गई है।
'प्रमेय'। मान लीजिए
Rn पर संकुचन मानचित्रण मानचित्रण हैं संकुचन स्थिरांक rj <1के साथ. फिर एक अद्वितीय गैर-रिक्त कॉम्पैक्ट सेट ए ऐसा है कि
प्रमेय स्टीफन बानाच के संविदात्मक मानचित्रण प्रमेय से अनुसरण करता है जो आर के गैर-रिक्त कॉम्पैक्ट उपसमुच्चय के पूर्ण मीट्रिक स्थान पर लागू होता हैn हॉसडॉर्फ दूरी के साथ।[14]
खुले सेट की स्थिति
स्व-समान सेट A (कुछ मामलों में) के आयाम को निर्धारित करने के लिए, हमें संकुचन के अनुक्रम पर एक तकनीकी स्थिति की आवश्यकता होती है जिसे ओपन सेट कंडीशन (OSC) कहा जाता हैi.
एक अपेक्षाकृत कॉम्पैक्ट ओपन सेट वी है जैसे कि
जहां बाईं ओर संघ में सेट जोड़ीदार असंबद्ध सेट हैं।
खुले सेट की स्थिति एक पृथक्करण स्थिति है जो छवियों को सुनिश्चित करती हैi(वी) बहुत अधिक ओवरलैप न करें।
'प्रमेय'। मान लीजिए कि खुले सेट की स्थिति है और प्रत्येकi एक समानता है, जो किसी बिंदु के चारों ओर एक आइसोमेट्री और एक फैलाव (मीट्रिक स्पेस) की संरचना है। तब का अद्वितीय निश्चित बिंदु एक ऐसा समुच्चय है जिसका हॉसडॉर्फ आयाम s है जहाँ s का अद्वितीय हल है[15]
एक समानता का संकुचन गुणांक फैलाव का परिमाण है।
सामान्य तौर पर, एक सेट ई जो मानचित्रण का एक निश्चित बिंदु है
स्व-समान है यदि और केवल यदि चौराहों
जहाँ s E और H . का हॉसडॉर्फ आयाम हैs हॉसडॉर्फ माप को दर्शाता है। यह सीरपिंस्की गैसकेट के मामले में स्पष्ट है (चौराहे सिर्फ बिंदु हैं), लेकिन यह भी अधिक आम तौर पर सच है:
'प्रमेय'। पिछले प्रमेय के समान शर्तों के तहत, का अद्वितीय निश्चित बिंदु स्व-समान है।
यह भी देखें
- हॉसडॉर्फ आयाम द्वारा भग्नों की सूची नियतात्मक भग्न, यादृच्छिक और प्राकृतिक भग्न के उदाहरण।
- असौड आयाम, फ्रैक्टल आयाम का एक और रूपांतर, जो हॉसडॉर्फ आयाम की तरह, गेंदों द्वारा कवरिंग का उपयोग करके परिभाषित किया गया है
- आंतरिक आयाम
- पैकिंग आयाम
- भग्न आयाम
संदर्भ
- ↑ 1.0 1.1 1.2 MacGregor Campbell, 2013, "5.6 Scaling and the Hausdorff Dimension," at Annenberg Learner:MATHematics illuminated, see [1], accessed 5 March 2015.
- ↑ Gneiting, Tilmann; Ševčíková, Hana; Percival, Donald B. (2012). "भग्न आयाम के अनुमानक: समय श्रृंखला और स्थानिक डेटा की खुरदरापन का आकलन". Statistical Science. 27 (2): 247–277. arXiv:1101.1444. doi:10.1214/11-STS370. S2CID 88512325.
- ↑ Larry Riddle, 2014, "Classic Iterated Function Systems: Koch Snowflake", Agnes Scott College e-Academy (online), see [2], accessed 5 March 2015.
- ↑ 4.0 4.1 Keith Clayton, 1996, "Fractals and the Fractal Dimension," Basic Concepts in Nonlinear Dynamics and Chaos (workshop), Society for Chaos Theory in Psychology and the Life Sciences annual meeting, June 28, 1996, Berkeley, California, see [3], accessed 5 March 2015.
- ↑ 5.0 5.1 5.2 Mandelbrot, Benoît (1982). नेचर की फ़्रैक्टर जियोमीट्री. Lecture notes in mathematics 1358. W. H. Freeman. ISBN 0-7167-1186-9.
- ↑ Briggs, Jimmy; Tyree, Tim (3 December 2016). "हॉसडॉर्फ उपाय" (PDF). University of Washington. Retrieved 3 February 2022.
- ↑ Farkas, Abel; Fraser, Jonathan (30 July 2015). "हॉसडॉर्फ माप और हॉसडॉर्फ सामग्री की समानता पर". arXiv:1411.0867 [math.MG].
- ↑ 8.0 8.1 Schleicher, Dierk (June 2007). "हॉसडॉर्फ आयाम, इसके गुण, और इसके आश्चर्य". The American Mathematical Monthly (in English). 114 (6): 509–528. arXiv:math/0505099. doi:10.1080/00029890.2007.11920440. ISSN 0002-9890. S2CID 9811750.
- ↑ Falconer, Kenneth (2003). भग्न ज्यामिति: गणितीय नींव और अनुप्रयोग (2nd ed.). John Wiley and Sons.
- ↑ Morters, Peres (2010). ब्राउनियन गति. Cambridge University Press.
- ↑ This Wikipedia article also discusses further useful characterizations of the Hausdorff dimension.[clarification needed]
- ↑ Marstrand, J. M. (1954). "कार्टेशियन उत्पाद सेट का आयाम". Proc. Cambridge Philos. Soc. 50 (3): 198–202. Bibcode:1954PCPS...50..198M. doi:10.1017/S0305004100029236. S2CID 122475292.
- ↑ Falconer, Kenneth J. (2003). भग्न ज्यामिति। गणितीय नींव और अनुप्रयोग. John Wiley & Sons, Inc., Hoboken, New Jersey.
- ↑ Falconer, K. J. (1985). "Theorem 8.3". फ्रैक्टल सेट की ज्यामिति. Cambridge, UK: Cambridge University Press. ISBN 0-521-25694-1.
- ↑ Hutchinson, John E. (1981). "भग्न और आत्म समानता". Indiana Univ. Math. J. 30 (5): 713–747. doi:10.1512/iumj.1981.30.30055.
अग्रिम पठन
- Dodson, M. Maurice; Kristensen, Simon (June 12, 2003). "Hausdorff Dimension and Diophantine Approximation". Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot. Proceedings of Symposia in Pure Mathematics. Vol. 72. pp. 305–347. arXiv:math/0305399. Bibcode:2003math......5399D. doi:10.1090/pspum/072.1/2112110. ISBN 9780821836378. S2CID 119613948.
- Hurewicz, Witold; Wallman, Henry (1948). Dimension Theory. Princeton University Press.
- E. Szpilrajn (1937). "La dimension et la mesure". Fundamenta Mathematicae. 28: 81–9. doi:10.4064/fm-28-1-81-89.
- Marstrand, J. M. (1954). "The dimension of cartesian product sets". Proc. Cambridge Philos. Soc. 50 (3): 198–202. Bibcode:1954PCPS...50..198M. doi:10.1017/S0305004100029236. S2CID 122475292.
- Mattila, Pertti (1995). Geometry of sets and measures in Euclidean spaces. Cambridge University Press. ISBN 978-0-521-65595-8.
- A. S. Besicovitch (1929). "On Linear Sets of Points of Fractional Dimensions". Mathematische Annalen. 101 (1): 161–193. doi:10.1007/BF01454831. S2CID 125368661.
- A. S. Besicovitch; H. D. Ursell (1937). "Sets of Fractional Dimensions". Journal of the London Mathematical Society. 12 (1): 18–25. doi:10.1112/jlms/s1-12.45.18.
Several selections from this volume are reprinted in Edgar, Gerald A. (1993). Classics on fractals. Boston: Addison-Wesley. ISBN 0-201-58701-7. See chapters 9,10,11 - F. Hausdorff (March 1919). "Dimension und äußeres Maß" (PDF). Mathematische Annalen. 79 (1–2): 157–179. doi:10.1007/BF01457179. hdl:10338.dmlcz/100363. S2CID 122001234.
- Hutchinson, John E. (1981). "Fractals and self similarity". Indiana Univ. Math. J. 30 (5): 713–747. doi:10.1512/iumj.1981.30.30055.
- Falconer, Kenneth (2003). Fractal Geometry: Mathematical Foundations and Applications (2nd ed.). John Wiley and Sons.