कॉची गुणनफल: Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
गणित में, विशेषकर [[गणितीय विश्लेषण]] में, कॉची गुणनफल दो अनंत श्रृंखलाओं का असतत सवलन है। इसका नाम फ्रांसीसी गणितज्ञ [[ऑगस्टिन-लुई कॉची]] के नाम पर रखा गया है।
गणित में, विशेषकर [[गणितीय विश्लेषण]] में, कॉची गुणनफल दो अनंत श्रेणियों का असतत सवलन है। इसका नाम फ्रांसीसी गणितज्ञ [[ऑगस्टिन-लुई कॉची]] के नाम पर रखा गया है।


==परिभाषाएँ==
==परिभाषाएँ==
कॉची गुणनफल अनंत श्रृंखला <ref>{{harvnb|Canuto|Tabacco|2015|p=20}}.</ref><ref>{{harvnb|Bloch|2011|p=463}}.</ref><ref>{{harvnb|Friedman|Kandel|2011|p=204}}.</ref><ref>{{harvnb|Ghorpade|Limaye|2006|p=416}}.</ref><ref>{{harvnb|Hijab|2011|p=43}}.</ref><ref>{{harvnb|Montesinos|Zizler|Zizler|2015|p=98}}.</ref><ref>{{harvnb|Oberguggenberger|Ostermann|2011|p=322}}.</ref><ref>{{harvnb|Pedersen|2015|p=210}}.</ref><ref>{{harvnb|Ponnusamy|2012|p=200}}.</ref><ref>{{harvnb|Pugh|2015|p=210}}.</ref><ref>{{harvnb|Sohrab|2014|p=73}}.</ref> या पावर श्रृंखला पर लागू हो सकता है।<ref>{{harvnb|Canuto|Tabacco|2015|p=53}}.</ref><ref>{{harvnb|Mathonline|loc=Cauchy Product of Power Series}}.</ref> जब लोग इसे परिमित अनुक्रमों<ref>{{harvnb|Weisstein|loc=Cauchy Product}}.</ref> या परिमित श्रृंखला पर लागू करते हैं, तो इसे केवल गैर-शून्य गुणांकों की एक सीमित संख्या के साथ श्रृंखला के गुणनफल के एक विशेष मामले के रूप में देखा जा सकता है (अलग-अलग सवलन देखें)।
कॉची गुणनफल अनंत श्रेणी <ref>{{harvnb|Canuto|Tabacco|2015|p=20}}.</ref><ref>{{harvnb|Bloch|2011|p=463}}.</ref><ref>{{harvnb|Friedman|Kandel|2011|p=204}}.</ref><ref>{{harvnb|Ghorpade|Limaye|2006|p=416}}.</ref><ref>{{harvnb|Hijab|2011|p=43}}.</ref><ref>{{harvnb|Montesinos|Zizler|Zizler|2015|p=98}}.</ref><ref>{{harvnb|Oberguggenberger|Ostermann|2011|p=322}}.</ref><ref>{{harvnb|Pedersen|2015|p=210}}.</ref><ref>{{harvnb|Ponnusamy|2012|p=200}}.</ref><ref>{{harvnb|Pugh|2015|p=210}}.</ref><ref>{{harvnb|Sohrab|2014|p=73}}.</ref> या पावर श्रेणी पर लागू हो सकता है।<ref>{{harvnb|Canuto|Tabacco|2015|p=53}}.</ref><ref>{{harvnb|Mathonline|loc=Cauchy Product of Power Series}}.</ref> जब लोग इसे परिमित अनुक्रमों<ref>{{harvnb|Weisstein|loc=Cauchy Product}}.</ref> या परिमित श्रेणी पर लागू करते हैं, तो इसे केवल गैर-शून्य गुणांकों की एक सीमित संख्या के साथ श्रेणी के गुणनफल के एक विशेष मामले के रूप में देखा जा सकता है (अलग-अलग सवलन देखें)।


अभिसरण विषयों पर अगले भाग में चर्चा की गई है।
अभिसरण विषयों पर अगले भाग में चर्चा की गई है।


===दो अपरिमित श्रृंखलाओं का कॉची गुणनफल===
===दो अपरिमित श्रेणियों का कॉची गुणनफल===


मान लीजिये <math display="inline"> \sum_{i=0}^\infty a_i</math> और <math display="inline"> \sum_{j=0}^\infty b_j</math> जटिल पदों वाली दो अनंत श्रृंखलाएँ हों। इन दो अनंत श्रृंखलाओं के कॉची गुणनफल को असतत सवलन द्वारा निम्नानुसार परिभाषित किया गया है:
मान लीजिये <math display="inline"> \sum_{i=0}^\infty a_i</math> और <math display="inline"> \sum_{j=0}^\infty b_j</math> जटिल पदों वाली दो अनंत श्रृंखलाएँ हों। इन दो अनंत श्रेणियों के कॉची गुणनफल को असतत सवलन द्वारा निम्नानुसार परिभाषित किया गया है:


:<math>\left(\sum_{i=0}^\infty a_i\right) \cdot \left(\sum_{j=0}^\infty b_j\right) = \sum_{k=0}^\infty c_k</math> कहाँ <math>c_k=\sum_{l=0}^k a_l b_{k-l}</math>.
:<math>\left(\sum_{i=0}^\infty a_i\right) \cdot \left(\sum_{j=0}^\infty b_j\right) = \sum_{k=0}^\infty c_k</math> कहाँ <math>c_k=\sum_{l=0}^k a_l b_{k-l}</math>.
Line 22: Line 22:


==अभिसरण और मर्टेंस प्रमेय==
==अभिसरण और मर्टेंस प्रमेय==
{{distinguish|text=[[Mertens' theorems]] concerning distribution of prime numbers}}
{{distinguish|text=[[मर्टेंस प्रमेय]] अभाज्य संख्याओं के वितरण से संबंधित}}


होने देना {{math|(''a<sub>n</sub>'')<sub>''n''≥0</sub>}} और {{math|(''b<sub>n</sub>'')<sub>''n''≥0</sub>}} वास्तविक या जटिल अनुक्रम हों। यह [[फ्रांज मर्टेंस]] द्वारा सिद्ध किया गया था कि, यदि श्रृंखला <math display="inline"> \sum_{n=0}^\infty a_n</math> [[अभिसरण श्रृंखला]] को {{math|''A''}} और <math display="inline"> \sum_{n=0}^\infty b_n</math> में एकत्रित हो जाता है {{math|''B''}}, और उनमें से कम से कम एक [[पूर्ण अभिसरण]], फिर उनका कॉची गुणनफल अभिसरण होता है {{math|''AB''}}.<ref>{{cite book |last1=Rudin |first1=Walter |title=गणितीय विश्लेषण के सिद्धांत|date=1976 |publisher=McGraw-Hill |page=74}}</ref> प्रमेय अभी भी [[बानाच बीजगणित]] में मान्य है (निम्नलिखित प्रमाण की पहली पंक्ति देखें)।
मान लीजिए {{math|(''a<sub>n</sub>'')<sub>''n''≥0</sub>}} और {{math|(''b<sub>n</sub>'')<sub>''n''≥0</sub>}} वास्तविक या जटिल अनुक्रम हैं। यह [[फ्रांज मर्टेंस]] द्वारा सिद्ध किया गया था कि, यदि श्रेणी <math display="inline"> \sum_{n=0}^\infty a_n</math> {{math|''A''}} में परिवर्तित हो जाती है और <math display="inline"> \sum_{n=0}^\infty b_n</math> {{math|''B''}} में परिवर्तित हो जाता है, और उनमें से कम से कम एक पूर्ण रूप से परिवर्तित हो जाता है, फिर उनका कॉची उत्पाद {{math|''AB''}} में परिवर्तित हो जाता है।<ref>{{cite book |last1=Rudin |first1=Walter |title=गणितीय विश्लेषण के सिद्धांत|date=1976 |publisher=McGraw-Hill |page=74}}</ref> प्रमेय अभी भी [[बानाच बीजगणित]] में मान्य है (निम्नलिखित प्रमाण की पहली पंक्ति देखें)।


दोनों श्रृंखलाओं का अभिसरण होना पर्याप्त नहीं है; यदि दोनों अनुक्रम [[सशर्त अभिसरण]] हैं, तो कॉची गुणनफल को दो श्रृंखलाओं के गुणनफल की ओर अभिसरण नहीं करना पड़ता है, जैसा कि निम्नलिखित उदाहरण से पता चलता है:
यह दोनों श्रेणियों का अभिसरण होने के लिए पर्याप्त नहीं है; यदि दोनों अनुक्रम सशर्त रूप से [[सशर्त अभिसरण|अभिसरण]] हैं, तो कॉची उत्पाद को दो श्रेणियों के उत्पाद की ओर अभिसरण करने की आवश्यकता नहीं है, जैसा कि निम्नलिखित उदाहरण से पता चलता है:


===उदाहरण===
===उदाहरण===
दो [[वैकल्पिक श्रृंखला]]ओं पर विचार करें
दो [[वैकल्पिक श्रृंखला|वैकल्पिक]] श्रेणियों पर विचार करें


<math display="block">a_n = b_n = \frac{(-1)^n}{\sqrt{n+1}}\,,</math>
<math display="block">a_n = b_n = \frac{(-1)^n}{\sqrt{n+1}}\,,</math>
जो केवल सशर्त रूप से अभिसरण हैं (पूर्ण मूल्यों की श्रृंखला का विचलन [[प्रत्यक्ष तुलना परीक्षण]] और [[हार्मोनिक श्रृंखला (गणित)]] के विचलन से होता है)। उनके कॉची गुणनफल की शर्तें दी गई हैं
जो केवल सशर्त रूप से अभिसरण हैं (पूर्ण मूल्यों की श्रेणी का विचलन [[प्रत्यक्ष तुलना परीक्षण]] और [[हार्मोनिक श्रृंखला (गणित)|हार्मोनिक श्रेणी (गणित)]] के विचलन से होता है)। उनके कॉची गुणनफल की शर्तें दी गई हैं


<math display="block">c_n = \sum_{k=0}^n \frac{(-1)^k}{\sqrt{k+1}} \cdot \frac{ (-1)^{n-k} }{ \sqrt{n-k+1} } = (-1)^n \sum_{k=0}^n \frac{1}{ \sqrt{(k+1)(n-k+1)} }</math>
<math display="block">c_n = \sum_{k=0}^n \frac{(-1)^k}{\sqrt{k+1}} \cdot \frac{ (-1)^{n-k} }{ \sqrt{n-k+1} } = (-1)^n \sum_{k=0}^n \frac{1}{ \sqrt{(k+1)(n-k+1)} }</math>
Line 38: Line 38:


<math display="block">|c_n| \ge \sum_{k=0}^n \frac{1}{n+1} = 1</math>
<math display="block">|c_n| \ge \sum_{k=0}^n \frac{1}{n+1} = 1</math>
प्रत्येक पूर्णांक के लिए {{math|''n'' ≥ 0}}. इसलिए, {{math|''c<sub>n</sub>''}} शून्य पर अभिसरित नहीं होता है {{math|''n'' → ∞}}, इसलिए की श्रृंखला {{math|(''c<sub>n</sub>'')<sub>''n''≥0</sub>}} परीक्षण शब्द से भिन्न होता है।
प्रत्येक पूर्णांक के लिए {{math|''n'' ≥ 0}}. इसलिए, {{math|''c<sub>n</sub>''}} शून्य पर अभिसरित नहीं होता है {{math|''n'' → ∞}}, इसलिए की श्रेणी {{math|(''c<sub>n</sub>'')<sub>''n''≥0</sub>}} परीक्षण शब्द से भिन्न होता है।


===मर्टेंस प्रमेय का प्रमाण===
===मर्टेंस प्रमेय का प्रमाण===
सरलता के लिए, हम इसे सम्मिश्र संख्याओं के लिए सिद्ध करेंगे। हालाँकि, जो प्रमाण हम देने जा रहे हैं वह औपचारिक रूप से एक मनमाना बनच बीजगणित के लिए समान है (यहां तक ​​कि कम्यूटेटिविटी या एसोसिएटिविटी की भी आवश्यकता नहीं है)।
सरलता के लिए, हम इसे सम्मिश्र संख्याओं के लिए सिद्ध करेंगे। हालाँकि, जो प्रमाण हम देने जा रहे हैं वह औपचारिक रूप से एक मनमाना बनच बीजगणित के लिए समान है (यहां तक ​​कि कम्यूटेटिविटी या एसोसिएटिविटी की भी आवश्यकता नहीं है)।


व्यापकता की हानि के बिना मान लें कि श्रृंखला <math display="inline"> \sum_{n=0}^\infty a_n</math> बिल्कुल एकाग्र हो जाता है।
व्यापकता की हानि के बिना मान लें कि श्रेणी <math display="inline"> \sum_{n=0}^\infty a_n</math> बिल्कुल एकाग्र हो जाता है।
आंशिक योग परिभाषित करें
आंशिक योग परिभाषित करें


Line 61: Line 61:
{{NumBlk|:|<math>|B_n-B|\le\frac{\varepsilon/3}{\sum_{ k \in \N } |a_k|+1}</math>|{{EquationRef|2}}}}
{{NumBlk|:|<math>|B_n-B|\le\frac{\varepsilon/3}{\sum_{ k \in \N } |a_k|+1}</math>|{{EquationRef|2}}}}


(यह एकमात्र स्थान है जहां पूर्ण अभिसरण का उपयोग किया जाता है)। की श्रृंखला के बाद से {{math|(''a<sub>n</sub>'')<sub>''n''≥0</sub>}} अभिसरण, व्यक्ति {{math|''a<sub>n</sub>''}} शब्द परीक्षण द्वारा 0 पर अभिसरण होना चाहिए। अतः एक पूर्णांक मौजूद है {{math|''M''}} ऐसा कि, सभी पूर्णांकों के लिए {{math|''n'' ≥ ''M''}},
(यह एकमात्र स्थान है जहां पूर्ण अभिसरण का उपयोग किया जाता है)। की श्रेणी के बाद से {{math|(''a<sub>n</sub>'')<sub>''n''≥0</sub>}} अभिसरण, व्यक्ति {{math|''a<sub>n</sub>''}} शब्द परीक्षण द्वारा 0 पर अभिसरण होना चाहिए। अतः एक पूर्णांक मौजूद है {{math|''M''}} ऐसा कि, सभी पूर्णांकों के लिए {{math|''n'' ≥ ''M''}},


{{NumBlk|:|<math>|a_n|\le\frac{\varepsilon}{3N(\max_{ i\in\{0,\dots,N-1\} } |B_i-B|+1)}\,. </math>|{{EquationRef|3}}}}
{{NumBlk|:|<math>|a_n|\le\frac{\varepsilon}{3N(\max_{ i\in\{0,\dots,N-1\} } |B_i-B|+1)}\,. </math>|{{EquationRef|3}}}}
Line 75: Line 75:
  &\le \sum_{i=0}^{N-1}\underbrace{|a_{\underbrace{\scriptstyle n-i}_{\scriptscriptstyle \ge M}}|\,|B_i-B|}_{\le\,\varepsilon/(3N)\text{ by (3)}}+{}\underbrace{\sum_{i=N}^n |a_{n-i}|\,|B_i-B|}_{\le\,\varepsilon/3\text{ by (2)}}+{}\underbrace{|A_n-A|\,|B|}_{\le\,\varepsilon/3\text{ by (4)}}\le\varepsilon\,.  
  &\le \sum_{i=0}^{N-1}\underbrace{|a_{\underbrace{\scriptstyle n-i}_{\scriptscriptstyle \ge M}}|\,|B_i-B|}_{\le\,\varepsilon/(3N)\text{ by (3)}}+{}\underbrace{\sum_{i=N}^n |a_{n-i}|\,|B_i-B|}_{\le\,\varepsilon/3\text{ by (2)}}+{}\underbrace{|A_n-A|\,|B|}_{\le\,\varepsilon/3\text{ by (4)}}\le\varepsilon\,.  
\end{align}</math>
\end{align}</math>
अभिसरण श्रृंखला द्वारा, {{math|''C<sub>n</sub>'' → ''AB''}} आवश्यकता अनुसार।
अभिसरण श्रेणी द्वारा, {{math|''C<sub>n</sub>'' → ''AB''}} आवश्यकता अनुसार।


==सेसारो का प्रमेय==
==सेसारो का प्रमेय==
Line 92: Line 92:
==उदाहरण==
==उदाहरण==


* कुछ के लिए <math display="inline"> x,y \in \Reals</math>, होने देना <math display="inline"> a_n = x^n/n!</math> और <math display="inline"> b_n = y^n/n!</math>. तब <math display="block"> c_n = \sum_{i=0}^n\frac{x^i}{i!}\frac{y^{n-i}}{(n-i)!} = \frac{1}{n!} \sum_{i=0}^n \binom{n}{i} x^i y^{n-i} = \frac{(x+y)^n}{n!}</math> परिभाषा और [[द्विपद सूत्र]] के अनुसार। चूंकि, [[औपचारिक श्रृंखला]], <math display="inline"> \exp(x) = \sum a_n</math> और <math display="inline"> \exp(y) = \sum b_n</math>, हमने वो करके दिखाया है <math display="inline"> \exp(x+y) = \sum c_n</math>. चूँकि दो निरपेक्ष अभिसरण श्रृंखलाओं के कॉची गुणनफल की सीमा उन श्रृंखलाओं की सीमाओं के गुणनफल के बराबर है, हमने सूत्र को सिद्ध कर दिया है <math display="inline"> \exp(x+y) = \exp(x)\exp(y)</math> सभी के लिए <math display="inline"> x,y \in \Reals</math>.
* कुछ के लिए <math display="inline"> x,y \in \Reals</math>, होने देना <math display="inline"> a_n = x^n/n!</math> और <math display="inline"> b_n = y^n/n!</math>. तब <math display="block"> c_n = \sum_{i=0}^n\frac{x^i}{i!}\frac{y^{n-i}}{(n-i)!} = \frac{1}{n!} \sum_{i=0}^n \binom{n}{i} x^i y^{n-i} = \frac{(x+y)^n}{n!}</math> परिभाषा और [[द्विपद सूत्र]] के अनुसार। चूंकि, [[औपचारिक श्रृंखला|औपचारिक श्रेणी]], <math display="inline"> \exp(x) = \sum a_n</math> और <math display="inline"> \exp(y) = \sum b_n</math>, हमने वो करके दिखाया है <math display="inline"> \exp(x+y) = \sum c_n</math>. चूँकि दो निरपेक्ष अभिसरण श्रेणियों के कॉची गुणनफल की सीमा उन श्रेणियों की सीमाओं के गुणनफल के बराबर है, हमने सूत्र को सिद्ध कर दिया है <math display="inline"> \exp(x+y) = \exp(x)\exp(y)</math> सभी के लिए <math display="inline"> x,y \in \Reals</math>.
*दूसरे उदाहरण के तौर पर, आइए <math display="inline"> a_n = b_n = 1</math> सभी के लिए <math display="inline"> n \in \N</math>. तब <math display="inline"> c_n = n+1</math> सभी के लिए <math>n \in \N</math> तो कॉची गुणनफल <math display="block"> \sum c_n = (1,1+2,1+2+3,1+2+3+4,\dots)</math> एकत्रित नहीं होता.
*दूसरे उदाहरण के तौर पर, आइए <math display="inline"> a_n = b_n = 1</math> सभी के लिए <math display="inline"> n \in \N</math>. तब <math display="inline"> c_n = n+1</math> सभी के लिए <math>n \in \N</math> तो कॉची गुणनफल <math display="block"> \sum c_n = (1,1+2,1+2+3,1+2+3+4,\dots)</math> एकत्रित नहीं होता.


==सामान्यीकरण==
==सामान्यीकरण==


उपरोक्त सभी अनुक्रमों पर लागू होते हैं <math display="inline"> \Complex</math> (जटिल आंकड़े)। कॉची गुणनफल को श्रृंखला के लिए परिभाषित किया जा सकता है <math display="inline"> \R^n</math> रिक्त स्थान ([[यूक्लिडियन स्थान]] स्थान) जहां गुणन आंतरिक गुणनफल है। इस मामले में, हमारे पास यह परिणाम है कि यदि दो श्रृंखलाएं पूरी तरह से अभिसरण करती हैं तो उनका कॉची गुणनफल पूरी तरह से सीमाओं के आंतरिक गुणनफल में परिवर्तित हो जाता है।
उपरोक्त सभी अनुक्रमों पर लागू होते हैं <math display="inline"> \Complex</math> (जटिल आंकड़े)। कॉची गुणनफल को श्रेणी के लिए परिभाषित किया जा सकता है <math display="inline"> \R^n</math> रिक्त स्थान ([[यूक्लिडियन स्थान]] स्थान) जहां गुणन आंतरिक गुणनफल है। इस मामले में, हमारे पास यह परिणाम है कि यदि दो श्रृंखलाएं पूरी तरह से अभिसरण करती हैं तो उनका कॉची गुणनफल पूरी तरह से सीमाओं के आंतरिक गुणनफल में परिवर्तित हो जाता है।


===अनंत अनेक अनंत श्रृंखलाओं के गुणनफल ===
===अनंत अनेक अनंत श्रेणियों के गुणनफल ===
होने देना <math>n \in \N</math> ऐसा है कि <math>n \ge 2</math> (वास्तव में निम्नलिखित भी सत्य है <math>n=1</math> लेकिन उस स्थिति में कथन तुच्छ हो जाता है) और चलो <math display="inline">\sum_{k_1 = 0}^\infty a_{1, k_1}, \ldots, \sum_{k_n = 0}^\infty a_{n, k_n}</math> जटिल गुणांकों वाली अनंत श्रृंखला हो, जिसमें से को छोड़कर सभी <math>n</math>एक बिल्कुल अभिसरण करता है, और <math>n</math>वें एक जुटता है. फिर तो हद हो गयी
होने देना <math>n \in \N</math> ऐसा है कि <math>n \ge 2</math> (वास्तव में निम्नलिखित भी सत्य है <math>n=1</math> लेकिन उस स्थिति में कथन तुच्छ हो जाता है) और चलो <math display="inline">\sum_{k_1 = 0}^\infty a_{1, k_1}, \ldots, \sum_{k_n = 0}^\infty a_{n, k_n}</math> जटिल गुणांकों वाली अनंत श्रेणी हो, जिसमें से को छोड़कर सभी <math>n</math>एक बिल्कुल अभिसरण करता है, और <math>n</math>वें एक जुटता है. फिर तो हद हो गयी
<math display="block">\lim_{N\to\infty}\sum_{k_1+\ldots+k_n\leq N} a_{1,k_1}\cdots a_{n,k_n}</math>
<math display="block">\lim_{N\to\infty}\sum_{k_1+\ldots+k_n\leq N} a_{1,k_1}\cdots a_{n,k_n}</math>
मौजूद है और हमारे पास है:
मौजूद है और हमारे पास है:
Line 111: Line 111:
कथन को प्रेरण द्वारा सिद्ध किया जा सकता है <math>n</math>: के लिए मामला <math>n = 2</math> कॉची गुणनफल के बारे में दावे के समान है। यह हमारा इंडक्शन बेस है.
कथन को प्रेरण द्वारा सिद्ध किया जा सकता है <math>n</math>: के लिए मामला <math>n = 2</math> कॉची गुणनफल के बारे में दावे के समान है। यह हमारा इंडक्शन बेस है.


प्रेरण चरण इस प्रकार है: दावे को सत्य होने दें <math>n \in \N</math> ऐसा है कि <math>n \ge 2</math>, और जाने <math display="inline">\sum_{k_1 = 0}^\infty a_{1, k_1}, \ldots, \sum_{k_{n+1} = 0}^\infty a_{n+1, k_{n+1}}</math> जटिल गुणांकों वाली अनंत श्रृंखला हो, जिसमें से को छोड़कर सभी <math>n+1</math>एक बिल्कुल अभिसरण करता है, और <math>n+1</math>-वह एकाग्र होता है। हम पहले श्रृंखला में प्रेरण परिकल्पना को लागू करते हैं <math display="inline">\sum_{k_1 = 0}^\infty |a_{1, k_1}|, \ldots, \sum_{k_n = 0}^\infty |a_{n, k_n}|</math>. हमें वह श्रृंखला प्राप्त होती है
प्रेरण चरण इस प्रकार है: दावे को सत्य होने दें <math>n \in \N</math> ऐसा है कि <math>n \ge 2</math>, और जाने <math display="inline">\sum_{k_1 = 0}^\infty a_{1, k_1}, \ldots, \sum_{k_{n+1} = 0}^\infty a_{n+1, k_{n+1}}</math> जटिल गुणांकों वाली अनंत श्रेणी हो, जिसमें से को छोड़कर सभी <math>n+1</math>एक बिल्कुल अभिसरण करता है, और <math>n+1</math>-वह एकाग्र होता है। हम पहले श्रेणी में प्रेरण परिकल्पना को लागू करते हैं <math display="inline">\sum_{k_1 = 0}^\infty |a_{1, k_1}|, \ldots, \sum_{k_n = 0}^\infty |a_{n, k_n}|</math>. हमें वह श्रेणी प्राप्त होती है
<math display="block">\sum_{k_1 = 0}^\infty \sum_{k_2 = 0}^{k_1} \cdots \sum_{k_n = 0}^{k_{n-1}} |a_{1, k_n} a_{2, k_{n-1} - k_n} \cdots a_{n, k_1 - k_2}|</math>
<math display="block">\sum_{k_1 = 0}^\infty \sum_{k_2 = 0}^{k_1} \cdots \sum_{k_n = 0}^{k_{n-1}} |a_{1, k_n} a_{2, k_{n-1} - k_n} \cdots a_{n, k_1 - k_2}|</math>
अभिसरण, और इसलिए, त्रिकोण असमानता और सैंडविच मानदंड, श्रृंखला द्वारा
अभिसरण, और इसलिए, त्रिकोण असमानता और सैंडविच मानदंड, श्रेणी द्वारा
<math display="block">\sum_{k_1 = 0}^\infty \left| \sum_{k_2 = 0}^{k_1} \cdots \sum_{k_n = 0}^{k_{n-1}} a_{1, k_n} a_{2, k_{n-1} - k_n} \cdots a_{n, k_1 - k_2} \right|</math>
<math display="block">\sum_{k_1 = 0}^\infty \left| \sum_{k_2 = 0}^{k_1} \cdots \sum_{k_n = 0}^{k_{n-1}} a_{1, k_n} a_{2, k_{n-1} - k_n} \cdots a_{n, k_1 - k_2} \right|</math>
अभिसरण, और इसलिए श्रृंखला
अभिसरण, और इसलिए श्रेणी
<math display="block">\sum_{k_1 = 0}^\infty \sum_{k_2 = 0}^{k_1} \cdots \sum_{k_n = 0}^{k_{n-1}} a_{1, k_n} a_{2, k_{n-1} - k_n} \cdots a_{n, k_1 - k_2}</math>
<math display="block">\sum_{k_1 = 0}^\infty \sum_{k_2 = 0}^{k_1} \cdots \sum_{k_n = 0}^{k_{n-1}} a_{1, k_n} a_{2, k_{n-1} - k_n} \cdots a_{n, k_1 - k_2}</math>
बिल्कुल एकाग्र हो जाता है। इसलिए, प्रेरण परिकल्पना द्वारा, मर्टेंस ने जो साबित किया, और चर के नाम बदलकर, हमारे पास है:
बिल्कुल एकाग्र हो जाता है। इसलिए, प्रेरण परिकल्पना द्वारा, मर्टेंस ने जो साबित किया, और चर के नाम बदलकर, हमारे पास है:

Revision as of 10:11, 8 July 2023

गणित में, विशेषकर गणितीय विश्लेषण में, कॉची गुणनफल दो अनंत श्रेणियों का असतत सवलन है। इसका नाम फ्रांसीसी गणितज्ञ ऑगस्टिन-लुई कॉची के नाम पर रखा गया है।

परिभाषाएँ

कॉची गुणनफल अनंत श्रेणी [1][2][3][4][5][6][7][8][9][10][11] या पावर श्रेणी पर लागू हो सकता है।[12][13] जब लोग इसे परिमित अनुक्रमों[14] या परिमित श्रेणी पर लागू करते हैं, तो इसे केवल गैर-शून्य गुणांकों की एक सीमित संख्या के साथ श्रेणी के गुणनफल के एक विशेष मामले के रूप में देखा जा सकता है (अलग-अलग सवलन देखें)।

अभिसरण विषयों पर अगले भाग में चर्चा की गई है।

दो अपरिमित श्रेणियों का कॉची गुणनफल

मान लीजिये और जटिल पदों वाली दो अनंत श्रृंखलाएँ हों। इन दो अनंत श्रेणियों के कॉची गुणनफल को असतत सवलन द्वारा निम्नानुसार परिभाषित किया गया है:

कहाँ .

द्वि घात श्रेणी का कॉची गुणनफल

निम्नलिखित द्वि घात श्रेणियों पर विचार करें

और

जटिल गुणांकों के साथ और . इन द्वि घात श्रेणियों के कॉची गुणनफल को असतत सवलन द्वारा निम्नानुसार परिभाषित किया गया है:

कहाँ .

अभिसरण और मर्टेंस प्रमेय

मान लीजिए (an)n≥0 और (bn)n≥0 वास्तविक या जटिल अनुक्रम हैं। यह फ्रांज मर्टेंस द्वारा सिद्ध किया गया था कि, यदि श्रेणी A में परिवर्तित हो जाती है और B में परिवर्तित हो जाता है, और उनमें से कम से कम एक पूर्ण रूप से परिवर्तित हो जाता है, फिर उनका कॉची उत्पाद AB में परिवर्तित हो जाता है।[15] प्रमेय अभी भी बानाच बीजगणित में मान्य है (निम्नलिखित प्रमाण की पहली पंक्ति देखें)।

यह दोनों श्रेणियों का अभिसरण होने के लिए पर्याप्त नहीं है; यदि दोनों अनुक्रम सशर्त रूप से अभिसरण हैं, तो कॉची उत्पाद को दो श्रेणियों के उत्पाद की ओर अभिसरण करने की आवश्यकता नहीं है, जैसा कि निम्नलिखित उदाहरण से पता चलता है:

उदाहरण

दो वैकल्पिक श्रेणियों पर विचार करें

जो केवल सशर्त रूप से अभिसरण हैं (पूर्ण मूल्यों की श्रेणी का विचलन प्रत्यक्ष तुलना परीक्षण और हार्मोनिक श्रेणी (गणित) के विचलन से होता है)। उनके कॉची गुणनफल की शर्तें दी गई हैं

प्रत्येक पूर्णांक के लिए n ≥ 0. चूंकि प्रत्येक के लिए k ∈ {0, 1, ..., n} हमारे पास असमानताएं हैं k + 1 ≤ n + 1 और nk + 1 ≤ n + 1, यह हर में वर्गमूल के लिए अनुसरण करता है (k + 1)(nk + 1)n +1, इसलिए, क्योंकि हैं n + 1 सारांश,

प्रत्येक पूर्णांक के लिए n ≥ 0. इसलिए, cn शून्य पर अभिसरित नहीं होता है n → ∞, इसलिए की श्रेणी (cn)n≥0 परीक्षण शब्द से भिन्न होता है।

मर्टेंस प्रमेय का प्रमाण

सरलता के लिए, हम इसे सम्मिश्र संख्याओं के लिए सिद्ध करेंगे। हालाँकि, जो प्रमाण हम देने जा रहे हैं वह औपचारिक रूप से एक मनमाना बनच बीजगणित के लिए समान है (यहां तक ​​कि कम्यूटेटिविटी या एसोसिएटिविटी की भी आवश्यकता नहीं है)।

व्यापकता की हानि के बिना मान लें कि श्रेणी बिल्कुल एकाग्र हो जाता है। आंशिक योग परिभाषित करें

साथ

तब

पुनर्व्यवस्था द्वारा, इसलिए

 

 

 

 

(1)

हल करना ε > 0. तब से पूर्ण अभिसरण द्वारा, और तब से Bn में एकत्रित हो जाता है B जैसा n → ∞, एक पूर्णांक मौजूद है N ऐसा कि, सभी पूर्णांकों के लिए nN,

 

 

 

 

(2)

(यह एकमात्र स्थान है जहां पूर्ण अभिसरण का उपयोग किया जाता है)। की श्रेणी के बाद से (an)n≥0 अभिसरण, व्यक्ति an शब्द परीक्षण द्वारा 0 पर अभिसरण होना चाहिए। अतः एक पूर्णांक मौजूद है M ऐसा कि, सभी पूर्णांकों के लिए nM,

 

 

 

 

(3)

इसके अलावा, तब से An में एकत्रित हो जाता है A जैसा n → ∞, एक पूर्णांक मौजूद है L ऐसा कि, सभी पूर्णांकों के लिए nL,

 

 

 

 

(4)

फिर, सभी पूर्णांकों के लिए n ≥ max{L, M + N}, प्रतिनिधित्व का उपयोग करें (1) के लिए Cn, योग को दो भागों में विभाजित करें, निरपेक्ष मान के लिए त्रिभुज असमानता का उपयोग करें, और अंत में तीन अनुमानों का उपयोग करें (2), (3) और (4) उसे दिखाने के लिए

अभिसरण श्रेणी द्वारा, CnAB आवश्यकता अनुसार।

सेसारो का प्रमेय

ऐसे मामलों में जहां दो अनुक्रम अभिसरण हैं लेकिन पूरी तरह से अभिसरण नहीं हैं, कॉची गुणनफल अभी भी सिजेरो योग है। विशेष रूप से:

अगर , के साथ वास्तविक अनुक्रम हैं और तब

इसे उस मामले में सामान्यीकृत किया जा सकता है जहां दो अनुक्रम अभिसरण नहीं हैं बल्कि सिजेरो सारांश योग्य हैं:

प्रमेय

के लिए और , मान लीजिए अनुक्रम है योग ए और के साथ योगयोग्य है योग बी के साथ योगयोग्य। फिर उनका कॉची गुणनफल है योग AB के साथ योगयोग्य।

उदाहरण

  • कुछ के लिए , होने देना और . तब
    परिभाषा और द्विपद सूत्र के अनुसार। चूंकि, औपचारिक श्रेणी, और , हमने वो करके दिखाया है . चूँकि दो निरपेक्ष अभिसरण श्रेणियों के कॉची गुणनफल की सीमा उन श्रेणियों की सीमाओं के गुणनफल के बराबर है, हमने सूत्र को सिद्ध कर दिया है सभी के लिए .
  • दूसरे उदाहरण के तौर पर, आइए सभी के लिए . तब सभी के लिए तो कॉची गुणनफल
    एकत्रित नहीं होता.

सामान्यीकरण

उपरोक्त सभी अनुक्रमों पर लागू होते हैं (जटिल आंकड़े)। कॉची गुणनफल को श्रेणी के लिए परिभाषित किया जा सकता है रिक्त स्थान (यूक्लिडियन स्थान स्थान) जहां गुणन आंतरिक गुणनफल है। इस मामले में, हमारे पास यह परिणाम है कि यदि दो श्रृंखलाएं पूरी तरह से अभिसरण करती हैं तो उनका कॉची गुणनफल पूरी तरह से सीमाओं के आंतरिक गुणनफल में परिवर्तित हो जाता है।

अनंत अनेक अनंत श्रेणियों के गुणनफल

होने देना ऐसा है कि (वास्तव में निम्नलिखित भी सत्य है लेकिन उस स्थिति में कथन तुच्छ हो जाता है) और चलो जटिल गुणांकों वाली अनंत श्रेणी हो, जिसमें से को छोड़कर सभी एक बिल्कुल अभिसरण करता है, और वें एक जुटता है. फिर तो हद हो गयी

मौजूद है और हमारे पास है:


प्रमाण

क्योंकि

कथन को प्रेरण द्वारा सिद्ध किया जा सकता है : के लिए मामला कॉची गुणनफल के बारे में दावे के समान है। यह हमारा इंडक्शन बेस है.

प्रेरण चरण इस प्रकार है: दावे को सत्य होने दें ऐसा है कि , और जाने जटिल गुणांकों वाली अनंत श्रेणी हो, जिसमें से को छोड़कर सभी एक बिल्कुल अभिसरण करता है, और -वह एकाग्र होता है। हम पहले श्रेणी में प्रेरण परिकल्पना को लागू करते हैं . हमें वह श्रेणी प्राप्त होती है

अभिसरण, और इसलिए, त्रिकोण असमानता और सैंडविच मानदंड, श्रेणी द्वारा
अभिसरण, और इसलिए श्रेणी
बिल्कुल एकाग्र हो जाता है। इसलिए, प्रेरण परिकल्पना द्वारा, मर्टेंस ने जो साबित किया, और चर के नाम बदलकर, हमारे पास है: