समुच्चय फलन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Use American English|date = January 2019}}
{{Use American English|date = January 2019}}
{{Short description|Function from sets to numbers}}
{{Short description|Function from sets to numbers}}
गणित में, विशेष रूप से [[माप सिद्धांत]] में, एक सेट फलन एक फलन (गणित) होता है जिसका फलन का डोमेन कुछ दिए गए सेट के [[सबसेट|उपसमुच्चय]]  के [[Index.php?title=सेट का वर्ग|सेट का वर्ग]] होता है और जो (आमतौर पर) [[विस्तारित वास्तविक संख्या रेखा]] में इसके मान लेता है <math>\R \cup \{ \pm \infty \},</math> जिसमें [[वास्तविक संख्या]]एँ होती हैं <math>\R</math> और <math>\pm \infty.</math>
गणित में, विशेष रूप से [[माप सिद्धांत|मान सिद्धांत]] में, एक सेट फलन एक फलन (गणित) होता है जिसका फलन का डोमेन कुछ दिए गए सेट के [[सबसेट|उपसमुच्चय]]  के [[Index.php?title=सेट का वर्ग|सेट का वर्ग]] होता है और जो (आमतौर पर) [[विस्तारित वास्तविक संख्या रेखा]] में इसके मान लेता है <math>\R \cup \{ \pm \infty \},</math> जिसमें [[वास्तविक संख्या]]एँ होती हैं <math>\R</math> और <math>\pm \infty.</math>
एक सेट फलन का आम तौर पर लक्ष्य होता है, उपसमुच्चय माप (गणित) सेट फलन को मापने के विशिष्ट उदाहरण हैं। इसलिए, शब्द सेट फलन का उपयोग अक्सर माप के गणितीय अर्थ और इसके सामान्य भाषा अर्थ के बीच भ्रम से बचने के लिए किया जाता है।
एक सेट फलन का आम तौर पर लक्ष्य होता है, उपसमुच्चय मान (गणित) सेट फलन को मानने के विशिष्ट उदाहरण हैं। इसलिए, शब्द सेट फलन का उपयोग अक्सर मान के गणितीय अर्थ और इसके सामान्य भाषा अर्थ के बीच भ्रम से बचने के लिए किया जाता है।


== परिभाषाएँ ==
== परिभाषाएँ ==


अगर <math>\mathcal{F}</math> सेट ओवर का वर्ग है <math>\Omega</math> (मतलब है कि <math>\mathcal{F} \subseteq \wp(\Omega)</math> कहाँ <math>\wp(\Omega)</math> [[Index.php?title=पावरसेट|पावरसेट]] को दर्शाता है) फिर {{em|एक सेट फलन <math>\mathcal{F}</math>}} का कार्य है <math>\mu</math> एक फलन के डोमेन के साथ <math>\mathcal{F}</math> और [[कोडोमेन]] <math>[-\infty, \infty]</math> या, कभी-कभी, कोडोमेन इसके बजाय कुछ सदिश स्थान होता है, जैसा सदिश उपायों, [[जटिल उपाय]] और [[प्रक्षेपण-मूल्यवान उपाय|प्रक्षेपण-मानवान उपाय]] के साथ होता है।
अगर <math>\mathcal{F}</math> सेट ओवर का वर्ग है <math>\Omega</math> (मतलब है कि <math>\mathcal{F} \subseteq \wp(\Omega)</math> कहाँ <math>\wp(\Omega)</math> [[Index.php?title=पावरसेट|पावरसेट]] को दर्शाता है) फिर {{em|एक सेट फलन <math>\mathcal{F}</math>}} का कार्य है <math>\mu</math> एक फलन के डोमेन के साथ <math>\mathcal{F}</math> और [[कोडोमेन]] <math>[-\infty, \infty]</math> या, कभी-कभी, कोडोमेन इसके बजाय कुछ सदिश समष्टि होता है, जैसा सदिश मानों, [[जटिल उपाय|जटिल मान]] और [[प्रक्षेपण-मूल्यवान उपाय|प्रक्षेपण-मान मान]] के साथ होता है।
सेट फलन के डोमेन में कोई संख्या गुण हो सकते हैं; आमतौर पर सामने आने वाली गुण और वर्गों की श्रेणियों को नीचे दी गई तालिका में सूचीबद्ध किया गया है।
सेट फलन के डोमेन में कोई संख्या गुण हो सकते हैं; आमतौर पर सामने आने वाली गुण और वर्गों की श्रेणियों को नीचे दी गई तालिका में सूचीबद्ध किया गया है।
{{Families of sets}}
{{Families of sets}}
Line 19: Line 19:
विविधता और द्रव्यमान
विविधता और द्रव्यमान


कुल भिन्नता (माप सिद्धांत) |{{em|{{visible anchor|एक सेट की कुल भिन्नता}}}} <math>S</math> है
कुल भिन्नता (मान सिद्धांत) |{{em|{{visible anchor|एक सेट की कुल भिन्नता}}}} <math>S</math> है
<math display=block>|\mu|(S) ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \sup \{ |\mu(F)| : F \in \mathcal{F} \text{ and } F \subseteq S \}</math>
<math display=block>|\mu|(S) ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \sup \{ |\mu(F)| : F \in \mathcal{F} \text{ and } F \subseteq S \}</math>
जहाँ <math>|\,\cdot\,|</math> [[Index.php?title=निरपेक्ष मान|निरपेक्ष मान]] को दर्शाता है (या अधिक सामान्यतः, यह मानदंड (गणित) या [[सेमिनोर्म]] को दर्शाता है यदि <math>\mu</math> एक ([[सेमिनोर्ड स्पेस]]) [[नॉर्म्ड स्पेस]] में वेक्टर-वैल्यू है)।
जहाँ <math>|\,\cdot\,|</math> [[Index.php?title=निरपेक्ष मान|निरपेक्ष मान]] को दर्शाता है (या अधिक सामान्यतः, यह मानदंड (गणित) या [[सेमिनोर्म]] को दर्शाता है यदि <math>\mu</math> एक ([[सेमिनोर्ड स्पेस]]) [[नॉर्म्ड स्पेस]] में सदिश-वैल्यू है)।
ये मानते हुए <math>\cup \mathcal{F} ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \textstyle\bigcup\limits_{F \in \mathcal{F}} F \in \mathcal{F},</math> तब <math>|\mu|\left(\cup \mathcal{F}\right)</math> कहा जाता है {{em|{{visible anchor|कुल भिन्नता}}}}  का <math>\mu</math> और <math>\mu\left(\cup \mathcal{F}\right)</math> कहा जाता है {{em|{{visible anchor|द्रव्यमान}}}} का <math>\mu.</math> एक सेट फलन कहा जाता है {{em|{{visible anchor|परिमित}}}} यदि प्रत्येक के लिए <math>F \in \mathcal{F},</math> मान <math>\mu(F)</math> है {{em|{{visible anchor|finite value|text=परिमित}}}} (जो परिभाषा के अनुसार इसका मतलब है <math>\mu(F) \neq \infty</math> और <math>\mu(F) \neq -\infty</math>; एक {{em|{{visible anchor|अनंत मूल्य}}}} के बराबर है <math>\infty</math> या <math>- \infty</math>).
ये मानते हुए <math>\cup \mathcal{F} ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \textstyle\bigcup\limits_{F \in \mathcal{F}} F \in \mathcal{F},</math> तब <math>|\mu|\left(\cup \mathcal{F}\right)</math> कहा जाता है {{em|{{visible anchor|कुल भिन्नता}}}}  का <math>\mu</math> और <math>\mu\left(\cup \mathcal{F}\right)</math> कहा जाता है {{em|{{visible anchor|द्रव्यमान}}}} का <math>\mu.</math> एक सेट फलन कहा जाता है {{em|{{visible anchor|परिमित}}}} यदि प्रत्येक के लिए <math>F \in \mathcal{F},</math> मान <math>\mu(F)</math> है {{em|{{visible anchor|finite value|text=परिमित}}}} (जो परिभाषा के अनुसार इसका मतलब है <math>\mu(F) \neq \infty</math> और <math>\mu(F) \neq -\infty</math>; एक {{em|{{visible anchor|अनंत मूल्य}}}} के बराबर है <math>\infty</math> या <math>- \infty</math>).
प्रत्येक परिमित समुच्चय फलन का एक परिमित #द्रव्यमान होना चाहिए।
प्रत्येक परिमित समुच्चय फलन का एक परिमित #द्रव्यमान होना चाहिए।
Line 28: Line 28:


एक सेट फलन <math>\mu</math> पर <math>\mathcal{F}</math> बताया गया{{sfn|Durrett|2019|pp=1-37, 455-470}} {{em|{{visible anchor|गैर नकारात्मक}}}}  यदि इसका मान  <math>[0, \infty].</math> है।
एक सेट फलन <math>\mu</math> पर <math>\mathcal{F}</math> बताया गया{{sfn|Durrett|2019|pp=1-37, 455-470}} {{em|{{visible anchor|गैर नकारात्मक}}}}  यदि इसका मान  <math>[0, \infty].</math> है।
<li>फिनिटली एडिटिव सेट फलन {{em|{{visible anchor|निश्चित रूप से योगात्मक}}}} अगर <math>\textstyle\sum\limits_{i=1}^n \mu\left(F_i\right) = \mu\left(\textstyle\bigcup\limits_{i=1}^n F_i\right)</math> सभी जोड़ीदार असंयुक्त परिमित अनुक्रमों के लिए <math>F_1, \ldots, F_n \in \mathcal{F}</math> ऐसा है कि <math>\textstyle\bigcup\limits_{i=1}^n F_i \in \mathcal{F}.</math>
<li>फिनिटली एडिटिव सेट फलन {{em|{{visible anchor|निश्चित रूप से योगात्मक}}}} अगर <math>\textstyle\sum\limits_{i=1}^n \mu\left(F_i\right) = \mu\left(\textstyle\bigcup\limits_{i=1}^n F_i\right)</math> सभी युग्‍मानूसार असंयुक्त परिमित अनुक्रमों के लिए <math>F_1, \ldots, F_n \in \mathcal{F}</math> ऐसा है कि <math>\textstyle\bigcup\limits_{i=1}^n F_i \in \mathcal{F}.</math>
* अगर <math>\mathcal{F}</math> बाइनरी [[ संघ (सेट सिद्धांत) ]] के तहत बंद है <math>\mu</math> निश्चित रूप से योज्य है अगर और केवल अगर <math>\mu(E \cup F) = \mu(E) + \mu(F)</math> सभी असंबद्ध जोड़ियों के लिए <math>E, F \in \mathcal{F}.</math> है।
* अगर <math>\mathcal{F}</math> बाइनरी [[ संघ (सेट सिद्धांत) ]] के तहत बंद है <math>\mu</math> निश्चित रूप से योज्य है अगर और केवल अगर <math>\mu(E \cup F) = \mu(E) + \mu(F)</math> सभी असंबद्ध जोड़ियों के लिए <math>E, F \in \mathcal{F}.</math> है।
* अगर <math>\mu</math> निश्चित रूप से योज्य है और यदि <math>\varnothing \in \mathcal{F}</math> फिर ले रहा है <math>E := F := \varnothing</math> पता चलता है कि <math>\mu(\varnothing) = \mu(\varnothing) + \mu(\varnothing)</math> जो केवल तभी संभव है <math>\mu(\varnothing) = 0</math> या <math>\mu(\varnothing) = \pm \infty,</math> जहां बाद के मामले में, <math>\mu(E) = \mu(E \cup \varnothing) = \mu(E) + \mu(\varnothing) = \mu(E) + (\pm \infty) = \pm \infty</math> हर एक के लिए <math>E \in \mathcal{F}</math> (इसलिए केवल मामला <math>\mu(\varnothing) = 0</math> उपयोगी है)।
* अगर <math>\mu</math> निश्चित रूप से योज्य है और यदि <math>\varnothing \in \mathcal{F}</math> फिर ले रहा है <math>E := F := \varnothing</math> पता चलता है कि <math>\mu(\varnothing) = \mu(\varnothing) + \mu(\varnothing)</math> जो केवल तभी संभव है <math>\mu(\varnothing) = 0</math> या <math>\mu(\varnothing) = \pm \infty,</math> जहां बाद के मामले में, <math>\mu(E) = \mu(E \cup \varnothing) = \mu(E) + \mu(\varnothing) = \mu(E) + (\pm \infty) = \pm \infty</math> हर एक के लिए <math>E \in \mathcal{F}</math> (इसलिए केवल मामला <math>\mu(\varnothing) = 0</math> उपयोगी है)।
<li>सिग्मा-एडिटिव सेट फलन {{em|{{visible anchor|गणनीय रूप से योगात्मक}}}} या सिग्मा-एडिटिव सेट फलन {{em|{{visible anchor|σ-योगात्मक}}}}{{sfn|Durrett|2019|pp=466-470}} यदि परिमित रूप से योज्य होने के अलावा, सभी जोड़ीदार असंयुक्त अनुक्रमों के लिए <math>F_1, F_2, \ldots\,</math> में <math>\mathcal{F}</math> ऐसा है कि <math>\textstyle\bigcup\limits_{i=1}^\infty F_i \in \mathcal{F},</math> निम्नलिखित सभी धारण करते हैं: a<math>\textstyle\sum\limits_{i=1}^\infty \mu\left(F_i\right) = \mu\left(\textstyle\bigcup\limits_{i=1}^\infty F_i\right)</math>
<li>सिग्मा-एडिटिव सेट फलन {{em|{{visible anchor|गणनीय रूप से योगात्मक}}}} या सिग्मा-एडिटिव सेट फलन {{em|{{visible anchor|σ-योगात्मक}}}}{{sfn|Durrett|2019|pp=466-470}} यदि परिमित रूप से योज्य होने के अलावा, सभी युग्‍मानूसार असंयुक्त अनुक्रमों के लिए <math>F_1, F_2, \ldots\,</math> में <math>\mathcal{F}</math> ऐसा है कि <math>\textstyle\bigcup\limits_{i=1}^\infty F_i \in \mathcal{F},</math> निम्नलिखित सभी धारण करते हैं: a<math>\textstyle\sum\limits_{i=1}^\infty \mu\left(F_i\right) = \mu\left(\textstyle\bigcup\limits_{i=1}^\infty F_i\right)</math>
* बाईं ओर की श्रृंखला को सामान्य तरीके से सीमा के रूप में परिभाषित किया गया है <math>\textstyle\sum\limits_{i=1}^\infty \mu\left(F_i\right) ~\stackrel{\scriptscriptstyle\text{def}}{=}~ {\displaystyle\lim_{n \to \infty}}  \mu\left(F_1\right) + \cdots + \mu\left(F_n\right).</math>
* बाईं ओर की श्रृंखला को सामान्य तरीके से सीमा के रूप में परिभाषित किया गया है <math>\textstyle\sum\limits_{i=1}^\infty \mu\left(F_i\right) ~\stackrel{\scriptscriptstyle\text{def}}{=}~ {\displaystyle\lim_{n \to \infty}}  \mu\left(F_1\right) + \cdots + \mu\left(F_n\right).</math>
*परिणामस्वरूप, यदि <math>\rho : \N \to \N</math> तब कोई क्रम[[परिवर्तन]]/आपत्ति है <math>\textstyle\sum\limits_{i=1}^\infty \mu\left(F_i\right) = \textstyle\sum\limits_{i=1}^\infty \mu\left(F_{\rho(i)}\right);</math> यह है क्योंकि <math>\textstyle\bigcup\limits_{i=1}^\infty F_i = \textstyle\bigcup\limits_{i=1}^\infty F_{\rho(i)}</math> और इस शर्त को लागू करना () दो बार गारंटी देता है कि दोनों <math>\textstyle\sum\limits_{i=1}^\infty \mu\left(F_i\right) = \mu\left(\textstyle\bigcup\limits_{i=1}^\infty F_i\right)</math> और <math>\mu\left(\textstyle\bigcup\limits_{i=1}^\infty F_{\rho(i)}\right) = \textstyle\sum\limits_{i=1}^\infty \mu\left(F_{\rho(i)}\right)</math> पकड़ना। परिभाषा के अनुसार, इस संपत्ति के साथ अभिसरण श्रृंखला को [[बिना शर्त अभिसरण]] कहा जाता है। सादे अंग्रेजी में कहा गया है, इसका मतलब है कि सेट को पुनर्व्यवस्थित/रीलेबल करना <math>F_1, F_2, \ldots</math> नए आदेश के लिए <math>F_{\rho(1)}, F_{\rho(2)}, \ldots</math> उनके उपायों के योग को प्रभावित नहीं करता है। संघ के रूप में ही यह वांछनीय है <math>F ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \textstyle\bigcup\limits_{i \in \N} F_i</math> इन सेटों के क्रम पर निर्भर नहीं करता है, वही राशियों के लिए सही होना चाहिए <math>\mu(F) = \mu\left(F_1\right) + \mu\left(F_2\right) + \cdots</math> और <math>\mu(F) = \mu\left(F_{\rho(1)}\right) + \mu\left(F_{\rho(2)}\right) + \cdots\,.</math></ली>
*परिणामस्वरूप, यदि <math>\rho : \N \to \N</math> तब कोई क्रम [[परिवर्तन]]/आपत्ति है <math>\textstyle\sum\limits_{i=1}^\infty \mu\left(F_i\right) = \textstyle\sum\limits_{i=1}^\infty \mu\left(F_{\rho(i)}\right);</math> यह है क्योंकि <math>\textstyle\bigcup\limits_{i=1}^\infty F_i = \textstyle\bigcup\limits_{i=1}^\infty F_{\rho(i)}</math> और इस शर्त को लागू करना (a) दो बार गारंटी देता है कि दोनों <math>\textstyle\sum\limits_{i=1}^\infty \mu\left(F_i\right) = \mu\left(\textstyle\bigcup\limits_{i=1}^\infty F_i\right)</math> और <math>\mu\left(\textstyle\bigcup\limits_{i=1}^\infty F_{\rho(i)}\right) = \textstyle\sum\limits_{i=1}^\infty \mu\left(F_{\rho(i)}\right)</math> पकड़ना है। परिभाषा के अनुसार, इस गुण के साथ अभिसरण श्रृंखला को [[बिना शर्त अभिसरण]] कहा जाता है। सामान्य अंग्रेजी में कहा गया है, इसका मतलब है कि सेट को पुनर्व्यवस्थित/पुन: लेबलिंग करना <math>F_1, F_2, \ldots</math> नए आदेश के लिए <math>F_{\rho(1)}, F_{\rho(2)}, \ldots</math> उनके मानों के योग को प्रभावित नहीं करता है। संघ के रूप में ही यह वांछनीय है <math>F ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \textstyle\bigcup\limits_{i \in \N} F_i</math> इन सेटों के क्रम पर निर्भर नहीं करता है, वही योगफल के लिए सही होना चाहिए <math>\mu(F) = \mu\left(F_1\right) + \mu\left(F_2\right) + \cdots</math> और <math>\mu(F) = \mu\left(F_{\rho(1)}\right) + \mu\left(F_{\rho(2)}\right) + \cdots\,.</math>
<ली>अगर <math>\mu\left(\textstyle\bigcup\limits_{i=1}^\infty F_i\right)</math> अनंत नहीं है तो यह श्रृंखला <math>\textstyle\sum\limits_{i=1}^\infty \mu\left(F_i\right)</math> [[पूर्ण अभिसरण]] भी होना चाहिए, जिसका परिभाषा के अनुसार अर्थ है <math>\textstyle\sum\limits_{i=1}^\infty \left|\mu\left(F_i\right)\right|</math> परिमित होना चाहिए। यह स्वचालित रूप से सत्य है यदि <math>\mu</math> #non-negative|non-negative है (या केवल विस्तारित वास्तविक संख्याओं में मान)।
अगर <math>\mu\left(\textstyle\bigcup\limits_{i=1}^\infty F_i\right)</math> अनंत नहीं है तो यह श्रृंखला <math>\textstyle\sum\limits_{i=1}^\infty \mu\left(F_i\right)</math> [[पूर्ण अभिसरण]] भी होना चाहिए, जिसका परिभाषा के अनुसार अर्थ है <math>\textstyle\sum\limits_{i=1}^\infty \left|\mu\left(F_i\right)\right|</math> परिमित होना चाहिए। यह स्वचालित रूप से सत्य है यदि <math>\mu</math> #ऋणेतर संख्या है (या केवल विस्तारित वास्तविक संख्याओं में मान)।
* [[रीमैन श्रृंखला प्रमेय]], श्रृंखला द्वारा वास्तविक संख्याओं की किसी भी अभिसरण श्रृंखला के साथ <math>\textstyle\sum\limits_{i=1}^\infty \mu\left(F_i\right) = {\displaystyle\lim_{N \to \infty}} \mu\left(F_1\right) + \mu\left(F_2\right) + \cdots + \mu\left(F_N\right)</math> पूरी तरह से अभिसरण करता है अगर और केवल अगर इसका योग इसकी शर्तों के क्रम पर निर्भर नहीं करता है (बिना शर्त अभिसरण के रूप में जाना जाने वाला गुण)। चूंकि बिना शर्त अभिसरण की ऊपर () द्वारा गारंटी दी गई है, यह स्थिति स्वचालित रूप से सत्य है यदि <math>\mu</math> में मानवान है <math>[-\infty, \infty].</math></ली>
* [[रीमैन श्रृंखला प्रमेय]], श्रृंखला द्वारा वास्तविक संख्याओं की किसी भी अभिसरण श्रृंखला के साथ <math>\textstyle\sum\limits_{i=1}^\infty \mu\left(F_i\right) = {\displaystyle\lim_{N \to \infty}} \mu\left(F_1\right) + \mu\left(F_2\right) + \cdots + \mu\left(F_N\right)</math> पूरी तरह से अभिसरण करता है अगर और केवल अगर इसका योग इसकी शर्तों के क्रम पर निर्भर नहीं करता है (बिना शर्त अभिसरण के रूप में जाना जाने वाला गुण)। चूंकि बिना शर्त अभिसरण की ऊपर (a) द्वारा गारंटी दी गई है, यह स्थिति स्वचालित रूप से सत्य है यदि <math>\mu</math> में मान है <math>[-\infty, \infty].</math>
<ली>अगर <math>\mu\left(\textstyle\bigcup\limits_{i=1}^\infty F_i\right) = \textstyle\sum\limits_{i=1}^\infty \mu\left(F_i\right)</math> अनंत है तो यह भी आवश्यक है कि श्रृंखला में से कम से कम एक का मान हो <math>\textstyle\sum\limits_{\stackrel{i \in \N}{\mu\left(F_i\right) > 0}} \mu\left(F_i\right) \; \text{ and } \; \textstyle\sum\limits_{\stackrel{i \in \N}{\mu\left(F_i\right) < 0}} \mu\left(F_i\right) \;</math> परिमित हो (ताकि उनके मानों का योग अच्छी तरह से परिभाषित हो)। यह स्वचालित रूप से सत्य है यदि <math>\mu</math> #गैर-नकारात्मक|गैर-नकारात्मक है।</li>
अगर <math>\mu\left(\textstyle\bigcup\limits_{i=1}^\infty F_i\right) = \textstyle\sum\limits_{i=1}^\infty \mu\left(F_i\right)</math> अनंत है तो यह भी आवश्यक है कि श्रृंखला में से कम से कम एक का मान हो <math>\textstyle\sum\limits_{\stackrel{i \in \N}{\mu\left(F_i\right) > 0}} \mu\left(F_i\right) \; \text{ औ  र } \; \textstyle\sum\limits_{\stackrel{i \in \N}{\mu\left(F_i\right) < 0}} \mu\left(F_i\right) \;</math> परिमित हो (ताकि उनके मानों का योग अच्छी तरह से परिभाषित हो)। यह स्वचालित रूप से सत्य है यदि <math>\mu</math> #गैर-नकारात्मक है।</li><li>एक पूर्व-मान|{{em|{{visible anchor|पूर्व मान}}}} अगर यह #ऋणेतर संख्या है, [[सिग्मा-एडिटिव सेट फंक्शन|सिग्मा-एडिटिव सेट फलन]] (#परिमित एडिटिव सहित), और एक # खाली सेट है।</li>
</ओल>
<li>एक मान (गणित)|{{em|{{visible anchor|मान}}}} अगर यह एक #पूर्व मान है जिसका डोमेन σ-बीजगणित है। कहने का मतलब यह है कि मान एक σ-बीजगणित पर एक गैर-नकारात्मक गणन योग्य योज्य सेट फलन है जिसमें एक #शून्य खाली सेट होता है।</li>
</ली>
<li>एक {{em|{{visible anchor|संभाव्यता माप}}}} यदि यह एक मान है जिसका #द्रव्यमान है <math>1.</math>
<li>एक पूर्व-उपाय|{{em|{{visible anchor|pre-measure}}}} अगर यह #non-negative|non-negative है, [[सिग्मा-एडिटिव सेट फंक्शन|सिग्मा-एडिटिव सेट फलन]] (#Finitely एडिटिव सहित), और एक #null खाली सेट है।</li>
<li>एक बाहरी मान|{{em|{{visible anchor|बाहरी मान}}}} अगर यह गैर-नकारात्मक है, #गणनात्मक रूप से सबएडिटिव है, एक #शून्य खाली सेट है, और [[ सत्ता स्थापित | पावरसेट]] है <math>\wp(\Omega)</math> इसके डोमेन के रूप में।
<li>एक माप (गणित)|{{em|{{visible anchor|measure}}}} अगर यह एक #pre-measure|pre-measure है जिसका डोमेन σ-बीजगणित है। कहने का मतलब यह है कि माप एक σ-बीजगणित पर एक गैर-नकारात्मक गणन योग्य योज्य सेट फलन है जिसमें एक #शून्य खाली सेट होता है।</li>
* कैराथियोडोरी के विस्तार प्रमेय में बाहरी मान दिखाई देते हैं और वे अक्सर कैराथियोडोरी की कसौटी पर [[प्रतिबंध (गणित)]] होते हैं। कैराथियोडोरी मानने योग्य उपसमुच्चय</li>
<li>एक संभाव्यता माप|{{em|{{visible anchor|probability measure}}}} यदि यह एक माप है जिसका #द्रव्यमान है <math>1.</math></ली>
<li>एक हस्ताक्षरित मान|{{em|{{visible anchor|सांकेतिक मान}}}} यदि यह गिनती योगात्मक है, तो #खाली सेट है, और <math>\mu</math> दोनों नहीं लेता <math>- \infty</math> और <math>+ \infty</math> मानों के रूप में।</li>
<li>एक बाहरी माप|{{em|{{visible anchor|outer measure}}}} अगर यह गैर-नकारात्मक है, #गणनात्मक रूप से सबएडिटिव है, एक #शून्य खाली सेट है, और [[ सत्ता स्थापित | पावरसेट]] है <math>\wp(\Omega)</math> इसके डोमेन के रूप में।
<li>पूरा मान {{em|{{visible anchor|पुर्ण}}}} यदि प्रत्येक #रिक्त सेट का प्रत्येक उपसमुच्चय रिक्त है; स्पष्ट रूप से, इसका अर्थ है: जब भी <math>F \in \mathcal{F} \text{ satisfies } \mu(F) = 0</math> और <math>N \subseteq F</math> का कोई उपसमुच्चय है <math>F</math> तब <math>N \in \mathcal{F}</math> और <math>\mu(N) = 0.</math>
* कैराथियोडोरी के विस्तार प्रमेय में बाहरी उपाय दिखाई देते हैं और वे अक्सर कैराथियोडोरी की कसौटी पर [[प्रतिबंध (गणित)]] होते हैं। कैराथियोडोरी मापने योग्य उपसमुच्चय</li>
<li>एक हस्ताक्षरित उपाय|{{em|{{visible anchor|signed measure}}}} यदि यह गिनती योगात्मक है, तो #null खाली सेट है, और <math>\mu</math> दोनों नहीं लेता <math>- \infty</math> और <math>+ \infty</math> मानों के रूप में।</li>
<li>पूरा उपाय|{{em|{{visible anchor|complete}}}} यदि प्रत्येक #null सेट का प्रत्येक उपसमुच्चय रिक्त है; स्पष्ट रूप से, इसका अर्थ है: जब भी <math>F \in \mathcal{F} \text{ satisfies } \mu(F) = 0</math> और <math>N \subseteq F</math> का कोई उपसमुच्चय है <math>F</math> तब <math>N \in \mathcal{F}</math> और <math>\mu(N) = 0.</math>
* कई अन्य गुणों के विपरीत, पूर्णता सेट पर आवश्यकताओं को रखती है <math>\operatorname{domain} \mu = \mathcal{F}</math> (और न सिर्फ चालू <math>\mu</math>के मान).</li>
* कई अन्य गुणों के विपरीत, पूर्णता सेट पर आवश्यकताओं को रखती है <math>\operatorname{domain} \mu = \mathcal{F}</math> (और न सिर्फ चालू <math>\mu</math>के मान).</li>
<li>σ-सीमित माप|{{em|{{visible anchor|{{sigma}}-finite}}}} यदि कोई अनुक्रम मौजूद है <math>F_1, F_2, F_3, \ldots\,</math> में <math>\mathcal{F}</math> ऐसा है कि <math>\mu\left(F_i\right)</math> प्रत्येक सूचकांक के लिए परिमित है <math>i,</math> और भी <math>\textstyle\bigcup\limits_{n=1}^\infty F_n = \textstyle\bigcup\limits_{F \in \mathcal{F}} F.</math></ली>
<li>σ-सीमित मान {{em|{{visible anchor|{{sigma}}-सीमित}}}} यदि कोई अनुक्रम मौजूद है <math>F_1, F_2, F_3, \ldots\,</math> में <math>\mathcal{F}</math> ऐसा है कि <math>\mu\left(F_i\right)</math> प्रत्येक सूचकांक के लिए परिमित है <math>i,</math> और भी <math>\textstyle\bigcup\limits_{n=1}^\infty F_n = \textstyle\bigcup\limits_{F \in \mathcal{F}} F.</math>
<li>विघटित करने योग्य माप|{{em|{{visible anchor|decomposable}}}} यदि कोई उपवर्ग मौजूद है <math>\mathcal{P} \subseteq \mathcal{F}</math> जोड़ो में असंयुक्त सेट की इस तरह है कि <math>\mu(P)</math> प्रत्येक के लिए परिमित है <math>P \in \mathcal{P}</math> और भी <math>\textstyle\bigcup\limits_{P \in \mathcal{P}} \, P = \textstyle\bigcup\limits_{F \in \mathcal{F}} F</math> (कहाँ <math>\mathcal{F} = \operatorname{domain} \mu</math>).
<li>विघटित करने योग्य मान {{em|{{visible anchor|वियोजनीय}}}} यदि कोई उपवर्ग मौजूद है <math>\mathcal{P} \subseteq \mathcal{F}</math> जोड़ो में असंयुक्त सेट की इस तरह है कि <math>\mu(P)</math> प्रत्येक के लिए परिमित है <math>P \in \mathcal{P}</math> और भी <math>\textstyle\bigcup\limits_{P \in \mathcal{P}} \, P = \textstyle\bigcup\limits_{F \in \mathcal{F}} F</math> (कहाँ <math>\mathcal{F} = \operatorname{domain} \mu</math>).
* प्रत्येक {{sigma}}-फ़िनिट सेट फलन डीकंपोज़ेबल है, हालांकि इसके विपरीत नहीं। उदाहरण के लिए, गिनती माप पर <math>\R</math> (जिसका डोमेन है <math>\wp(\R)</math>) डीकंपोज़ेबल है लेकिन नहीं {{sigma}}-परिमित।</li>
* प्रत्येक {{sigma}}-फ़िनिट सेट फलन वियोजनीय है, हालांकि इसके विपरीत नहीं। उदाहरण के लिए, गिनती मान पर <math>\R</math> (जिसका डोमेन है <math>\wp(\R)</math>) वियोजनीय है लेकिन नहीं {{sigma}}-परिमित है।</li>
<li>एक वेक्टर माप|{{em|{{visible anchor|vector measure}}}} यदि यह एक गिने-चुने योज्य समुच्चय फलन है <math>\mu : \mathcal{F} \to X</math> एक [[टोपोलॉजिकल वेक्टर स्पेस]] में मानवान <math>X</math> (जैसे एक आदर्श स्थान) जिसका डोमेन σ-बीजगणित है।
<li>एक सदिश मान यदि यह एक गिने-चुने योज्य समुच्चय फलन है <math>\mu : \mathcal{F} \to X</math> एक [[Index.php?title=सांस्थितिक सदिश समष्टि|सांस्थितिक सदिश समष्टि]] में मान <math>X</math> (जैसे एक आदर्श समष्टि) जिसका डोमेन σ-बीजगणित है।
* अगर <math>\mu</math> एक आदर्श स्थान में मानवान है <math>(X, \|\cdot\|)</math> तो यह गिनती योगात्मक है अगर और केवल अगर किसी भी जोड़ीदार संबंध विच्छेद अनुक्रम के लिए <math>F_1, F_2, \ldots\,</math> में <math>\mathcal{F},</math> <math>\lim_{n \to \infty} \left\|\mu\left(F_1\right) + \cdots + \mu\left(F_n\right) - \mu\left(\textstyle\bigcup\limits_{i=1}^\infty F_i\right)\right\| = 0.</math> अगर <math>\mu</math> एक [[बनच स्थान]] में सूक्ष्म रूप से योगात्मक और मानवान है, तो यह योगात्मक रूप से योगात्मक है यदि और केवल यदि किसी जोड़ीदार असंबद्ध अनुक्रम के लिए <math>F_1, F_2, \ldots\,</math> में <math>\mathcal{F},</math> <math>\lim_{n \to \infty} \left\|\mu\left(F_n \cup F_{n+1} \cup F_{n+2} \cup \cdots\right)\right\| = 0.</math></ली>
* अगर <math>\mu</math> एक आदर्श समष्टि में मान है <math>(X, \|\cdot\|)</math> तो यह गिनती योगात्मक है अगर और केवल अगर किसी भी युग्‍मानूसार संबंध विच्छेद अनुक्रम के लिए <math>F_1, F_2, \ldots\,</math> में <math>\mathcal{F},</math> <math>\lim_{n \to \infty} \left\|\mu\left(F_1\right) + \cdots + \mu\left(F_n\right) - \mu\left(\textstyle\bigcup\limits_{i=1}^\infty F_i\right)\right\| = 0.</math> है अगर <math>\mu</math> एक [[बनच स्थान|बनच समष्टि]] में सूक्ष्म रूप से योगात्मक और मान है, तो यह योगात्मक रूप से योगात्मक है यदि और केवल यदि किसी युग्‍मानूसार असंबद्ध अनुक्रम के लिए <math>F_1, F_2, \ldots\,</math> में <math>\mathcal{F},</math> <math>\lim_{n \to \infty} \left\|\mu\left(F_n \cup F_{n+1} \cup F_{n+2} \cup \cdots\right)\right\| = 0.</math> है।
<li>एक जटिल उपाय|{{em|{{visible anchor|complex measure}}}} यदि यह एक गिने-चुने योगात्मक [[जटिल संख्या]]-मानवान सेट फलन है <math>\mu : \mathcal{F} \to \Complex</math> जिसका प्रांत σ-बीजगणित है।
<li>एक जटिल मान यदि यह एक गिने-चुने योगात्मक [[जटिल संख्या]]-मान सेट फलन है <math>\mu : \mathcal{F} \to \Complex</math> जिसका प्रांत σ-बीजगणित है।
* परिभाषा के अनुसार, एक जटिल उपाय कभी नहीं होता है <math>\pm \infty</math> एक मान के रूप में और इसलिए एक #शून्य खाली सेट है।</li>
* परिभाषा के अनुसार, एक जटिल मान कभी नहीं होता है <math>\pm \infty</math> एक मान के रूप में और इसलिए एक #शून्य खाली सेट है।</li>
<li>एक यादृच्छिक उपाय|{{em|{{visible anchor|random measure}}}} यदि यह एक माप-मानवान [[यादृच्छिक तत्व]] है।</li>
<li>एक यादृच्छिक मान यदि यह एक मान-मान [[यादृच्छिक तत्व]] है।</li>


मनमानी रकम
=== यादृच्छिक योग ===


वर्णित श्रृंखला (गणित)#किसी भी वर्ग के लिए सामान्यीकृत श्रृंखला पर इस लेख के खंड में मनमाना सूचकांक सेट पर योग| <math>\left(r_i\right)_{i \in I}</math> एक मनमाना [[अनुक्रमण सेट]] द्वारा अनुक्रमित वास्तविक संख्याओं का <math>I,</math> उनकी राशि को परिभाषित करना संभव है <math>\textstyle\sum\limits_{i \in I} r_i</math> परिमित आंशिक योगों के शुद्ध (गणित) की सीमा के रूप में <math>F \in \operatorname{FiniteSubsets}(I) \mapsto \textstyle\sum\limits_{i \in F} r_i</math> जहां डोमेन <math>\operatorname{FiniteSubsets}(I)</math> द्वारा निर्देशित किया गया है <math>\,\subseteq.\,</math> जब कभी यह [[अभिसारी जाल]] होता है तो इसकी सीमा को प्रतीकों द्वारा निरूपित किया जाता है <math>\textstyle\sum\limits_{i \in I} r_i</math> जबकि अगर यह नेट इसके बजाय अलग हो जाता है <math>\pm \infty</math> तो यह लिखकर संकेत किया जा सकता है <math>\textstyle\sum\limits_{i \in I} r_i = \pm \infty.</math> रिक्त समुच्चय पर किसी भी योग को शून्य के रूप में परिभाषित किया गया है; वह है, अगर <math>I = \varnothing</math> तब <math>\textstyle\sum\limits_{i \in \varnothing} r_i = 0</math> परिभाषा से।
वर्णित श्रृंखला (गणित)#किसी भी वर्ग के लिए सामान्यीकृत श्रृंखला पर इस लेख के खंड में यादृच्छिक सूचकांक सेट पर योग <math>\left(r_i\right)_{i \in I}</math> एक यादृच्छिक [[अनुक्रमण सेट]] द्वारा अनुक्रमित वास्तविक संख्याओं का <math>I,</math> उनकी राशि को परिभाषित करना संभव है <math>\textstyle\sum\limits_{i \in I} r_i</math> परिमित आंशिक योगों के शुद्ध (गणित) की सीमा के रूप में <math>F \in \operatorname{FiniteSubsets}(I) \mapsto \textstyle\sum\limits_{i \in F} r_i</math> जहां डोमेन <math>\operatorname{FiniteSubsets}(I)</math> द्वारा निर्देशित किया गया है <math>\,\subseteq.\,</math> जब कभी यह [[अभिसारी जाल]] होता है तो इसकी सीमा को प्रतीकों द्वारा निरूपित किया जाता है <math>\textstyle\sum\limits_{i \in I} r_i</math> जबकि अगर यह नेट इसके बजाय अलग हो जाता है <math>\pm \infty</math> तो यह लिखकर संकेत किया जा सकता है <math>\textstyle\sum\limits_{i \in I} r_i = \pm \infty.</math> रिक्त समुच्चय पर किसी भी योग को शून्य के रूप में परिभाषित किया गया है; वह है, अगर <math>I = \varnothing</math> तब <math>\textstyle\sum\limits_{i \in \varnothing} r_i = 0</math> परिभाषा है।


उदाहरण के लिए, यदि <math>z_i = 0</math> हरएक के लिए <math>i \in I</math> तब <math>\textstyle\sum\limits_{i \in I} z_i = 0.</math> और यह दिखाया जा सकता है <math>\textstyle\sum\limits_{i \in I} r_i = \textstyle\sum\limits_{\stackrel{i \in I,}{r_i = 0}} r_i + \textstyle\sum\limits_{\stackrel{i \in I,}{r_i \neq 0}} r_i = 0 + \textstyle\sum\limits_{\stackrel{i \in I,}{r_i \neq 0}} r_i = \textstyle\sum\limits_{\stackrel{i \in I,}{r_i \neq 0}} r_i.</math> अगर <math>I = \N</math> फिर सामान्यीकृत श्रृंखला <math>\textstyle\sum\limits_{i \in I} r_i</math> में विलीन हो जाता है <math>\R</math> अगर और केवल अगर <math>\textstyle\sum\limits_{i=1}^\infty r_i</math> बिना शर्त अभिसरण (या समकक्ष, पूर्ण अभिसरण) सामान्य अर्थों में।
उदाहरण के लिए, यदि <math>z_i = 0</math> हर एक के लिए <math>i \in I</math> तब <math>\textstyle\sum\limits_{i \in I} z_i = 0.</math> और यह दिखाया जा सकता है <math>\textstyle\sum\limits_{i \in I} r_i = \textstyle\sum\limits_{\stackrel{i \in I,}{r_i = 0}} r_i + \textstyle\sum\limits_{\stackrel{i \in I,}{r_i \neq 0}} r_i = 0 + \textstyle\sum\limits_{\stackrel{i \in I,}{r_i \neq 0}} r_i = \textstyle\sum\limits_{\stackrel{i \in I,}{r_i \neq 0}} r_i.</math> अगर <math>I = \N</math> फिर सामान्यीकृत श्रृंखला <math>\textstyle\sum\limits_{i \in I} r_i</math> में विलीन हो जाता है <math>\R</math> अगर और केवल अगर <math>\textstyle\sum\limits_{i=1}^\infty r_i</math> बिना शर्त अभिसरण (या समकक्ष, पूर्ण अभिसरण) सामान्य अर्थों में।
यदि एक सामान्यीकृत श्रृंखला <math>\textstyle\sum\limits_{i \in I} r_i</math> में विलीन हो जाता है <math>\R</math> फिर दोनों <math>\textstyle\sum\limits_{\stackrel{i \in I}{r_i > 0}} r_i</math> और <math>\textstyle\sum\limits_{\stackrel{i \in I}{r_i < 0}} r_i</math> के तत्वों में भी अभिसरण करते हैं <math>\R</math> और सेट <math>\left\{i \in I : r_i \neq 0\right\}</math> आवश्यक रूप से गणनीय समुच्चय है (अर्थात, या तो परिमित या [[गणनीय रूप से अनंत]]); श्रृंखला (गणित) # एबेलियन टोपोलॉजिकल समूह यदि <math>\R</math> किसी भी सामान्य स्थान से प्रतिस्थापित किया जाता है।<ref group=proof name=ProofCountablyManyNon0Terms />  
यदि एक सामान्यीकृत श्रृंखला <math>\textstyle\sum\limits_{i \in I} r_i</math> में विलीन हो जाता है <math>\R</math> फिर दोनों <math>\textstyle\sum\limits_{\stackrel{i \in I}{r_i > 0}} r_i</math> और <math>\textstyle\sum\limits_{\stackrel{i \in I}{r_i < 0}} r_i</math> के तत्वों में भी अभिसरण करते हैं <math>\R</math> और सेट <math>\left\{i \in I : r_i \neq 0\right\}</math> आवश्यक रूप से गणनीय समुच्चय है (अर्थात, या तो परिमित या [[गणनीय रूप से अनंत]]); श्रृंखला (गणित) # एबेलियन सांस्थिति समूह यदि <math>\R</math> किसी भी सामान्य समष्टि से प्रतिस्थापित किया जाता है।<ref group="proof" name="ProofCountablyManyNon0Terms" />  
यह इस प्रकार है कि एक सामान्यीकृत श्रृंखला के लिए <math>\textstyle\sum\limits_{i \in I} r_i</math> में जुटना <math>\R</math> या <math>\Complex,</math> यह आवश्यक है कि सभी लेकिन अधिक से अधिक संख्या में <math>r_i</math> के बराबर होगा <math>0,</math> जिसका अर्थ है कि <math>\textstyle\sum\limits_{i \in I} r_i ~=~ \textstyle\sum\limits_{\stackrel{i \in I}{r_i \neq 0}} r_i</math> अधिक से अधिक कई गैर-शून्य शब्दों का योग है।
यह इस प्रकार है कि एक सामान्यीकृत श्रृंखला के लिए <math>\textstyle\sum\limits_{i \in I} r_i</math> में जुटना <math>\R</math> या <math>\Complex,</math> यह आवश्यक है कि सभी लेकिन अधिक से अधिक संख्या में <math>r_i</math> के बराबर होगा <math>0,</math> जिसका अर्थ है कि <math>\textstyle\sum\limits_{i \in I} r_i ~=~ \textstyle\sum\limits_{\stackrel{i \in I}{r_i \neq 0}} r_i</math> अधिक से अधिक कई गैर-शून्य शब्दों का योग है।
अलग ढंग से कहा, अगर <math>\left\{i \in I : r_i \neq 0\right\}</math> बेशुमार है तो सामान्यीकृत श्रृंखला <math>\textstyle\sum\limits_{i \in I} r_i</math> एकाग्र नहीं होता।
अलग ढंग से कहा, अगर <math>\left\{i \in I : r_i \neq 0\right\}</math> अगणनीय है तो सामान्यीकृत श्रृंखला <math>\textstyle\sum\limits_{i \in I} r_i</math> एकाग्र नहीं होती है।


संक्षेप में, वास्तविक संख्याओं की प्रकृति और इसकी टोपोलॉजी के कारण, वास्तविक संख्याओं की प्रत्येक सामान्यीकृत श्रृंखला (एक मनमाना सेट द्वारा अनुक्रमित) जो अभिसरण करता है, को कई वास्तविक संख्याओं की एक सामान्य पूर्ण रूप से अभिसरण श्रृंखला में घटाया जा सकता है। इसलिए माप सिद्धांत के संदर्भ में, बेशुमार सेटों और सामान्यीकृत श्रृंखलाओं पर विचार करने से बहुत कम लाभ प्राप्त होता है। विशेष रूप से, यही कारण है कि #गणनीय योगात्मक की परिभाषा को शायद ही कभी कई सेटों से बढ़ाया जाता है <math>F_1, F_2, \ldots\,</math> में <math>\mathcal{F}</math> (और सामान्य गणनीय श्रृंखला <math>\textstyle\sum\limits_{i=1}^\infty \mu\left(F_i\right)</math>) मनमाने ढंग से कई सेटों के लिए <math>\left(F_i\right)_{i \in I}</math> (और सामान्यीकृत श्रृंखला <math>\textstyle\sum\limits_{i \in I} \mu\left(F_i\right)</math>).
संक्षेप में, वास्तविक संख्याओं की प्रकृति और इसकी टोपोलॉजी के कारण, वास्तविक संख्याओं की प्रत्येक सामान्यीकृत श्रृंखला (एक यादृच्छिक सेट द्वारा अनुक्रमित) जो अभिसरण करता है, को कई वास्तविक संख्याओं की एक सामान्य पूर्ण रूप से अभिसरण श्रृंखला में घटाया जा सकता है। इसलिए मान सिद्धांत के संदर्भ में, अगणनीय सेटों और सामान्यीकृत श्रृंखलाओं पर विचार करने से बहुत कम लाभ प्राप्त होता है। विशेष रूप से, यही कारण है कि #गणनीय योगात्मक की परिभाषा को शायद ही कभी कई सेटों से बढ़ाया जाता है <math>F_1, F_2, \ldots\,</math> में <math>\mathcal{F}</math> (और सामान्य गणनीय श्रृंखला <math>\textstyle\sum\limits_{i=1}^\infty \mu\left(F_i\right)</math>) यादृच्छिक ढंग से कई सेटों के लिए <math>\left(F_i\right)_{i \in I}</math> (और सामान्यीकृत श्रृंखला <math>\textstyle\sum\limits_{i \in I} \mu\left(F_i\right)</math>).


=== आंतरिक उपाय, बाहरी उपाय और अन्य गुण ===
=== आंतरिक मान, बाहरी मान और अन्य गुण ===


एक सेट फलन <math>\mu</math> कहा जाता है / संतुष्ट करता है{{sfn|Durrett|2019|pp=1-37, 455-470}}
एक सेट फलन <math>\mu</math> कहा जाता है / संतुष्ट करता है{{sfn|Durrett|2019|pp=1-37, 455-470}}
<सड़क>
{{em|{{visible anchor|एकदिष्ट}}}} अगर <math>\mu(E) \leq \mu(F)</math> जब कभी भी <math>E, F \in \mathcal{F}</math> संतुष्ट करना <math>E \subseteq F.</math>
<ली>{{em|{{visible anchor|monotone}}}} अगर <math>\mu(E) \leq \mu(F)</math> जब कभी भी <math>E, F \in \mathcal{F}</math> संतुष्ट करना <math>E \subseteq F.</math></ली>
<li>मॉड्यूलर सेट फलन यदि यह निम्नलिखित शर्त को पूरा करता है, जिसे जाना जाता है {{em|मॉड्यूलता}}: <math>\mu(E \cup F) + \mu(E \cap F) = \mu(E) + \mu(F)</math> सभी के लिए <math>E, F \in \mathcal{F}</math> ऐसा है कि <math>E \cup F, E \cap F \in \mathcal{F}.</math>
<li>मॉड्यूलर सेट फलन|{{em|{{visible anchor|modular}}}} यदि यह निम्नलिखित शर्त को पूरा करता है, जिसे जाना जाता है {{em|modularity}}: <math>\mu(E \cup F) + \mu(E \cap F) = \mu(E) + \mu(F)</math> सभी के लिए <math>E, F \in \mathcal{F}</math> ऐसा है कि <math>E \cup F, E \cap F \in \mathcal{F}.</math>
* समुच्चयों के क्षेत्र में प्रत्येक परिमित योज्य फलन मॉड्यूलर होता है।
* समुच्चयों के क्षेत्र में प्रत्येक परिमित योज्य फलन मॉड्यूलर होता है।
* ज्यामिति में, इस संपत्ति वाले कुछ एबेलियन सेमीग्रुप में मानवान एक सेट फलन को वैल्यूएशन (ज्यामिति) के रूप में जाना जाता है।{{em|valuation}}. यह मानांकन (ज्यामिति)|मानांकन की ज्यामितीय परिभाषा को मजबूत गैर-समतुल्य मानांकन (माप सिद्धांत) के साथ भ्रमित नहीं होना चाहिए|मानांकन की सैद्धांतिक परिभाषा को मापें जो कि #मानांकन है।</li>
* ज्यामिति में, इस गुण वाले कुछ एबेलियन सेमीग्रुप में मान एक सेट फलन को मानांकन (ज्यामिति) के रूप में जाना जाता है। यह मानांकन (ज्यामिति) मानांकन की ज्यामितीय परिभाषा को मजबूत गैर-समतुल्य मानांकन (मान सिद्धांत) के साथ भ्रमित नहीं होना चाहिए मानांकन की सैद्धांतिक परिभाषा को मानें जो कि #मानांकन है।</li>
<li>सबमॉड्यूलर सेट फलन|{{em|{{visible anchor|submodular}}}} अगर <math>\mu(E \cup F) + \mu(E \cap F) \leq \mu(E) + \mu(F)</math> सभी के लिए <math>E, F \in \mathcal{F}</math> ऐसा है कि <math>E \cup F, E \cap F \in \mathcal{F}.</math></ली>
<li>सबमॉड्यूलर सेट फलन अगर <math>\mu(E \cup F) + \mu(E \cap F) \leq \mu(E) + \mu(F)</math> सभी के लिए <math>E, F \in \mathcal{F}</math> ऐसा है कि <math>E \cup F, E \cap F \in \mathcal{F}.</math>{{em|{{visible anchor|परिमित सबएडेटिव}}}} अगर <math>|\mu(F)| \leq \textstyle\sum\limits_{i=1}^n \left|\mu\left(F_i\right)\right|</math> सभी परिमित अनुक्रमों के लिए <math>F, F_1, \ldots, F_n \in \mathcal{F}</math> जो संतुष्ट करता है <math>F \;\subseteq\; \textstyle\bigcup\limits_{i=1}^n F_i.</math>{{em|{{visible anchor|गणनीय सबएडेटिव}}}} या {{em|{{visible anchor|σ-सबएडेटिव}}}} अगर <math>|\mu(F)| \leq \textstyle\sum\limits_{i=1}^\infty \left|\mu\left(F_i\right)\right|</math> सभी क्रमों के लिए <math>F, F_1, F_2, F_3, \ldots\,</math> में <math>\mathcal{F}</math> जो संतुष्ट करता है <math>F \;\subseteq\; \textstyle\bigcup\limits_{i=1}^\infty F_i.</math>
<ली>{{em|{{visible anchor|finitely subadditive}}}} अगर <math>|\mu(F)| \leq \textstyle\sum\limits_{i=1}^n \left|\mu\left(F_i\right)\right|</math> सभी परिमित अनुक्रमों के लिए <math>F, F_1, \ldots, F_n \in \mathcal{F}</math> जो संतुष्ट करता है <math>F \;\subseteq\; \textstyle\bigcup\limits_{i=1}^n F_i.</math></ली>
<ली>{{em|{{visible anchor|countably subadditive}}}} या {{em|{{visible anchor|σ-subadditive}}}} अगर <math>|\mu(F)| \leq \textstyle\sum\limits_{i=1}^\infty \left|\mu\left(F_i\right)\right|</math> सभी क्रमों के लिए <math>F, F_1, F_2, F_3, \ldots\,</math> में <math>\mathcal{F}</math> जो संतुष्ट करता है <math>F \;\subseteq\; \textstyle\bigcup\limits_{i=1}^\infty F_i.</math>
* अगर <math>\mathcal{F}</math> परिमित संघों के तहत बंद है तो यह स्थिति केवल और केवल तभी होती है <math>|\mu(F \cup G)| \leq| \mu(F)| + |\mu(G)|</math> सभी के लिए <math>F, G \in \mathcal{F}.</math> अगर <math>\mu</math> गैर-ऋणात्मक है तो निरपेक्ष मान हटाया जा सकता है।
* अगर <math>\mathcal{F}</math> परिमित संघों के तहत बंद है तो यह स्थिति केवल और केवल तभी होती है <math>|\mu(F \cup G)| \leq| \mu(F)| + |\mu(G)|</math> सभी के लिए <math>F, G \in \mathcal{F}.</math> अगर <math>\mu</math> गैर-ऋणात्मक है तो निरपेक्ष मान हटाया जा सकता है।
* अगर <math>\mu</math> एक उपाय है तो यह स्थिति अगर और केवल अगर रखती है <math>\mu\left(\textstyle\bigcup\limits_{i=1}^\infty F_i\right) \leq \textstyle\sum\limits_{i=1}^\infty \mu\left(F_i\right)</math> सभी के लिए <math>F_1, F_2, F_3, \ldots\,</math> में <math>\mathcal{F}.</math>{{sfn|Royden|Fitzpatrick|2010|p=30}} अगर <math>\mu</math> एक प्रायिकता माप है तो यह असमानता बूले की असमानता है।
* अगर <math>\mu</math> एक मान है तो यह स्थिति अगर और केवल अगर रखती है <math>\mu\left(\textstyle\bigcup\limits_{i=1}^\infty F_i\right) \leq \textstyle\sum\limits_{i=1}^\infty \mu\left(F_i\right)</math> सभी के लिए <math>F_1, F_2, F_3, \ldots\,</math> में <math>\mathcal{F}.</math>{{sfn|Royden|Fitzpatrick|2010|p=30}} अगर <math>\mu</math> एक प्रायिकता मान है तो यह असमानता बूले की असमानता है।
* अगर <math>\mu</math> गिनती उप-योगात्मक है और <math>\varnothing \in \mathcal{F}</math> साथ <math>\mu(\varnothing) = 0</math> तब <math>\mu</math> #पूरी तरह से सबएडिटिव है।</li>
* अगर <math>\mu</math> गिनती उप-योगात्मक है और <math>\varnothing \in \mathcal{F}</math> साथ <math>\mu(\varnothing) = 0</math> तब <math>\mu</math> #पूरी तरह से सबएडिटिव है।</li>
<li>सुपरएडिटीविटी|{{em|{{visible anchor|superadditive}}}} अगर <math>\mu(E) + \mu(F) \leq \mu(E \cup F)</math> जब कभी भी <math>E, F \in \mathcal{F}</math> से असंबद्ध हैं <math>E \cup F \in \mathcal{F}.</math></ली>
<li>सुपरएडिटीविटी अगर <math>\mu(E) + \mu(F) \leq \mu(E \cup F)</math> जब कभी भी <math>E, F \in \mathcal{F}</math> से असंबद्ध हैं <math>E \cup F \in \mathcal{F}.</math> {{em|{{visible anchor|उपरित: संतत}}}} अगर <math>\lim_{n \to \infty} \mu\left(F_i\right) = \mu\left(\textstyle\bigcap\limits_{i=1}^\infty F_i\right)</math> सभी के लिए {{em|गैर-बढ़ते अनुक्रम}} सेट का <math>F_1 \supseteq F_2 \supseteq F_3 \cdots\,</math> में <math>\mathcal{F}</math> ऐसा है कि <math>\textstyle\bigcap\limits_{i=1}^\infty F_i \in \mathcal{F}</math> साथ <math>\mu\left(\textstyle\bigcap\limits_{i=1}^\infty F_i\right)</math> और सभी <math>\mu\left(F_i\right)</math> परिमित है ।
<ली>{{em|{{visible anchor|continuous from above}}}} अगर <math>\lim_{n \to \infty} \mu\left(F_i\right) = \mu\left(\textstyle\bigcap\limits_{i=1}^\infty F_i\right)</math> सभी के लिए {{em|non-increasing sequences}} सेट का <math>F_1 \supseteq F_2 \supseteq F_3 \cdots\,</math> में <math>\mathcal{F}</math> ऐसा है कि <math>\textstyle\bigcap\limits_{i=1}^\infty F_i \in \mathcal{F}</math> साथ <math>\mu\left(\textstyle\bigcap\limits_{i=1}^\infty F_i\right)</math> और सभी <math>\mu\left(F_i\right)</math> परिमित।
* लेबेस्गु मान <math>\lambda</math> ऊपर से निरंतर है लेकिन यह धारणा नहीं होगी कि सभी <math>\mu\left(F_i\right)</math> अंततः परिमित हैं परिभाषा से हटा दिया गया था, जैसा कि इस उदाहरण से पता चलता है: प्रत्येक पूर्णांक के लिए <math>i,</math> होने देना <math>F_i</math> खुला अंतराल हो <math>(i, \infty)</math> ताकि <math>\lim_{n \to \infty} \lambda\left(F_i\right) = \lim_{n \to \infty}  \infty = \infty \neq 0 = \lambda(\varnothing) = \lambda\left(\textstyle\bigcap\limits_{i=1}^\infty F_i\right)</math> जहाँ <math>\textstyle\bigcap\limits_{i=1}^\infty F_i = \varnothing.</math> है।
* लेबेस्गु उपाय <math>\lambda</math> ऊपर से निरंतर है लेकिन यह धारणा नहीं होगी कि सभी <math>\mu\left(F_i\right)</math> अंततः परिमित हैं परिभाषा से हटा दिया गया था, जैसा कि इस उदाहरण से पता चलता है: प्रत्येक पूर्णांक के लिए <math>i,</math> होने देना <math>F_i</math> खुला अंतराल हो <math>(i, \infty)</math> ताकि <math>\lim_{n \to \infty} \lambda\left(F_i\right) = \lim_{n \to \infty}  \infty = \infty \neq 0 = \lambda(\varnothing) = \lambda\left(\textstyle\bigcap\limits_{i=1}^\infty F_i\right)</math> कहाँ <math>\textstyle\bigcap\limits_{i=1}^\infty F_i = \varnothing.</math></ली>
{{em|{{visible anchor|नीचे से निरंतर}}}} अगर <math>\lim_{n \to \infty} \mu\left(F_i\right) = \mu\left(\textstyle\bigcup\limits_{i=1}^\infty F_i\right)</math> सभी के लिए {{em|गैर-क्रियाशील अनुक्रम}} सेट का <math>F_1 \subseteq F_2 \subseteq F_3 \cdots\,</math> में <math>\mathcal{F}</math> ऐसा है कि <math>\textstyle\bigcup\limits_{i=1}^\infty F_i \in \mathcal{F}.</math> {{em|{{visible anchor|अनंत नीचे से संपर्क किया जाता है}}}} अगर कभी भी <math>F \in \mathcal{F}</math> संतुष्ट <math>\mu(F) = \infty</math> तो हर असली के लिए <math>r > 0,</math> कुछ मौजूद है <math>F_r \in \mathcal{F}</math> ऐसा है कि <math>F_r \subseteq F</math> और <math>r \leq \mu\left(F_r\right) < \infty.</math> है।
<ली>{{em|{{visible anchor|continuous from below}}}} अगर <math>\lim_{n \to \infty} \mu\left(F_i\right) = \mu\left(\textstyle\bigcup\limits_{i=1}^\infty F_i\right)</math> सभी के लिए {{em|non-decreasing sequences}} सेट का <math>F_1 \subseteq F_2 \subseteq F_3 \cdots\,</math> में <math>\mathcal{F}</math> ऐसा है कि <math>\textstyle\bigcup\limits_{i=1}^\infty F_i \in \mathcal{F}.</math></ली>
<ली>{{em|{{visible anchor|infinity is approached from below}}}} अगर कभी भी <math>F \in \mathcal{F}</math> संतुष्ट <math>\mu(F) = \infty</math> तो हर असली के लिए <math>r > 0,</math> कुछ मौजूद है <math>F_r \in \mathcal{F}</math> ऐसा है कि <math>F_r \subseteq F</math> और <math>r \leq \mu\left(F_r\right) < \infty.</math></ली>
<li>एक #बाहरी उपाय|{{em|outer measure}} अगर <math>\mu</math> गैर-ऋणात्मक है, #गणनीय रूप से सबएडिटिव है, एक #शून्य खाली सेट है, और पावर सेट है <math>\wp(\Omega)</math> इसके डोमेन के रूप में।</li>
<li>एक आंतरिक उपाय|{{em|{{visible anchor|inner measure}}}} अगर <math>\mu</math> गैर-नकारात्मक है, #सुपरएडिटिव, ऊपर से #निरंतर, एक #शून्य खाली सेट है, पावर सेट है <math>\wp(\Omega)</math> इसके डोमेन के रूप में, और नीचे से #infinity तक संपर्क किया जाता है<math>+\infty</math> नीचे से संपर्क किया गया है।</li>
<li>परमाणु माप|{{em|atomic}} यदि सकारात्मक माप के प्रत्येक मापने योग्य सेट में एक [[परमाणु (माप सिद्धांत)]] होता है।</li>


यदि एक [[बाइनरी ऑपरेशन]] <math>\,+\,</math> परिभाषित किया गया है, फिर एक सेट फलन <math>\mu</math> बताया गया
<li>एक #बाहरी मान अगर <math>\mu</math> गैर-ऋणात्मक है, #गणनीय रूप से सबएडिटिव है, एक #शून्य खाली सेट है, और पावर सेट है <math>\wp(\Omega)</math> इसके डोमेन के रूप में है।</li>
<उल>
<li>एक आंतरिक मान अगर <math>\mu</math> गैर-नकारात्मक है, #सुपरएडिटिव, ऊपर से #निरंतर, एक #शून्य खाली सेट है, पावर सेट है <math>\wp(\Omega)</math> इसके डोमेन के रूप में, और नीचे से #अनंतता तक संपर्क किया जाता है<math>+\infty</math> नीचे से संपर्क किया गया है।</li>
<ली>{{em|[[Translation invariant|{{visible anchor|translation invariant}}]]}} अगर <math>\mu(\omega + F) = \mu(F)</math> सभी के लिए <math>\omega \in \Omega</math> और <math>F \in \mathcal{F}</math> ऐसा है कि <math>\omega + F \in \mathcal{F}.</math></ली>
<li>परमाणु मान यदि सकारात्मक मान के प्रत्येक मानने योग्य सेट में एक [[परमाणु (माप सिद्धांत)|परमाणु (मान सिद्धांत)]] होता है।</li>
 
यदि एक [[Index.php?title=द्विआधारी संक्रिया|द्विआधारी संक्रिया]] <math>\,+\,</math> परिभाषित किया गया है, फिर एक सेट फलन <math>\mu</math> बताया गया
{{em|[[Translation invariant|{{visible anchor|अनुवाद अपरिवर्तनीय}}]]}} अगर <math>\mu(\omega + F) = \mu(F)</math> सभी के लिए <math>\omega \in \Omega</math> और <math>F \in \mathcal{F}</math> ऐसा है कि <math>\omega + F \in \mathcal{F}.</math> है।


=== टोपोलॉजी संबंधित परिभाषाएँ ===
=== टोपोलॉजी संबंधित परिभाषाएँ ===


अगर <math>\tau</math> एक [[टोपोलॉजी (संरचना)]] पर है <math>\Omega</math> फिर एक सेट फलन <math>\mu</math> बताया गया:
अगर <math>\tau</math> एक [[टोपोलॉजी (संरचना)]] पर है <math>\Omega</math> फिर एक सेट फलन <math>\mu</math> बताया गया:
<उल>
<li>एक बोरेल मान यदि यह सभी [[बोरेल सेट]] के σ-बीजगणित पर परिभाषित मान है, जो सबसे छोटा σ-बीजगणित है जिसमें सभी खुले उपसमुच्चय होते हैं (अर्थात, युक्त <math>\tau</math>)
<li>एक बोरेल उपाय|{{em|{{visible anchor|Borel measure}}}} यदि यह सभी [[बोरेल सेट]]ों के σ-बीजगणित पर परिभाषित माप है, जो सबसे छोटा σ-बीजगणित है जिसमें सभी खुले उपसमुच्चय होते हैं (अर्थात, युक्त <math>\tau</math>).</ली>
<li>एक बेयर मान यदि यह सभी बेयर सेटों के σ-बीजगणित पर परिभाषित मान है।</li>
<li>एक बेयर माप|{{em|{{visible anchor|Baire measure}}}} यदि यह सभी बेयर सेटों के σ-बीजगणित पर परिभाषित माप है।</li>
<li>समष्टिीय परिमित मान अगर हर बिंदु के लिए <math>\omega \in \Omega</math> कुछ पड़ोस मौजूद है <math>U \in \mathcal{F} \cap \tau</math> इस बिंदु से ऐसा है <math>\mu(U)</math> परिमित है।
<li>स्थानीय परिमित माप|{{em|{{visible anchor|locally finite}}}} अगर हर बिंदु के लिए <math>\omega \in \Omega</math> कुछ पड़ोस मौजूद है <math>U \in \mathcal{F} \cap \tau</math> इस बिंदु से ऐसा है <math>\mu(U)</math> परिमित है।
* अगर <math>\mu</math> एक सूक्ष्म योगात्मक, मोनोटोन और समष्टिीय रूप से परिमित है <math>\mu(K)</math> प्रत्येक कॉम्पैक्ट मानने योग्य उपसमुच्चय  के लिए आवश्यक रूप से परिमित है <math>K.</math>
* अगर <math>\mu</math> एक सूक्ष्म योगात्मक, मोनोटोन और स्थानीय रूप से परिमित है <math>\mu(K)</math> प्रत्येक कॉम्पैक्ट मापने योग्य उपसमुच्चय  के लिए आवश्यक रूप से परिमित है <math>K.</math></ली>
<li>{{em|{{visible anchor|<math>\tau</math>-संकलनीयता}}}} अगर <math>\mu\left({\textstyle\bigcup} \, \mathcal{D}\right) = \sup_{D \in \mathcal{D}} \mu(D)</math> जब कभी भी <math>\mathcal{D} \subseteq \tau \cap \mathcal{F}</math> के संबंध में निर्देशित किया गया है <math>\,\subseteq\,</math> और संतुष्ट करता है <math>{\textstyle\bigcup} \, \mathcal{D} ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \textstyle\bigcup\limits_{D \in \mathcal{D}} D \in \mathcal{F}.</math>
<li>τ-additivity|{{em|{{visible anchor|<math>\tau</math>-additive}}}} अगर <math>\mu\left({\textstyle\bigcup} \, \mathcal{D}\right) = \sup_{D \in \mathcal{D}} \mu(D)</math> जब कभी भी <math>\mathcal{D} \subseteq \tau \cap \mathcal{F}</math> के संबंध में निर्देशित किया गया है <math>\,\subseteq\,</math> और संतुष्ट करता है <math>{\textstyle\bigcup} \, \mathcal{D} ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \textstyle\bigcup\limits_{D \in \mathcal{D}} D \in \mathcal{F}.</math>
* <math>\mathcal{D}</math> के संबंध में निर्देशित किया गया है <math>\,\subseteq\,</math> अगर और केवल अगर यह खाली नहीं है और सभी के लिए है <math>A, B \in \mathcal{D}</math> कुछ मौजूद है <math>C \in \mathcal{D}</math> ऐसा है <math>A \subseteq C</math> और <math>B \subseteq C.</math>
* <math>\mathcal{D}</math> के संबंध में निर्देशित किया गया है <math>\,\subseteq\,</math> अगर और केवल अगर यह खाली नहीं है और सभी के लिए है <math>A, B \in \mathcal{D}</math> कुछ मौजूद है <math>C \in \mathcal{D}</math> ऐसा है कि <math>A \subseteq C</math> और <math>B \subseteq C.</math></ली>
<li>आंतरिक नियमित मान या यदि प्रत्येक के लिए <math>F \in \mathcal{F},</math> <math>\mu(F) = \sup \{\mu(K) : F \supseteq K \text{ with } K \in \mathcal{F} \text{ a compact subset of } (\Omega, \tau)\}.</math> है।
<li>आंतरिक नियमित उपाय|{{em|{{visible anchor|inner regular}}}} या {{em|{{visible anchor|tight}}}} यदि प्रत्येक के लिए <math>F \in \mathcal{F},</math> <math>\mu(F) = \sup \{\mu(K) : F \supseteq K \text{ with } K \in \mathcal{F} \text{ a compact subset of } (\Omega, \tau)\}.</math></ली>
<li>बाह्य नियमित मान यदि प्रत्येक के लिए <math>F \in \mathcal{F},</math> <math>\mu(F) = \inf \{\mu(U) : F \subseteq U \text{ and } U \in \mathcal{F} \cap \tau\}.</math> है।
<li>बाह्य नियमित उपाय|{{em|{{visible anchor|outer regular}}}} यदि प्रत्येक के लिए <math>F \in \mathcal{F},</math> <math>\mu(F) = \inf \{\mu(U) : F \subseteq U \text{ and } U \in \mathcal{F} \cap \tau\}.</math></ली>
<li>नियमित मान अगर यह इनर रेगुलर और आउटर रेगुलर दोनों है।</li>
<li>नियमित उपाय|{{em|{{visible anchor|regular}}}} अगर यह इनर रेगुलर और आउटर रेगुलर दोनों है।</li>
<li>एक बोरेल नियमित मान यदि यह बोरेल मान है तो वह भी नियमित मान है।
<li>एक बोरेल नियमित उपाय|{{em|{{visible anchor|Borel regular measure}}}} यदि यह बोरेल माप है तो वह भी नियमित उपाय है |{{em|regular}}.</ली>
<li>एक रैडॉन मान यदि यह एक नियमित और समष्टिीय रूप से परिमित मान है।</li>
<li>एक रैडॉन माप|{{em|{{visible anchor|Radon measure}}}} यदि यह एक नियमित और स्थानीय रूप से परिमित उपाय है।</li>
<li>पूर्णतः सकारात्मक मान यदि प्रत्येक गैर-रिक्त खुले उपसमुच्चय में (सख्ती से) सकारात्मक मान है।</li>
<li>सख्ती से सकारात्मक उपाय|{{em|{{visible anchor|strictly positive}}}} यदि प्रत्येक गैर-खाली खुले उपसमुच्चय में (सख्ती से) सकारात्मक माप है।</li>
<li>एक मानांकन (मान सिद्धांत) यदि यह गैर-ऋणात्मक है, #एकदिष्ट, #प्रतिरुपकीय, एक #रिक्त खाली सेट है, और डोमेन है <math>\tau.</math>
<li>एक मानांकन (माप सिद्धांत)|{{em|{{visible anchor|valuation}}}} यदि यह गैर-ऋणात्मक है, #monotone, #modular, एक #null खाली सेट है, और डोमेन है <math>\tau.</math></ली>
=== स</ul>ेट कार्यों के बीच संबंध ===
=== स</ul>ेट कार्यों के बीच संबंध ===
{{See also|Radon–Nikodym theorem|Lebesgue's decomposition theorem}}
{{See also|Radon–Nikodym theorem|Lebesgue's decomposition theorem}}


अगर <math>\mu</math> और <math>\nu</math> दो सेट कार्य समाप्त हो गए हैं <math>\Omega,</math> तब:
अगर <math>\mu</math> और <math>\nu</math> दो सेट कार्य समान्त हो गए हैं <math>\Omega,</math> तब:
<उल>
<उल>
<ली><math>\mu</math> पूर्ण निरंतरता (माप सिद्धांत) कहा जाता है |{{em|{{visible anchor|absolutely continuous}} with respect to <math>\nu</math>}} या वर्चस्व (माप सिद्धांत) |{{em|dominated by <math>\nu</math>}}, लिखा हुआ <math>\mu \ll \nu,</math> अगर हर सेट के लिए <math>F</math> जो दोनों के अधिकार क्षेत्र में आता है <math>\mu</math> और <math>\nu,</math> अगर <math>\nu(F) = 0</math> तब <math>\mu(F) = 0.</math>
<ली><math>\mu</math> पूर्ण निरंतरता (मान सिद्धांत) कहा जाता है |{{em|{{visible anchor|absolutely continuous}} with respect to <math>\nu</math>}} या वर्चस्व (मान सिद्धांत) |{{em|dominated by <math>\nu</math>}}, लिखा हुआ <math>\mu \ll \nu,</math> अगर हर सेट के लिए <math>F</math> जो दोनों के अधिकार क्षेत्र में आता है <math>\mu</math> और <math>\nu,</math> अगर <math>\nu(F) = 0</math> तब <math>\mu(F) = 0.</math>
* अगर <math>\mu</math> और <math>\nu</math> σ-सीमित माप हैं |<math>\sigma</math>-समान मापने योग्य स्थान पर परिमित उपाय और यदि <math>\mu \ll \nu,</math> फिर रैडॉन-निकोडिम व्युत्पन्न <math>\frac{d \mu}{d \nu}</math> मौजूद है और हर मापने योग्य के लिए <math>F,</math> <math display=block>\mu(F) = \int_F \frac{d \mu}{d \nu} d \nu.</math></ली>
* अगर <math>\mu</math> और <math>\nu</math> σ-सीमित मान हैं |<math>\sigma</math>-समान मानने योग्य समष्टि पर परिमित मान और यदि <math>\mu \ll \nu,</math> फिर रैडॉन-निकोडिम व्युत्पन्न <math>\frac{d \mu}{d \nu}</math> मौजूद है और हर मानने योग्य के लिए <math>F,</math> <math display=block>\mu(F) = \int_F \frac{d \mu}{d \nu} d \nu.</math></ली>
* <math>\mu</math> और <math>\nu</math> तुल्यता (माप सिद्धांत) कहलाते हैं|{{em|{{visible anchor|equivalent}}}} यदि प्रत्येक एक दूसरे के संबंध में #बिल्कुल निरंतर है।  <math>\mu</math> एक तुल्यता (माप सिद्धांत) # सहायक उपाय कहा जाता है{{em|{{visible anchor|supporting measure}}}} माप का <math>\nu</math> अगर <math>\mu</math> सिग्मा-परिमित है|<math>\sigma</math>-परिमित और वे समकक्ष हैं।<ref>{{cite book |last1=Kallenberg |first1=Olav |author-link1=Olav Kallenberg |year=2017  |title=यादृच्छिक उपाय, सिद्धांत और अनुप्रयोग|location= Switzerland |publisher=Springer |doi= 10.1007/978-3-319-41598-7|isbn=978-3-319-41596-3|page=21}}</ref>
* <math>\mu</math> और <math>\nu</math> तुल्यता (मान सिद्धांत) कहलाते हैं|{{em|{{visible anchor|equivalent}}}} यदि प्रत्येक एक दूसरे के संबंध में #बिल्कुल निरंतर है।  <math>\mu</math> एक तुल्यता (मान सिद्धांत) # सहायक मान कहा जाता है{{em|{{visible anchor|supporting measure}}}} मान का <math>\nu</math> अगर <math>\mu</math> सिग्मा-परिमित है|<math>\sigma</math>-परिमित और वे समकक्ष हैं।<ref>{{cite book |last1=Kallenberg |first1=Olav |author-link1=Olav Kallenberg |year=2017  |title=यादृच्छिक उपाय, सिद्धांत और अनुप्रयोग|location= Switzerland |publisher=Springer |doi= 10.1007/978-3-319-41598-7|isbn=978-3-319-41596-3|page=21}}</ref>
<वह><math>\mu</math> और <math>\nu</math> एकवचन उपाय हैं |{{em|{{visible anchor|singular}}}}, लिखा हुआ <math>\mu \perp \nu,</math> अगर वहाँ असंबद्ध सेट मौजूद हैं <math>M</math> और <math>N</math> के डोमेन में <math>\mu</math> और <math>\nu</math> ऐसा है कि <math>M \cup N = \Omega,</math> <math>\mu(F) = 0</math> सभी के लिए <math>F \subseteq M</math> के अधिकार क्षेत्र में <math>\mu,</math> और <math>\nu(F) = 0</math> सभी के लिए <math>F \subseteq N</math> के अधिकार क्षेत्र में <math>\nu.</math></ली>
<वह><math>\mu</math> और <math>\nu</math> एकवचन मान हैं |{{em|{{visible anchor|singular}}}}, लिखा हुआ <math>\mu \perp \nu,</math> अगर वहाँ असंबद्ध सेट मौजूद हैं <math>M</math> और <math>N</math> के डोमेन में <math>\mu</math> और <math>\nu</math> ऐसा है कि <math>M \cup N = \Omega,</math> <math>\mu(F) = 0</math> सभी के लिए <math>F \subseteq M</math> के अधिकार क्षेत्र में <math>\mu,</math> और <math>\nu(F) = 0</math> सभी के लिए <math>F \subseteq N</math> के अधिकार क्षेत्र में <math>\nu.</math></ली>
</ul>
</ul>


Line 126: Line 117:
सेट कार्यों के उदाहरणों में शामिल हैं:
सेट कार्यों के उदाहरणों में शामिल हैं:
* कार्यक्रम <math display=block>d(A) = \lim_{n \to \infty} \frac{|A \cap \{1, \ldots, n\}|}{n},</math> पर्याप्त रूप से अच्छे व्यवहार वाले उपसमुच्चय को [[प्राकृतिक घनत्व]] प्रदान करना <math>A \subseteq \{1, 2, 3, \ldots\},</math> एक निर्धारित कार्य है।
* कार्यक्रम <math display=block>d(A) = \lim_{n \to \infty} \frac{|A \cap \{1, \ldots, n\}|}{n},</math> पर्याप्त रूप से अच्छे व्यवहार वाले उपसमुच्चय को [[प्राकृतिक घनत्व]] प्रदान करना <math>A \subseteq \{1, 2, 3, \ldots\},</math> एक निर्धारित कार्य है।
* एक संभाव्यता माप सिग्मा-बीजगणित | σ-बीजगणित में प्रत्येक सेट के लिए एक संभावना प्रदान करता है। विशेष रूप से, [[खाली सेट]] की संभावना शून्य है और नमूना स्थान की संभावना है <math>1,</math> के बीच दी गई संभावनाओं के साथ अन्य सेटों के साथ <math>0</math> और <math>1.</math>
* एक संभाव्यता मान सिग्मा-बीजगणित | σ-बीजगणित में प्रत्येक सेट के लिए एक संभावना प्रदान करता है। विशेष रूप से, [[खाली सेट]] की संभावना शून्य है और नमूना समष्टि की संभावना है <math>1,</math> के बीच दी गई संभावनाओं के साथ अन्य सेटों के साथ <math>0</math> और <math>1.</math>
* एक संभावित माप किसी दिए गए सेट के पावरसेट में प्रत्येक सेट को शून्य और एक के बीच एक संख्या प्रदान करता है। [[संभावना सिद्धांत]] देखें।
* एक संभावित मान किसी दिए गए सेट के पावरसेट में प्रत्येक सेट को शून्य और एक के बीच एक संख्या प्रदान करता है। [[संभावना सिद्धांत]] देखें।
* ए {{em|[[random set]]}} एक सेट-वैल्यू [[ अनियमित परिवर्तनशील वस्तु ]] है। लेख [[यादृच्छिक कॉम्पैक्ट सेट]] देखें।
* ए {{em|[[random set]]}} एक सेट-वैल्यू [[ अनियमित परिवर्तनशील वस्तु ]] है। लेख [[यादृच्छिक कॉम्पैक्ट सेट]] देखें।


[[जॉर्डन माप]]ता है <math>\Reals^n</math> जॉर्डन के सभी औसत दर्जे के उपसमुच्चय  के सेट पर परिभाषित एक सेट फलन है <math>\Reals^n;</math> यह अपने जॉर्डन माप के लिए एक जॉर्डन मापने योग्य सेट भेजता है।
[[जॉर्डन माप|जॉर्डन मान]]ता है <math>\Reals^n</math> जॉर्डन के सभी औसत दर्जे के उपसमुच्चय  के सेट पर परिभाषित एक सेट फलन है <math>\Reals^n;</math> यह अपने जॉर्डन मान के लिए एक जॉर्डन मानने योग्य सेट भेजता है।


=== [[लेबेस्ग उपाय]] ===
=== [[लेबेस्ग उपाय|लेबेस्ग मान]] ===


Lebesgue माप पर <math>\Reals</math> एक सेट फलन है जो लेबेसेग से संबंधित वास्तविक संख्याओं के प्रत्येक सेट के लिए एक गैर-ऋणात्मक वास्तविक संख्या प्रदान करता है <math>\sigma</math>-बीजगणित।<ref>Kolmogorov and Fomin 1975</ref> इसकी परिभाषा समुच्चय से शुरू होती है <math>\operatorname{Intervals}(\Reals)</math> वास्तविक संख्याओं के सभी अंतरालों का, जो एक [[अर्धबीजगणित]] है <math>\Reals.</math> वह फलन जो हर अंतराल को असाइन करता है <math>I</math> इसका <math>\operatorname{length}(I)</math> एक सूक्ष्म योगात्मक सेट फलन है (स्पष्ट रूप से, if <math>I</math> समापन बिंदु हैं <math>a \leq b</math> तब <math>\operatorname{length}(I) = b - a</math>).
Lebesgue मान पर <math>\Reals</math> एक सेट फलन है जो लेबेसेग से संबंधित वास्तविक संख्याओं के प्रत्येक सेट के लिए एक गैर-ऋणात्मक वास्तविक संख्या प्रदान करता है <math>\sigma</math>-बीजगणित।<ref>Kolmogorov and Fomin 1975</ref> इसकी परिभाषा समुच्चय से शुरू होती है <math>\operatorname{Intervals}(\Reals)</math> वास्तविक संख्याओं के सभी अंतरालों का, जो एक [[अर्धबीजगणित]] है <math>\Reals.</math> वह फलन जो हर अंतराल को असाइन करता है <math>I</math> इसका <math>\operatorname{length}(I)</math> एक सूक्ष्म योगात्मक सेट फलन है (स्पष्ट रूप से, if <math>I</math> समानन बिंदु हैं <math>a \leq b</math> तब <math>\operatorname{length}(I) = b - a</math>).
इस सेट फलन को Lebesgue बाहरी माप पर बढ़ाया जा सकता है <math>\Reals,</math> जो अनुवाद-अपरिवर्तनीय सेट फलन है <math>\lambda^{\!*\!} : \wp(\Reals) \to [0, \infty]</math> जो एक उपसमुच्चय  भेजता है <math>E \subseteq \Reals</math> नीचे
इस सेट फलन को Lebesgue बाहरी मान पर बढ़ाया जा सकता है <math>\Reals,</math> जो अनुवाद-अपरिवर्तनीय सेट फलन है <math>\lambda^{\!*\!} : \wp(\Reals) \to [0, \infty]</math> जो एक उपसमुच्चय  भेजता है <math>E \subseteq \Reals</math> नीचे
<math display=block>\lambda^{\!*\!}(E) = \inf \left\{\sum_{k=1}^\infty \operatorname{length}(I_k) : {(I_k)_{k \in \N}} \text{ is a sequence of open intervals with } E \subseteq \bigcup_{k=1}^\infty I_k\right\}.</math> Lebesgue बाहरी माप गिनती योग्य नहीं है (और इसलिए एक उपाय नहीं है) हालांकि सिग्मा-बीजगणित के लिए इसका प्रतिबंध है।{{sigma}}-सभी उपसमुच्चयों का बीजगणित <math>M \subseteq \Reals</math> जो कैराथियोडोरी की कसौटी पर खरे उतरते हैं | कैराथियोडोरी की कसौटी:
<math display=block>\lambda^{\!*\!}(E) = \inf \left\{\sum_{k=1}^\infty \operatorname{length}(I_k) : {(I_k)_{k \in \N}} \text{ is a sequence of open intervals with } E \subseteq \bigcup_{k=1}^\infty I_k\right\}.</math> Lebesgue बाहरी मान गिनती योग्य नहीं है (और इसलिए एक मान नहीं है) हालांकि सिग्मा-बीजगणित के लिए इसका प्रतिबंध है।{{sigma}}-सभी उपसमुच्चयों का बीजगणित <math>M \subseteq \Reals</math> जो कैराथियोडोरी की कसौटी पर खरे उतरते हैं | कैराथियोडोरी की कसौटी:
<math display=block>\lambda^{\!*\!}(M) = \lambda^{\!*\!}(M \cap E) + \lambda^{\!*\!}(M \cap E^c) \quad \text{ for every } S \subseteq \Reals</math>
<math display=block>\lambda^{\!*\!}(M) = \lambda^{\!*\!}(M \cap E) + \lambda^{\!*\!}(M \cap E^c) \quad \text{ for every } S \subseteq \Reals</math>
एक उपाय है जिसे लेबेस्गु माप कहा जाता है।
एक मान है जिसे लेबेस्गु मान कहा जाता है।
[[विटाली सेट करता है]] वास्तविक संख्याओं के [[गैर-मापने योग्य सेट]] के उदाहरण हैं।
[[विटाली सेट करता है]] वास्तविक संख्याओं के [[गैर-मापने योग्य सेट|गैर-मानने योग्य सेट]] के उदाहरण हैं।


==== अनंत-आयामी स्थान ====
==== अनंत-आयामी समष्टि ====


{{See also|Gaussian measure#Infinite-dimensional spaces|Abstract Wiener space|Feldman–Hájek theorem|Radonifying function}}
{{See also|Gaussian measure#Infinite-dimensional spaces|Abstract Wiener space|Feldman–Hájek theorem|Radonifying function}}


जैसा कि अनंत-आयामी लेबेस्गु माप पर लेख में विस्तृत है, केवल स्थानीय रूप से परिमित और अनुवाद-अपरिवर्तनीय बोरेल उपाय एक अनंत-आयामी वियोज्य अंतरिक्ष मानक स्थान पर मामूली उपाय है। हालांकि, गॉसियन उपायों को अनंत-आयामी टोपोलॉजिकल वेक्टर रिक्त स्थान पर परिभाषित करना संभव है। गॉसियन उपायों के लिए संरचना प्रमेय से पता चलता है कि अमूर्त वीनर अंतरिक्ष निर्माण अनिवार्य रूप से एक पृथक स्थान बनच स्थान पर एक सख्त सकारात्मक गॉसियन उपाय प्राप्त करने का एकमात्र तरीका है।
जैसा कि अनंत-आयामी लेबेस्गु मान पर लेख में विस्तृत है, केवल समष्टिीय रूप से परिमित और अनुवाद-अपरिवर्तनीय बोरेल मान एक अनंत-आयामी वियोज्य अंतरिक्ष मानक समष्टि पर मामूली मान है। हालांकि, गॉसियन मानों को अनंत-आयामी सांस्थिति सदिश रिक्त समष्टि पर परिभाषित करना संभव है। गॉसियन मानों के लिए संरचना प्रमेय से पता चलता है कि अमूर्त वीनर अंतरिक्ष निर्माण अनिवार्य रूप से एक पृथक समष्टि बनच समष्टि पर एक सख्त सकारात्मक गॉसियन मान प्राप्त करने का एकमात्र तरीका है।


=== पूरी तरह से एडिटिव ट्रांसलेशन-इनवेरिएंट सेट फलन ===
=== पूरी तरह से एडिटिव ट्रांसलेशन-इनवेरिएंट सेट फलन ===


केवल अनुवाद-अपरिवर्तनीय माप पर <math>\Omega = \Reals</math> डोमेन के साथ <math>\wp(\Reals)</math> के प्रत्येक कॉम्पैक्ट उपसमुच्चय पर परिमित है <math>\Reals</math> तुच्छ सेट फलन है <math>\wp(\Reals) \to [0, \infty]</math> जो समान रूप से बराबर है <math>0</math> (यानी, यह हर भेजता है <math>S \subseteq \Reals</math> को <math>0</math>){{sfn|Rudin|1991|p=139}}
केवल अनुवाद-अपरिवर्तनीय मान पर <math>\Omega = \Reals</math> डोमेन के साथ <math>\wp(\Reals)</math> के प्रत्येक कॉम्पैक्ट उपसमुच्चय पर परिमित है <math>\Reals</math> तुच्छ सेट फलन है <math>\wp(\Reals) \to [0, \infty]</math> जो समान रूप से बराबर है <math>0</math> (यानी, यह हर भेजता है <math>S \subseteq \Reals</math> को <math>0</math>){{sfn|Rudin|1991|p=139}}
हालाँकि, यदि काउंटेबल एडिटिविटी को परिमित एडिटिविटी के लिए कमजोर किया जाता है, तो इन गुणों के साथ एक गैर-तुच्छ सेट फलन मौजूद होता है और इसके अलावा, कुछ का मान भी होता है <math>[0, 1].</math> वास्तव में, इस तरह के गैर-तुच्छ सेट फलन तब भी मौजूद रहेंगे <math>\Reals</math> किसी अन्य [[एबेलियन समूह]] [[समूह (गणित)]] द्वारा प्रतिस्थापित किया जाता है <math>G.</math>{{sfn|Rudin|1991|pp=139-140}}
हालाँकि, यदि काउंटेबल एडिटिविटी को परिमित एडिटिविटी के लिए कमजोर किया जाता है, तो इन गुणों के साथ एक गैर-तुच्छ सेट फलन मौजूद होता है और इसके अलावा, कुछ का मान भी होता है <math>[0, 1].</math> वास्तव में, इस तरह के गैर-तुच्छ सेट फलन तब भी मौजूद रहेंगे <math>\Reals</math> किसी अन्य [[एबेलियन समूह]] [[समूह (गणित)]] द्वारा प्रतिस्थापित किया जाता है <math>G.</math>{{sfn|Rudin|1991|pp=139-140}}


Line 170: Line 161:


अगर <math>\mu</math> # निश्चित रूप से योज्य है तो इसमें एक सेट फलन का एक अनूठा विस्तार है <math>\overline{\mu}</math> पर <math>\operatorname{algebra}(\mathcal{F})</math> भेजकर परिभाषित किया गया है <math>F_1 \sqcup \cdots \sqcup F_n \in \operatorname{algebra}(\mathcal{F})</math> (कहाँ <math>\,\sqcup\,</math> इंगित करता है कि ये <math>F_i \in \mathcal{F}</math> जोड़ो में असंयुक्त हैं) से:{{sfn|Durrett|2019|pp=1-9}}
अगर <math>\mu</math> # निश्चित रूप से योज्य है तो इसमें एक सेट फलन का एक अनूठा विस्तार है <math>\overline{\mu}</math> पर <math>\operatorname{algebra}(\mathcal{F})</math> भेजकर परिभाषित किया गया है <math>F_1 \sqcup \cdots \sqcup F_n \in \operatorname{algebra}(\mathcal{F})</math> (कहाँ <math>\,\sqcup\,</math> इंगित करता है कि ये <math>F_i \in \mathcal{F}</math> जोड़ो में असंयुक्त हैं) से:{{sfn|Durrett|2019|pp=1-9}}
<math display=block>\overline{\mu}\left(F_1 \sqcup \cdots \sqcup F_n\right) := \mu\left(F_1\right) + \cdots + \mu\left(F_n\right).</math> यह विस्तार <math>\overline{\mu}</math> भी सूक्ष्म रूप से योगात्मक होगा: किसी भी जोड़ीदार असंयुक्त के लिए <math>A_1, \ldots, A_n \in \operatorname{algebra}(\mathcal{F}),</math> {{sfn|Durrett|2019|pp=1-9}}
<math display=block>\overline{\mu}\left(F_1 \sqcup \cdots \sqcup F_n\right) := \mu\left(F_1\right) + \cdots + \mu\left(F_n\right).</math> यह विस्तार <math>\overline{\mu}</math> भी सूक्ष्म रूप से योगात्मक होगा: किसी भी युग्‍मानूसार असंयुक्त के लिए <math>A_1, \ldots, A_n \in \operatorname{algebra}(\mathcal{F}),</math> {{sfn|Durrett|2019|pp=1-9}}
<math display=block>\overline{\mu}\left(A_1 \cup \cdots \cup A_n\right) = \overline{\mu}\left(A_1\right) + \cdots + \overline{\mu}\left(A_n\right).</math> अगर इसके अलावा <math>\mu</math> विस्तारित वास्तविक-मानवान और #monotone है (जो, विशेष रूप से, यदि मामला होगा <math>\mu</math> #non-negative|non-negative) है तो <math>\overline{\mu}</math> मोनोटोन और #अंतिम रूप से उप-योगात्मक होगा: किसी के लिए भी <math>A, A_1, \ldots, A_n \in \operatorname{algebra}(\mathcal{F})</math> ऐसा है कि <math>A \subseteq A_1 \cup \cdots \cup A_n,</math>{{sfn|Durrett|2019|pp=1-9}}
<math display=block>\overline{\mu}\left(A_1 \cup \cdots \cup A_n\right) = \overline{\mu}\left(A_1\right) + \cdots + \overline{\mu}\left(A_n\right).</math> अगर इसके अलावा <math>\mu</math> विस्तारित वास्तविक-मान और #एकदिष्ट है (जो, विशेष रूप से, यदि मामला होगा <math>\mu</math> #ऋणेतर संख्या) है तो <math>\overline{\mu}</math> मोनोटोन और #अंतिम रूप से उप-योगात्मक होगा: किसी के लिए भी <math>A, A_1, \ldots, A_n \in \operatorname{algebra}(\mathcal{F})</math> ऐसा है कि <math>A \subseteq A_1 \cup \cdots \cup A_n,</math>{{sfn|Durrett|2019|pp=1-9}}
<math display=block>\overline{\mu}\left(A\right) \leq \overline{\mu}\left(A_1\right) + \cdots + \overline{\mu}\left(A_n\right).</math>
<math display=block>\overline{\mu}\left(A\right) \leq \overline{\mu}\left(A_1\right) + \cdots + \overline{\mu}\left(A_n\right).</math>


Line 178: Line 169:
{{See also|Pre-measure|Hahn–Kolmogorov theorem}}
{{See also|Pre-measure|Hahn–Kolmogorov theorem}}


अगर <math>\mu : \mathcal{F} \to [0, \infty]</math> एक #pre-measure|सेट के रिंग पर पूर्व-माप है (जैसे [[सेट का बीजगणित]]) <math>\mathcal{F}</math> ऊपर <math>\Omega</math> तब <math>\mu</math> एक उपाय का विस्तार है <math>\overline{\mu} : \sigma(\mathcal{F}) \to [0, \infty]</math> σ-बीजगणित पर <math>\sigma(\mathcal{F})</math> द्वारा उत्पन्न <math>\mathcal{F}.</math> अगर <math>\mu</math> is #σ-परिमित माप|σ-परिमित तो यह विस्तार अद्वितीय है।
अगर <math>\mu : \mathcal{F} \to [0, \infty]</math> एक #pre-measure|सेट के रिंग पर पूर्व-मान है (जैसे [[सेट का बीजगणित]]) <math>\mathcal{F}</math> ऊपर <math>\Omega</math> तब <math>\mu</math> एक मान का विस्तार है <math>\overline{\mu} : \sigma(\mathcal{F}) \to [0, \infty]</math> σ-बीजगणित पर <math>\sigma(\mathcal{F})</math> द्वारा उत्पन्न <math>\mathcal{F}.</math> अगर <math>\mu</math> is #σ-परिमित मान|σ-परिमित तो यह विस्तार अद्वितीय है।


इस विस्तार को परिभाषित करने के लिए, पहले विस्तार करें <math>\mu</math> एक [[बाहरी माप]] के लिए <math>\mu^*</math> पर <math>2^\Omega = \wp(\Omega)</math> द्वारा
इस विस्तार को परिभाषित करने के लिए, पहले विस्तार करें <math>\mu</math> एक [[बाहरी माप|बाहरी मान]] के लिए <math>\mu^*</math> पर <math>2^\Omega = \wp(\Omega)</math> द्वारा
  <math display=block>\mu^*(T) = \inf \left\{\sum_n \mu\left(S_n\right) : T \subseteq \cup_n S_n \text{ with } S_1, S_2, \ldots \in \mathcal{F}\right\}</math> और उसके बाद इसे सेट तक सीमित करें <math>\mathcal{F}_M</math> का <math>\mu^*</math>-मापने योग्य सेट (अर्थात कैराथोडोरी-मापने योग्य सेट), जो सभी का सेट है <math>M \subseteq \Omega</math> ऐसा है कि
  <math display=block>\mu^*(T) = \inf \left\{\sum_n \mu\left(S_n\right) : T \subseteq \cup_n S_n \text{ with } S_1, S_2, \ldots \in \mathcal{F}\right\}</math> और उसके बाद इसे सेट तक सीमित करें <math>\mathcal{F}_M</math> का <math>\mu^*</math>-मानने योग्य सेट (अर्थात कैराथोडोरी-मानने योग्य सेट), जो सभी का सेट है <math>M \subseteq \Omega</math> ऐसा है कि
  <math display=block>\mu^*(S) = \mu^*(S \cap M) + \mu^*(S \cap M^\mathrm{c}) \quad \text{ for every subset } S \subseteq \Omega.</math> यह है एक <math>\sigma</math>-बीजगणित और <math>\mu^*</math> कैरथियोडोरी लेम्मा द्वारा सिग्मा-एडिटिव ऑन इट है।
  <math display=block>\mu^*(S) = \mu^*(S \cap M) + \mu^*(S \cap M^\mathrm{c}) \quad \text{ for every subset } S \subseteq \Omega.</math> यह है एक <math>\sigma</math>-बीजगणित और <math>\mu^*</math> कैरथियोडोरी लेम्मा द्वारा सिग्मा-एडिटिव ऑन इट है।


=== बाहरी उपायों को प्रतिबंधित करना ===
=== बाहरी मानों को प्रतिबंधित करना ===
{{See also|Outer measure#Measurability of sets relative to an outer measure}}
{{See also|Outer measure#Measurability of sets relative to an outer measure}}


अगर <math>\mu^* : \wp(\Omega) \to [0, \infty]</math> एक सेट पर एक #बाहरी माप है <math>\Omega,</math> जहां (परिभाषा के अनुसार) डोमेन आवश्यक रूप से पावर सेट है  <math>\wp(\Omega)</math> का <math>\Omega,</math> फिर एक उपसमुच्चय <math>M \subseteq \Omega</math> कहा जाता है{{em|<math>\mu^*</math>–measurable}} या{{em|[[Carathéodory-measurable set|Carathéodory-measurable]]}} यदि यह निम्नलिखित को संतुष्ट करता है {{em|[[Carathéodory's criterion]]}}:
अगर <math>\mu^* : \wp(\Omega) \to [0, \infty]</math> एक सेट पर एक #बाहरी मान है <math>\Omega,</math> जहां (परिभाषा के अनुसार) डोमेन आवश्यक रूप से पावर सेट है  <math>\wp(\Omega)</math> का <math>\Omega,</math> फिर एक उपसमुच्चय <math>M \subseteq \Omega</math> कहा जाता है{{em|<math>\mu^*</math>–measurable}} या{{em|[[Carathéodory-measurable set|Carathéodory-measurable]]}} यदि यह निम्नलिखित को संतुष्ट करता है {{em|[[Carathéodory's criterion]]}}:
  <math display=block>\mu^*(S) = \mu^*(S \cap M) + \mu^*(S \cap M^\mathrm{c}) \quad \text{ for every subset } S \subseteq \Omega,</math>
  <math display=block>\mu^*(S) = \mu^*(S \cap M) + \mu^*(S \cap M^\mathrm{c}) \quad \text{ for every subset } S \subseteq \Omega,</math>
कहाँ <math>M^\mathrm{c} := \Omega \setminus M</math> का [[पूरक (सेट सिद्धांत)]] है <math>M.</math> सबका वर्ग <math>\mu^*</math>-मापने योग्य उपसमुच्चय एक σ-बीजगणित और बाहरी माप का प्रतिबंध (गणित) है <math>\mu^*</math> इस वर्ग के लिए एक उपाय (गणित) है।
कहाँ <math>M^\mathrm{c} := \Omega \setminus M</math> का [[पूरक (सेट सिद्धांत)]] है <math>M.</math> सबका वर्ग <math>\mu^*</math>-मानने योग्य उपसमुच्चय एक σ-बीजगणित और बाहरी मान का प्रतिबंध (गणित) है <math>\mu^*</math> इस वर्ग के लिए एक मान (गणित) है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 10:24, 31 May 2023

गणित में, विशेष रूप से मान सिद्धांत में, एक सेट फलन एक फलन (गणित) होता है जिसका फलन का डोमेन कुछ दिए गए सेट के उपसमुच्चय के सेट का वर्ग होता है और जो (आमतौर पर) विस्तारित वास्तविक संख्या रेखा में इसके मान लेता है जिसमें वास्तविक संख्याएँ होती हैं और एक सेट फलन का आम तौर पर लक्ष्य होता है, उपसमुच्चय मान (गणित) सेट फलन को मानने के विशिष्ट उदाहरण हैं। इसलिए, शब्द सेट फलन का उपयोग अक्सर मान के गणितीय अर्थ और इसके सामान्य भाषा अर्थ के बीच भ्रम से बचने के लिए किया जाता है।

परिभाषाएँ

अगर सेट ओवर का वर्ग है (मतलब है कि कहाँ पावरसेट को दर्शाता है) फिर एक सेट फलन का कार्य है एक फलन के डोमेन के साथ और कोडोमेन या, कभी-कभी, कोडोमेन इसके बजाय कुछ सदिश समष्टि होता है, जैसा सदिश मानों, जटिल मान और प्रक्षेपण-मान मान के साथ होता है। सेट फलन के डोमेन में कोई संख्या गुण हो सकते हैं; आमतौर पर सामने आने वाली गुण और वर्गों की श्रेणियों को नीचे दी गई तालिका में सूचीबद्ध किया गया है।

सामान्य तौर पर, यह आमतौर पर माना जाता है हमेशा सभी के लिए अच्छी तरह से परिभाषित है या समकक्ष, वह दोनों नहीं लेता और मानों के रूप में। यह लेख अब से यह मान लेगा; हालांकि वैकल्पिक रूप से, नीचे दी गई सभी परिभाषाएँ बयानों द्वारा योग्य हो सकती हैं जैसे कि जब भी योग/श्रृंखला परिभाषित की जाती है। यह कभी-कभी घटाव के साथ किया जाता है, जैसे निम्न परिणाम के साथ, जो जब भी होता है #पूरी तरह से योगात्मक है:

अंतर सूत्र सेट करें: से परिभाषित किया गया है संतुष्टि देने वाला और अशक्त सेट

एक सेट a कहा जाता है रिक्त समुच्चय (इसके संबंध में ) या केवल रिक्त अगर जब कभी भी दोनों के समान नहीं है या तो यह आमतौर पर यह भी माना जाता है कि: <उल> <ली>रिक्त समुच्चय सेट: अगर

विविधता और द्रव्यमान

कुल भिन्नता (मान सिद्धांत) |एक सेट की कुल भिन्नता है

जहाँ निरपेक्ष मान को दर्शाता है (या अधिक सामान्यतः, यह मानदंड (गणित) या सेमिनोर्म को दर्शाता है यदि एक (सेमिनोर्ड स्पेस) नॉर्म्ड स्पेस में सदिश-वैल्यू है)। ये मानते हुए तब कहा जाता है कुल भिन्नता का और कहा जाता है द्रव्यमान का एक सेट फलन कहा जाता है परिमित यदि प्रत्येक के लिए मान है परिमित (जो परिभाषा के अनुसार इसका मतलब है और ; एक अनंत मूल्य के बराबर है या ). प्रत्येक परिमित समुच्चय फलन का एक परिमित #द्रव्यमान होना चाहिए।

सेट कार्यों के सामान्य गुण

एक सेट फलन पर बताया गया[1] गैर नकारात्मक यदि इसका मान है।

  • फिनिटली एडिटिव सेट फलन निश्चित रूप से योगात्मक अगर सभी युग्‍मानूसार असंयुक्त परिमित अनुक्रमों के लिए ऐसा है कि
    • अगर बाइनरी संघ (सेट सिद्धांत) के तहत बंद है निश्चित रूप से योज्य है अगर और केवल अगर सभी असंबद्ध जोड़ियों के लिए है।
    • अगर निश्चित रूप से योज्य है और यदि फिर ले रहा है पता चलता है कि जो केवल तभी संभव है या जहां बाद के मामले में, हर एक के लिए (इसलिए केवल मामला उपयोगी है)।
  • सिग्मा-एडिटिव सेट फलन गणनीय रूप से योगात्मक या सिग्मा-एडिटिव सेट फलन σ-योगात्मक[2] यदि परिमित रूप से योज्य होने के अलावा, सभी युग्‍मानूसार असंयुक्त अनुक्रमों के लिए में ऐसा है कि निम्नलिखित सभी धारण करते हैं: a
    • बाईं ओर की श्रृंखला को सामान्य तरीके से सीमा के रूप में परिभाषित किया गया है
    • परिणामस्वरूप, यदि तब कोई क्रम परिवर्तन/आपत्ति है यह है क्योंकि और इस शर्त को लागू करना (a) दो बार गारंटी देता है कि दोनों और पकड़ना है। परिभाषा के अनुसार, इस गुण के साथ अभिसरण श्रृंखला को बिना शर्त अभिसरण कहा जाता है। सामान्य अंग्रेजी में कहा गया है, इसका मतलब है कि सेट को पुनर्व्यवस्थित/पुन: लेबलिंग करना नए आदेश के लिए उनके मानों के योग को प्रभावित नहीं करता है। संघ के रूप में ही यह वांछनीय है इन सेटों के क्रम पर निर्भर नहीं करता है, वही योगफल के लिए सही होना चाहिए और
    अगर अनंत नहीं है तो यह श्रृंखला पूर्ण अभिसरण भी होना चाहिए, जिसका परिभाषा के अनुसार अर्थ है परिमित होना चाहिए। यह स्वचालित रूप से सत्य है यदि #ऋणेतर संख्या है (या केवल विस्तारित वास्तविक संख्याओं में मान)।
    • रीमैन श्रृंखला प्रमेय, श्रृंखला द्वारा वास्तविक संख्याओं की किसी भी अभिसरण श्रृंखला के साथ पूरी तरह से अभिसरण करता है अगर और केवल अगर इसका योग इसकी शर्तों के क्रम पर निर्भर नहीं करता है (बिना शर्त अभिसरण के रूप में जाना जाने वाला गुण)। चूंकि बिना शर्त अभिसरण की ऊपर (a) द्वारा गारंटी दी गई है, यह स्थिति स्वचालित रूप से सत्य है यदि में मान है
    अगर अनंत है तो यह भी आवश्यक है कि श्रृंखला में से कम से कम एक का मान हो परिमित हो (ताकि उनके मानों का योग अच्छी तरह से परिभाषित हो)। यह स्वचालित रूप से सत्य है यदि #गैर-नकारात्मक है।
  • एक पूर्व-मान|पूर्व मान अगर यह #ऋणेतर संख्या है, सिग्मा-एडिटिव सेट फलन (#परिमित एडिटिव सहित), और एक # खाली सेट है।
  • एक मान (गणित)|मान अगर यह एक #पूर्व मान है जिसका डोमेन σ-बीजगणित है। कहने का मतलब यह है कि मान एक σ-बीजगणित पर एक गैर-नकारात्मक गणन योग्य योज्य सेट फलन है जिसमें एक #शून्य खाली सेट होता है।
  • एक संभाव्यता माप यदि यह एक मान है जिसका #द्रव्यमान है
  • एक बाहरी मान|बाहरी मान अगर यह गैर-नकारात्मक है, #गणनात्मक रूप से सबएडिटिव है, एक #शून्य खाली सेट है, और पावरसेट है इसके डोमेन के रूप में।
    • कैराथियोडोरी के विस्तार प्रमेय में बाहरी मान दिखाई देते हैं और वे अक्सर कैराथियोडोरी की कसौटी पर प्रतिबंध (गणित) होते हैं। कैराथियोडोरी मानने योग्य उपसमुच्चय
  • एक हस्ताक्षरित मान|सांकेतिक मान यदि यह गिनती योगात्मक है, तो #खाली सेट है, और दोनों नहीं लेता और मानों के रूप में।
  • पूरा मान पुर्ण यदि प्रत्येक #रिक्त सेट का प्रत्येक उपसमुच्चय रिक्त है; स्पष्ट रूप से, इसका अर्थ है: जब भी और का कोई उपसमुच्चय है तब और
    • कई अन्य गुणों के विपरीत, पूर्णता सेट पर आवश्यकताओं को रखती है (और न सिर्फ चालू के मान).
  • σ-सीमित मान 𝜎-सीमित यदि कोई अनुक्रम मौजूद है में ऐसा है कि प्रत्येक सूचकांक के लिए परिमित है और भी
  • विघटित करने योग्य मान वियोजनीय यदि कोई उपवर्ग मौजूद है जोड़ो में असंयुक्त सेट की इस तरह है कि प्रत्येक के लिए परिमित है और भी (कहाँ ).
    • प्रत्येक 𝜎-फ़िनिट सेट फलन वियोजनीय है, हालांकि इसके विपरीत नहीं। उदाहरण के लिए, गिनती मान पर (जिसका डोमेन है ) वियोजनीय है लेकिन नहीं 𝜎-परिमित है।
  • एक सदिश मान यदि यह एक गिने-चुने योज्य समुच्चय फलन है एक सांस्थितिक सदिश समष्टि में मान (जैसे एक आदर्श समष्टि) जिसका डोमेन σ-बीजगणित है।
    • अगर एक आदर्श समष्टि में मान है तो यह गिनती योगात्मक है अगर और केवल अगर किसी भी युग्‍मानूसार संबंध विच्छेद अनुक्रम के लिए में है अगर एक बनच समष्टि में सूक्ष्म रूप से योगात्मक और मान है, तो यह योगात्मक रूप से योगात्मक है यदि और केवल यदि किसी युग्‍मानूसार असंबद्ध अनुक्रम के लिए में है।
  • एक जटिल मान यदि यह एक गिने-चुने योगात्मक जटिल संख्या-मान सेट फलन है जिसका प्रांत σ-बीजगणित है।
    • परिभाषा के अनुसार, एक जटिल मान कभी नहीं होता है एक मान के रूप में और इसलिए एक #शून्य खाली सेट है।
  • एक यादृच्छिक मान यदि यह एक मान-मान यादृच्छिक तत्व है।
  • यादृच्छिक योग

    वर्णित श्रृंखला (गणित)#किसी भी वर्ग के लिए सामान्यीकृत श्रृंखला पर इस लेख के खंड में यादृच्छिक सूचकांक सेट पर योग एक यादृच्छिक अनुक्रमण सेट द्वारा अनुक्रमित वास्तविक संख्याओं का उनकी राशि को परिभाषित करना संभव है परिमित आंशिक योगों के शुद्ध (गणित) की सीमा के रूप में जहां डोमेन द्वारा निर्देशित किया गया है जब कभी यह अभिसारी जाल होता है तो इसकी सीमा को प्रतीकों द्वारा निरूपित किया जाता है जबकि अगर यह नेट इसके बजाय अलग हो जाता है तो यह लिखकर संकेत किया जा सकता है रिक्त समुच्चय पर किसी भी योग को शून्य के रूप में परिभाषित किया गया है; वह है, अगर तब परिभाषा है।

    उदाहरण के लिए, यदि हर एक के लिए तब और यह दिखाया जा सकता है अगर फिर सामान्यीकृत श्रृंखला में विलीन हो जाता है अगर और केवल अगर बिना शर्त अभिसरण (या समकक्ष, पूर्ण अभिसरण) सामान्य अर्थों में। यदि एक सामान्यीकृत श्रृंखला में विलीन हो जाता है फिर दोनों और के तत्वों में भी अभिसरण करते हैं और सेट आवश्यक रूप से गणनीय समुच्चय है (अर्थात, या तो परिमित या गणनीय रूप से अनंत); श्रृंखला (गणित) # एबेलियन सांस्थिति समूह यदि किसी भी सामान्य समष्टि से प्रतिस्थापित किया जाता है।[proof 1] यह इस प्रकार है कि एक सामान्यीकृत श्रृंखला के लिए में जुटना या यह आवश्यक है कि सभी लेकिन अधिक से अधिक संख्या में के बराबर होगा जिसका अर्थ है कि अधिक से अधिक कई गैर-शून्य शब्दों का योग है। अलग ढंग से कहा, अगर अगणनीय है तो सामान्यीकृत श्रृंखला एकाग्र नहीं होती है।

    संक्षेप में, वास्तविक संख्याओं की प्रकृति और इसकी टोपोलॉजी के कारण, वास्तविक संख्याओं की प्रत्येक सामान्यीकृत श्रृंखला (एक यादृच्छिक सेट द्वारा अनुक्रमित) जो अभिसरण करता है, को कई वास्तविक संख्याओं की एक सामान्य पूर्ण रूप से अभिसरण श्रृंखला में घटाया जा सकता है। इसलिए मान सिद्धांत के संदर्भ में, अगणनीय सेटों और सामान्यीकृत श्रृंखलाओं पर विचार करने से बहुत कम लाभ प्राप्त होता है। विशेष रूप से, यही कारण है कि #गणनीय योगात्मक की परिभाषा को शायद ही कभी कई सेटों से बढ़ाया जाता है में (और सामान्य गणनीय श्रृंखला ) यादृच्छिक ढंग से कई सेटों के लिए (और सामान्यीकृत श्रृंखला ).

    आंतरिक मान, बाहरी मान और अन्य गुण

    एक सेट फलन कहा जाता है / संतुष्ट करता है[1] एकदिष्ट अगर जब कभी भी संतुष्ट करना

  • मॉड्यूलर सेट फलन यदि यह निम्नलिखित शर्त को पूरा करता है, जिसे जाना जाता है मॉड्यूलता: सभी के लिए ऐसा है कि
    • समुच्चयों के क्षेत्र में प्रत्येक परिमित योज्य फलन मॉड्यूलर होता है।
    • ज्यामिति में, इस गुण वाले कुछ एबेलियन सेमीग्रुप में मान एक सेट फलन को मानांकन (ज्यामिति) के रूप में जाना जाता है। यह मानांकन (ज्यामिति) मानांकन की ज्यामितीय परिभाषा को मजबूत गैर-समतुल्य मानांकन (मान सिद्धांत) के साथ भ्रमित नहीं होना चाहिए मानांकन की सैद्धांतिक परिभाषा को मानें जो कि #मानांकन है।
  • सबमॉड्यूलर सेट फलन अगर सभी के लिए ऐसा है कि परिमित सबएडेटिव अगर सभी परिमित अनुक्रमों के लिए जो संतुष्ट करता है गणनीय सबएडेटिव या σ-सबएडेटिव अगर सभी क्रमों के लिए में जो संतुष्ट करता है
    • अगर परिमित संघों के तहत बंद है तो यह स्थिति केवल और केवल तभी होती है सभी के लिए अगर गैर-ऋणात्मक है तो निरपेक्ष मान हटाया जा सकता है।
    • अगर एक मान है तो यह स्थिति अगर और केवल अगर रखती है सभी के लिए में [3] अगर एक प्रायिकता मान है तो यह असमानता बूले की असमानता है।
    • अगर गिनती उप-योगात्मक है और साथ तब #पूरी तरह से सबएडिटिव है।
  • सुपरएडिटीविटी अगर जब कभी भी से असंबद्ध हैं उपरित: संतत अगर सभी के लिए गैर-बढ़ते अनुक्रम सेट का में ऐसा है कि साथ और सभी परिमित है ।
    • लेबेस्गु मान ऊपर से निरंतर है लेकिन यह धारणा नहीं होगी कि सभी अंततः परिमित हैं परिभाषा से हटा दिया गया था, जैसा कि इस उदाहरण से पता चलता है: प्रत्येक पूर्णांक के लिए होने देना खुला अंतराल हो ताकि जहाँ है।
    नीचे से निरंतर अगर सभी के लिए गैर-क्रियाशील अनुक्रम सेट का में ऐसा है कि अनंत नीचे से संपर्क किया जाता है अगर कभी भी संतुष्ट तो हर असली के लिए कुछ मौजूद है ऐसा है कि और है।
  • एक #बाहरी मान अगर गैर-ऋणात्मक है, #गणनीय रूप से सबएडिटिव है, एक #शून्य खाली सेट है, और पावर सेट है इसके डोमेन के रूप में है।
  • एक आंतरिक मान अगर गैर-नकारात्मक है, #सुपरएडिटिव, ऊपर से #निरंतर, एक #शून्य खाली सेट है, पावर सेट है इसके डोमेन के रूप में, और नीचे से #अनंतता तक संपर्क किया जाता है नीचे से संपर्क किया गया है।
  • परमाणु मान यदि सकारात्मक मान के प्रत्येक मानने योग्य सेट में एक परमाणु (मान सिद्धांत) होता है।
  • यदि एक द्विआधारी संक्रिया परिभाषित किया गया है, फिर एक सेट फलन बताया गया अनुवाद अपरिवर्तनीय अगर सभी के लिए और ऐसा है कि है।

    टोपोलॉजी संबंधित परिभाषाएँ

    अगर एक टोपोलॉजी (संरचना) पर है फिर एक सेट फलन बताया गया:

  • एक बोरेल मान यदि यह सभी बोरेल सेट के σ-बीजगणित पर परिभाषित मान है, जो सबसे छोटा σ-बीजगणित है जिसमें सभी खुले उपसमुच्चय होते हैं (अर्थात, युक्त )।
  • एक बेयर मान यदि यह सभी बेयर सेटों के σ-बीजगणित पर परिभाषित मान है।
  • समष्टिीय परिमित मान अगर हर बिंदु के लिए कुछ पड़ोस मौजूद है इस बिंदु से ऐसा है परिमित है।
    • अगर एक सूक्ष्म योगात्मक, मोनोटोन और समष्टिीय रूप से परिमित है प्रत्येक कॉम्पैक्ट मानने योग्य उपसमुच्चय के लिए आवश्यक रूप से परिमित है
  • -संकलनीयता अगर जब कभी भी के संबंध में निर्देशित किया गया है और संतुष्ट करता है
    • के संबंध में निर्देशित किया गया है अगर और केवल अगर यह खाली नहीं है और सभी के लिए है कुछ मौजूद है ऐसा है और
  • आंतरिक नियमित मान या यदि प्रत्येक के लिए है।
  • बाह्य नियमित मान यदि प्रत्येक के लिए है।
  • नियमित मान अगर यह इनर रेगुलर और आउटर रेगुलर दोनों है।
  • एक बोरेल नियमित मान यदि यह बोरेल मान है तो वह भी नियमित मान है।
  • एक रैडॉन मान यदि यह एक नियमित और समष्टिीय रूप से परिमित मान है।
  • पूर्णतः सकारात्मक मान यदि प्रत्येक गैर-रिक्त खुले उपसमुच्चय में (सख्ती से) सकारात्मक मान है।
  • एक मानांकन (मान सिद्धांत) यदि यह गैर-ऋणात्मक है, #एकदिष्ट, #प्रतिरुपकीय, एक #रिक्त खाली सेट है, और डोमेन है

    सेट कार्यों के बीच संबंध

    अगर और दो सेट कार्य समान्त हो गए हैं तब: <उल> <ली> पूर्ण निरंतरता (मान सिद्धांत) कहा जाता है |absolutely continuous with respect to या वर्चस्व (मान सिद्धांत) |dominated by , लिखा हुआ अगर हर सेट के लिए जो दोनों के अधिकार क्षेत्र में आता है और अगर तब

    • अगर और σ-सीमित मान हैं |-समान मानने योग्य समष्टि पर परिमित मान और यदि फिर रैडॉन-निकोडिम व्युत्पन्न मौजूद है और हर मानने योग्य के लिए
      </ली>
    • और तुल्यता (मान सिद्धांत) कहलाते हैं|equivalent यदि प्रत्येक एक दूसरे के संबंध में #बिल्कुल निरंतर है। एक तुल्यता (मान सिद्धांत) # सहायक मान कहा जाता हैsupporting measure मान का अगर सिग्मा-परिमित है|-परिमित और वे समकक्ष हैं।[4]

    <वह> और एकवचन मान हैं |singular, लिखा हुआ अगर वहाँ असंबद्ध सेट मौजूद हैं और के डोमेन में और ऐसा है कि सभी के लिए के अधिकार क्षेत्र में और सभी के लिए के अधिकार क्षेत्र में </ली>

    उदाहरण

    सेट कार्यों के उदाहरणों में शामिल हैं:

    • कार्यक्रम
      पर्याप्त रूप से अच्छे व्यवहार वाले उपसमुच्चय को प्राकृतिक घनत्व प्रदान करना एक निर्धारित कार्य है।
    • एक संभाव्यता मान सिग्मा-बीजगणित | σ-बीजगणित में प्रत्येक सेट के लिए एक संभावना प्रदान करता है। विशेष रूप से, खाली सेट की संभावना शून्य है और नमूना समष्टि की संभावना है के बीच दी गई संभावनाओं के साथ अन्य सेटों के साथ और
    • एक संभावित मान किसी दिए गए सेट के पावरसेट में प्रत्येक सेट को शून्य और एक के बीच एक संख्या प्रदान करता है। संभावना सिद्धांत देखें।
    • random set एक सेट-वैल्यू अनियमित परिवर्तनशील वस्तु है। लेख यादृच्छिक कॉम्पैक्ट सेट देखें।

    जॉर्डन मानता है जॉर्डन के सभी औसत दर्जे के उपसमुच्चय के सेट पर परिभाषित एक सेट फलन है यह अपने जॉर्डन मान के लिए एक जॉर्डन मानने योग्य सेट भेजता है।

    लेबेस्ग मान

    Lebesgue मान पर एक सेट फलन है जो लेबेसेग से संबंधित वास्तविक संख्याओं के प्रत्येक सेट के लिए एक गैर-ऋणात्मक वास्तविक संख्या प्रदान करता है -बीजगणित।[5] इसकी परिभाषा समुच्चय से शुरू होती है वास्तविक संख्याओं के सभी अंतरालों का, जो एक अर्धबीजगणित है वह फलन जो हर अंतराल को असाइन करता है इसका एक सूक्ष्म योगात्मक सेट फलन है (स्पष्ट रूप से, if समानन बिंदु हैं तब ). इस सेट फलन को Lebesgue बाहरी मान पर बढ़ाया जा सकता है जो अनुवाद-अपरिवर्तनीय सेट फलन है जो एक उपसमुच्चय भेजता है नीचे

    Lebesgue बाहरी मान गिनती योग्य नहीं है (और इसलिए एक मान नहीं है) हालांकि सिग्मा-बीजगणित के लिए इसका प्रतिबंध है।𝜎-सभी उपसमुच्चयों का बीजगणित जो कैराथियोडोरी की कसौटी पर खरे उतरते हैं | कैराथियोडोरी की कसौटी:
    एक मान है जिसे लेबेस्गु मान कहा जाता है। विटाली सेट करता है वास्तविक संख्याओं के गैर-मानने योग्य सेट के उदाहरण हैं।

    अनंत-आयामी समष्टि

    जैसा कि अनंत-आयामी लेबेस्गु मान पर लेख में विस्तृत है, केवल समष्टिीय रूप से परिमित और अनुवाद-अपरिवर्तनीय बोरेल मान एक अनंत-आयामी वियोज्य अंतरिक्ष मानक समष्टि पर मामूली मान है। हालांकि, गॉसियन मानों को अनंत-आयामी सांस्थिति सदिश रिक्त समष्टि पर परिभाषित करना संभव है। गॉसियन मानों के लिए संरचना प्रमेय से पता चलता है कि अमूर्त वीनर अंतरिक्ष निर्माण अनिवार्य रूप से एक पृथक समष्टि बनच समष्टि पर एक सख्त सकारात्मक गॉसियन मान प्राप्त करने का एकमात्र तरीका है।

    पूरी तरह से एडिटिव ट्रांसलेशन-इनवेरिएंट सेट फलन

    केवल अनुवाद-अपरिवर्तनीय मान पर डोमेन के साथ के प्रत्येक कॉम्पैक्ट उपसमुच्चय पर परिमित है तुच्छ सेट फलन है जो समान रूप से बराबर है (यानी, यह हर भेजता है को )[6] हालाँकि, यदि काउंटेबल एडिटिविटी को परिमित एडिटिविटी के लिए कमजोर किया जाता है, तो इन गुणों के साथ एक गैर-तुच्छ सेट फलन मौजूद होता है और इसके अलावा, कुछ का मान भी होता है वास्तव में, इस तरह के गैर-तुच्छ सेट फलन तब भी मौजूद रहेंगे किसी अन्य एबेलियन समूह समूह (गणित) द्वारा प्रतिस्थापित किया जाता है [7]

    Theorem[8] — If is any abelian group then there exists a finitely additive and translation-invariant[note 1] set function of mass

    सेट कार्यों का विस्तार

    अर्द्ध बीजगणित से बीजगणित तक विस्तार

    लगता है कि अर्धबीजगणित पर एक समुच्चय फलन है ऊपर और जाने

    जो सेट का फील्ड है द्वारा उत्पन्न  : विक्षनरी: अर्धबीजगणित का आदर्श उदाहरण जो समुच्चयों का क्षेत्र भी नहीं है वह वर्ग है

    पर कहाँ सभी के लिए [9] महत्वपूर्ण रूप से, दो गैर-सख्त असमानताएँ में सख्त असमानताओं के साथ प्रतिस्थापित नहीं किया जा सकता है चूंकि अर्ध-अल्जेब्रस में संपूर्ण अंतर्निहित सेट होना चाहिए वह है, अर्ध-अल्जेब्रस की आवश्यकता है (जैसा है ).

    अगर # निश्चित रूप से योज्य है तो इसमें एक सेट फलन का एक अनूठा विस्तार है पर भेजकर परिभाषित किया गया है (कहाँ इंगित करता है कि ये जोड़ो में असंयुक्त हैं) से:[9]

    यह विस्तार भी सूक्ष्म रूप से योगात्मक होगा: किसी भी युग्‍मानूसार असंयुक्त के लिए [9]
    अगर इसके अलावा विस्तारित वास्तविक-मान और #एकदिष्ट है (जो, विशेष रूप से, यदि मामला होगा #ऋणेतर संख्या) है तो मोनोटोन और #अंतिम रूप से उप-योगात्मक होगा: किसी के लिए भी ऐसा है कि [9]


    अंगूठियों से σ-अलजेब्रा तक विस्तार

    अगर एक #pre-measure|सेट के रिंग पर पूर्व-मान है (जैसे सेट का बीजगणित) ऊपर तब एक मान का विस्तार है σ-बीजगणित पर द्वारा उत्पन्न अगर is #σ-परिमित मान|σ-परिमित तो यह विस्तार अद्वितीय है।

    इस विस्तार को परिभाषित करने के लिए, पहले विस्तार करें एक बाहरी मान के लिए पर द्वारा

    और उसके बाद इसे सेट तक सीमित करें का -मानने योग्य सेट (अर्थात कैराथोडोरी-मानने योग्य सेट), जो सभी का सेट है ऐसा है कि
    यह है एक -बीजगणित और कैरथियोडोरी लेम्मा द्वारा सिग्मा-एडिटिव ऑन इट है।

    बाहरी मानों को प्रतिबंधित करना

    अगर एक सेट पर एक #बाहरी मान है जहां (परिभाषा के अनुसार) डोमेन आवश्यक रूप से पावर सेट है का फिर एक उपसमुच्चय कहा जाता है–measurable याCarathéodory-measurable यदि यह निम्नलिखित को संतुष्ट करता है Carathéodory's criterion:

    कहाँ का पूरक (सेट सिद्धांत) है सबका वर्ग -मानने योग्य उपसमुच्चय एक σ-बीजगणित और बाहरी मान का प्रतिबंध (गणित) है इस वर्ग के लिए एक मान (गणित) है।

    यह भी देखें

    टिप्पणियाँ

    1. 1.0 1.1 Durrett 2019, pp. 1–37, 455–470.
    2. Durrett 2019, pp. 466–470.
    3. Royden & Fitzpatrick 2010, p. 30.
    4. Kallenberg, Olav (2017). यादृच्छिक उपाय, सिद्धांत और अनुप्रयोग. Switzerland: Springer. p. 21. doi:10.1007/978-3-319-41598-7. ISBN 978-3-319-41596-3.
    5. Kolmogorov and Fomin 1975
    6. Rudin 1991, p. 139.
    7. Rudin 1991, pp. 139–140.
    8. Rudin 1991, pp. 141–142.
    9. 9.0 9.1 9.2 9.3 Durrett 2019, pp. 1–9.
    1. The function being translation-invariant means that for every and every subset

    Proofs

    1. Suppose the net converges to some point in a metrizable topological vector space (such as or a normed space), where recall that this net's domain is the directed set Like every convergent net, this convergent net of partial sums is a Cauchy net, which for this particular net means (by definition) that for every neighborhood of the origin in there exists a finite subset of such that for all finite supersets this implies that for every (by taking and ). Since is metrizable, it has a countable neighborhood basis at the origin, whose intersection is necessarily (since is a Hausdorff TVS). For every positive integer pick a finite subset such that for every If belongs to then belongs to Thus for every index that does not belong to the countable set


    संदर्भ


    अग्रिम पठन