रियोमीटर: Difference between revisions
No edit summary |
No edit summary |
||
| Line 3: | Line 3: | ||
{{refimprove|date=फरवरी 2015}} | {{refimprove|date=फरवरी 2015}} | ||
{{Continuum mechanics|cTopic=प्रवाहिकी}} | {{Continuum mechanics|cTopic=प्रवाहिकी}} | ||
[[File:Rheometer.jpg|thumb|एक अनुसंधान प्रयोगशाला में उपयोग में आने वाला घूर्णी | [[File:Rheometer.jpg|thumb|एक अनुसंधान प्रयोगशाला में उपयोग में आने वाला घूर्णी प्रवाहमापी]]एक प्रवाहमापी एक प्रयोगशाला उपकरण है जिसका उपयोग उस तरीके को मापने के लिए किया जाता है जिसमें एक [[चिपचिपा|श्यान]] [[द्रव|तरल]] (एक [[तरल]], [[निलंबन (रसायन विज्ञान)|निलंबन]] या [[घोल]]) लागू बलों के साथ प्रतिक्रिया करता है। इसका उपयोग उन तरल पदार्थों के लिए किया जाता है जिन्हें [[श्यानता]] के एकल मान द्वारा परिभाषित नहीं किया जा सकता है और इसलिए [[विस्कोमीटर|श्यानतामापी]] के मामले की तुलना में अधिक मापदंडों को सेट करने और मापने की आवश्यकता होती है। यह द्रव के [[रियोलॉजी|प्रवाहिकी]] को मापता है। | ||
दो अलग-अलग प्रकार के '' | दो अलग-अलग प्रकार के ''प्रवाहमापी'' हैं। लागू कतरनी तनाव या कतरनी तनाव को नियंत्रित करने वाले प्रवाहमापी को घूर्णी या कतरनी प्रवाहमापी के प्रकार कहा जाता है, जबकि प्रवाहमापी जो विस्तारित तनाव या विस्तारित तनाव को लागू करते हैं, वे #विस्तार प्रवाहमापी के प्रकार होते हैं। | ||
घूर्णी या कतरनी प्रकार के | घूर्णी या कतरनी प्रकार के प्रवाहमापी आमतौर पर या तो एक देशी तनाव-नियंत्रित उपकरण के रूप में डिज़ाइन किए जाते हैं (उपयोगकर्ता-परिभाषित कतरनी तनाव को नियंत्रित और लागू करते हैं जो परिणामी कतरनी तनाव को माप सकते हैं) या एक देशी तनाव-नियंत्रित उपकरण (उपयोगकर्ता-परिभाषित नियंत्रण और लागू करते हैं) कतरनी [[तनाव (यांत्रिकी)]] और परिणामी कतरनी तनाव को मापें)। | ||
== अर्थ और उत्पत्ति == | == अर्थ और उत्पत्ति == | ||
प्रवाहमापी शब्द ग्रीक से आया है, और इसका अर्थ मुख्य प्रवाह को मापने के लिए एक उपकरण है।<ref>{{cite book |last1=Mezger |first1=Thomas |title=एप्लाइड रियोलॉजी|date=2014 |publisher=Anton Paar |location=Austria |isbn=9783950401608 |pages=192 |edition=6th}}</ref> 19वीं शताब्दी में इसका उपयोग आमतौर पर विद्युत प्रवाह को मापने के लिए उपकरणों के लिए किया जाता था, जब तक कि शब्द [[ बिजली की शक्ति नापने का यंत्र ]] और [[एम्मिटर]] द्वारा प्रतिस्थापित नहीं किया गया था। इसका उपयोग चिकित्सा पद्धति (रक्त के प्रवाह) और सिविल इंजीनियरिंग (पानी के प्रवाह) में तरल पदार्थ के प्रवाह के मापन के लिए भी किया जाता था। यह बाद का उपयोग कुछ क्षेत्रों में 20वीं शताब्दी के उत्तरार्ध तक बना रहा। प्रवाहिकी शब्द के निर्माण के बाद शब्द प्रवाह की मात्रा के बजाय चरित्र को मापने के लिए उपकरणों पर लागू किया जाने लगा, और अन्य अर्थ अप्रचलित हैं। (प्रमुख स्रोत: [[ऑक्सफोर्ड इंग्लिश डिक्शनरी]]) प्रवाहमापी के सिद्धांत और कार्यप्रणाली का वर्णन कई ग्रंथों में किया गया है।<ref>{{cite book|last=Macosko|first=Christopher W.|title=Rheology: Principles, Measurements, and Applications|year=1994|publisher=Wiley-VCH|isbn=0-471-18575-2}}</ref><ref>{{cite book|last=Ferry|first=JD|title=पॉलिमर के विस्कोलेस्टिक गुण|year=1980|publisher=Wiley|isbn=0-471-04894-1}}</ref> | |||
== कतरनी | == कतरनी प्रवाहमापी के प्रकार == | ||
=== ज्यामितीय कतरन === | === ज्यामितीय कतरन === | ||
| Line 22: | Line 22: | ||
* प्लेट-प्लेट प्रवाह | * प्लेट-प्लेट प्रवाह | ||
विभिन्न प्रकार के अपरूपण | विभिन्न प्रकार के अपरूपण प्रवाहमापी तब एक या इन ज्यामितीयों के संयोजन का उपयोग करते हैं। | ||
=== रैखिक कतरनी === | === रैखिक कतरनी === | ||
लीनियर शीयर | लीनियर शीयर प्रवाहमापी का एक उदाहरण गुडइयर लीनियर स्किन प्रवाहमापी है, जिसका उपयोग कॉस्मेटिक क्रीम योगों का परीक्षण करने के लिए किया जाता है, और चिकित्सा अनुसंधान उद्देश्यों के लिए ऊतक के लोचदार गुणों की मात्रा निर्धारित करने के लिए किया जाता है। | ||
डिवाइस परीक्षण के तहत ऊतक की सतह पर एक रैखिक जांच संलग्न करके काम करता है, एक नियंत्रित चक्रीय बल लागू होता है, और परिणामी कतरनी बल लोड सेल का उपयोग करके मापा जाता है। विस्थापन को एलवीडीटी का उपयोग करके मापा जाता है। इस प्रकार परीक्षण के तहत ऊतक की गतिशील वसंत दर प्राप्त करने के लिए बुनियादी तनाव-तनाव मापदंडों को पकड़ लिया जाता है और उनका विश्लेषण किया जाता है। | डिवाइस परीक्षण के तहत ऊतक की सतह पर एक रैखिक जांच संलग्न करके काम करता है, एक नियंत्रित चक्रीय बल लागू होता है, और परिणामी कतरनी बल लोड सेल का उपयोग करके मापा जाता है। विस्थापन को एलवीडीटी का उपयोग करके मापा जाता है। इस प्रकार परीक्षण के तहत ऊतक की गतिशील वसंत दर प्राप्त करने के लिए बुनियादी तनाव-तनाव मापदंडों को पकड़ लिया जाता है और उनका विश्लेषण किया जाता है। | ||
=== पाइप या केशिका === | === पाइप या केशिका === | ||
लामिनार प्रवाह की स्थितियों के तहत निरंतर क्रॉस-सेक्शन और सटीक ज्ञात आयामों की एक ट्यूब के माध्यम से तरल को मजबूर किया जाता है। या तो प्रवाह-दर या दबाव ड्रॉप तय हो जाती है और दूसरा मापा जाता है। आयामों को जानने के बाद, प्रवाह-दर को कतरनी दर के मान में परिवर्तित किया जा सकता है और दबाव कतरनी तनाव के मान में गिर जाता है। दबाव या प्रवाह को बदलने से प्रवाह वक्र निर्धारित किया जा सकता है। जब रियोमेट्रिक लक्षण वर्णन के लिए अपेक्षाकृत कम मात्रा में द्रव उपलब्ध होता है, तो नियंत्रित प्रवाह दर के लिए दबाव ड्रॉप को मापने के लिए एम्बेडेड दबाव सेंसर के साथ एक माइक्रोफ्लुइडिक | लामिनार प्रवाह की स्थितियों के तहत निरंतर क्रॉस-सेक्शन और सटीक ज्ञात आयामों की एक ट्यूब के माध्यम से तरल को मजबूर किया जाता है। या तो प्रवाह-दर या दबाव ड्रॉप तय हो जाती है और दूसरा मापा जाता है। आयामों को जानने के बाद, प्रवाह-दर को कतरनी दर के मान में परिवर्तित किया जा सकता है और दबाव कतरनी तनाव के मान में गिर जाता है। दबाव या प्रवाह को बदलने से प्रवाह वक्र निर्धारित किया जा सकता है। जब रियोमेट्रिक लक्षण वर्णन के लिए अपेक्षाकृत कम मात्रा में द्रव उपलब्ध होता है, तो नियंत्रित प्रवाह दर के लिए दबाव ड्रॉप को मापने के लिए एम्बेडेड दबाव सेंसर के साथ एक माइक्रोफ्लुइडिक प्रवाहमापी का उपयोग किया जा सकता है।<ref>{{cite journal|last1=Pipe|first1=CJ|last2=Majmudar|first2= TS|last3=McKinley|first3= GH|title=उच्च शियर-रेट विस्कोमेट्री|journal=Rheologica Acta|year=2008|volume=47|issue=5–6|pages=621–642|doi=10.1007/s00397-008-0268-1|s2cid=16953617}}</ref><ref>{{cite journal|last1=Chevalier|first1=J|last2=Ayela|first2= F.|title=चिप विस्कोमीटर पर माइक्रोफ्लुइडिक|journal=Rev. Sci. Instrum.|year=2008|volume=79|issue=7|pages=076102|doi=10.1063/1.2940219|pmid=18681739|bibcode = 2008RScI...79g6102C }}</ref> | ||
केशिका rheometers चिकित्सकीय प्रोटीन समाधान के लक्षण वर्णन के लिए विशेष रूप से फायदेमंद होते हैं क्योंकि यह सीरिंज होने की क्षमता निर्धारित करता है।<ref>{{cite journal |last1=Hudson |first1=Steven |title=प्रोटीन समाधान की विशेषता के लिए एक माइक्रोलिटर केशिका रियोमीटर|journal=Journal of Pharmaceutical Sciences |date=10 October 2014 |volume=104 |issue=2 |pages=678–685 |doi=10.1002/jps.24201 |pmid=25308758 |doi-access=free }}</ref> इसके अतिरिक्त, रियोमेट्री और समाधान स्थिरता के साथ-साथ थर्मोडायनामिक इंटरैक्शन के बीच एक व्युत्क्रम संबंध है। | केशिका rheometers चिकित्सकीय प्रोटीन समाधान के लक्षण वर्णन के लिए विशेष रूप से फायदेमंद होते हैं क्योंकि यह सीरिंज होने की क्षमता निर्धारित करता है।<ref>{{cite journal |last1=Hudson |first1=Steven |title=प्रोटीन समाधान की विशेषता के लिए एक माइक्रोलिटर केशिका रियोमीटर|journal=Journal of Pharmaceutical Sciences |date=10 October 2014 |volume=104 |issue=2 |pages=678–685 |doi=10.1002/jps.24201 |pmid=25308758 |doi-access=free }}</ref> इसके अतिरिक्त, रियोमेट्री और समाधान स्थिरता के साथ-साथ थर्मोडायनामिक इंटरैक्शन के बीच एक व्युत्क्रम संबंध है। | ||
[[File:Rotational geometries.png|250px|thumb|right|विभिन्न प्रकार के अपरूपण | [[File:Rotational geometries.png|250px|thumb|right|विभिन्न प्रकार के अपरूपण प्रवाहमापीों की घूर्णी ज्यामिति]] | ||
=== डायनेमिक शियर | === डायनेमिक शियर प्रवाहमापी === | ||
एक [[गतिशील कतरनी रियोमीटर]], जिसे आमतौर पर डीएसआर के रूप में जाना जाता है, का उपयोग अनुसंधान और विकास के साथ-साथ सामग्री की एक विस्तृत श्रृंखला के निर्माण में गुणवत्ता नियंत्रण के लिए किया जाता है। डायनेमिक शीयर | एक [[गतिशील कतरनी रियोमीटर|गतिशील कतरनी प्रवाहमापी]], जिसे आमतौर पर डीएसआर के रूप में जाना जाता है, का उपयोग अनुसंधान और विकास के साथ-साथ सामग्री की एक विस्तृत श्रृंखला के निर्माण में गुणवत्ता नियंत्रण के लिए किया जाता है। डायनेमिक शीयर प्रवाहमापी का उपयोग 1993 से किया जा रहा है, जब सुपरपाव का उपयोग पिघले हुए और ठोस दोनों अवस्थाओं में डामर बाइंडर्स के उच्च तापमान रियोलॉजिकल गुणों को समझने और समझने के लिए किया गया था और रसायन विज्ञान तैयार करने और इन सामग्रियों के अंतिम-उपयोग प्रदर्शन की भविष्यवाणी करने के लिए मौलिक है। | ||
=== घूर्णी सिलेंडर === | === घूर्णी सिलेंडर === | ||
तरल को एक सिलेंडर के एनुलस (गणित) में दूसरे के अंदर रखा जाता है। सिलेंडरों में से एक को निर्धारित गति से घुमाया जाता है। यह वलय के अंदर कतरनी दर निर्धारित करता है। तरल दूसरे सिलेंडर को गोल खींचने की कोशिश करता है, और उस सिलेंडर (टोक़) पर लगने वाले बल को मापा जाता है, जिसे कतरनी तनाव में परिवर्तित किया जा सकता है। | तरल को एक सिलेंडर के एनुलस (गणित) में दूसरे के अंदर रखा जाता है। सिलेंडरों में से एक को निर्धारित गति से घुमाया जाता है। यह वलय के अंदर कतरनी दर निर्धारित करता है। तरल दूसरे सिलेंडर को गोल खींचने की कोशिश करता है, और उस सिलेंडर (टोक़) पर लगने वाले बल को मापा जाता है, जिसे कतरनी तनाव में परिवर्तित किया जा सकता है। | ||
इसका एक संस्करण फैन वी-जी | इसका एक संस्करण फैन वी-जी श्यानतामापी है, जो दो गति (300 और 600 आरपीएम) पर चलता है और इसलिए प्रवाह वक्र पर केवल दो अंक देता है। यह एक [[बिंघम प्लास्टिक]] मॉडल को परिभाषित करने के लिए पर्याप्त है जो [[खोदने वाला द्रव]] पदार्थ के प्रवाह चरित्र को निर्धारित करने के लिए [[तेल उद्योग]] में एक बार व्यापक रूप से उपयोग किया जाता था। हाल के वर्षों में 600, 300, 200, 100, 6 और 3 RPM पर स्पिन करने वाले प्रवाहमापी अधिक सामान्य हो गए हैं। यह अधिक जटिल तरल पदार्थ मॉडल जैसे कि हर्शल-बल्कली द्रव | हर्शल-बल्कली का उपयोग करने की अनुमति देता है। कुछ मॉडल क्रमादेशित फैशन में गति को लगातार बढ़ाने और घटाने की अनुमति देते हैं, जो समय-निर्भर गुणों की माप की अनुमति देता है। | ||
===शंकु और थाली=== | ===शंकु और थाली=== | ||
तरल को क्षैतिज प्लेट पर रखा जाता है और उसमें एक उथला शंकु रखा जाता है। शंकु की सतह और प्लेट के बीच का कोण लगभग 1-2 डिग्री है, लेकिन चलाए जा रहे परीक्षणों के प्रकार के आधार पर भिन्न हो सकता है। आमतौर पर प्लेट को घुमाया जाता है और शंकु पर टॉर्क को मापा जाता है। इस उपकरण का एक प्रसिद्ध संस्करण वीसेनबर्ग रियोगोनियोमीटर है, जिसमें शंकु के संचलन को धातु के एक पतले टुकड़े द्वारा प्रतिरोधित किया जाता है, जो मुड़ता है - जिसे [[मरोड़ वसंत]] के रूप में जाना जाता है। मरोड़ वसंत की ज्ञात प्रतिक्रिया और मोड़ की डिग्री कतरनी तनाव देती है, जबकि घूर्णी गति और शंकु आयाम कतरनी दर देते हैं। सिद्धांत रूप में Weissenberg rheogoniometer माप का एक पूर्ण तरीका है बशर्ते इसे सटीक रूप से सेट किया गया हो। इस सिद्धांत पर काम करने वाले अन्य उपकरणों का उपयोग करना आसान हो सकता है लेकिन ज्ञात द्रव के साथ अंशांकन की आवश्यकता होती है। | तरल को क्षैतिज प्लेट पर रखा जाता है और उसमें एक उथला शंकु रखा जाता है। शंकु की सतह और प्लेट के बीच का कोण लगभग 1-2 डिग्री है, लेकिन चलाए जा रहे परीक्षणों के प्रकार के आधार पर भिन्न हो सकता है। आमतौर पर प्लेट को घुमाया जाता है और शंकु पर टॉर्क को मापा जाता है। इस उपकरण का एक प्रसिद्ध संस्करण वीसेनबर्ग रियोगोनियोमीटर है, जिसमें शंकु के संचलन को धातु के एक पतले टुकड़े द्वारा प्रतिरोधित किया जाता है, जो मुड़ता है - जिसे [[मरोड़ वसंत]] के रूप में जाना जाता है। मरोड़ वसंत की ज्ञात प्रतिक्रिया और मोड़ की डिग्री कतरनी तनाव देती है, जबकि घूर्णी गति और शंकु आयाम कतरनी दर देते हैं। सिद्धांत रूप में Weissenberg rheogoniometer माप का एक पूर्ण तरीका है बशर्ते इसे सटीक रूप से सेट किया गया हो। इस सिद्धांत पर काम करने वाले अन्य उपकरणों का उपयोग करना आसान हो सकता है लेकिन ज्ञात द्रव के साथ अंशांकन की आवश्यकता होती है। | ||
लोचदार गुणों को मापने के लिए या संयुक्त घूर्णी और दोलन मोड में कोन और प्लेट | लोचदार गुणों को मापने के लिए या संयुक्त घूर्णी और दोलन मोड में कोन और प्लेट प्रवाहमापी को दोलन मोड में भी संचालित किया जा सकता है। | ||
== विस्तृत | == विस्तृत प्रवाहमापी के प्रकार == | ||
एक सजातीय विस्तारित प्रवाह उत्पन्न करने से जुड़ी चुनौतियों के कारण, विस्तारित rheometers का विकास कतरनी rheometers की तुलना में अधिक धीरे-धीरे आगे बढ़ा है। सबसे पहले, परीक्षण तरल पदार्थ की बातचीत या ठोस इंटरफेस के साथ पिघलने के परिणामस्वरूप कतरनी प्रवाह का एक घटक होगा, जो परिणामों से समझौता करेगा। दूसरे, सभी भौतिक तत्वों के तनाव इतिहास को नियंत्रित और जाना जाना चाहिए। तीसरा, तनाव की दर और तनाव का स्तर इतना अधिक होना चाहिए कि पॉलीमेरिक श्रृंखलाओं को उनके सामान्य दायरे से परे फैलाया जा सके, जिसके लिए विरूपण दर की एक बड़ी रेंज और एक बड़ी यात्रा दूरी के साथ इंस्ट्रूमेंटेशन की आवश्यकता होती है।<ref>{{cite book |last1=Macosko |first1=Christopher W. |title=Rheology : principles, measurements, and applications |date=1994 |publisher=VCH |location=New York |isbn=1-56081-579-5}}</ref><ref>{{cite book |last1=Barnes |first1=Howard A. |title=प्राथमिक रियोलॉजी की एक पुस्तिका|date=2000 |publisher=Univ. of Wales, Institute of Non-Newtonian Fluid Mechanics |location=Aberystwyth |isbn=0-9538032-0-1}}</ref> | एक सजातीय विस्तारित प्रवाह उत्पन्न करने से जुड़ी चुनौतियों के कारण, विस्तारित rheometers का विकास कतरनी rheometers की तुलना में अधिक धीरे-धीरे आगे बढ़ा है। सबसे पहले, परीक्षण तरल पदार्थ की बातचीत या ठोस इंटरफेस के साथ पिघलने के परिणामस्वरूप कतरनी प्रवाह का एक घटक होगा, जो परिणामों से समझौता करेगा। दूसरे, सभी भौतिक तत्वों के तनाव इतिहास को नियंत्रित और जाना जाना चाहिए। तीसरा, तनाव की दर और तनाव का स्तर इतना अधिक होना चाहिए कि पॉलीमेरिक श्रृंखलाओं को उनके सामान्य दायरे से परे फैलाया जा सके, जिसके लिए विरूपण दर की एक बड़ी रेंज और एक बड़ी यात्रा दूरी के साथ इंस्ट्रूमेंटेशन की आवश्यकता होती है।<ref>{{cite book |last1=Macosko |first1=Christopher W. |title=Rheology : principles, measurements, and applications |date=1994 |publisher=VCH |location=New York |isbn=1-56081-579-5}}</ref><ref>{{cite book |last1=Barnes |first1=Howard A. |title=प्राथमिक रियोलॉजी की एक पुस्तिका|date=2000 |publisher=Univ. of Wales, Institute of Non-Newtonian Fluid Mechanics |location=Aberystwyth |isbn=0-9538032-0-1}}</ref> | ||
व्यावसायिक रूप से उपलब्ध एक्सटेंडल | व्यावसायिक रूप से उपलब्ध एक्सटेंडल प्रवाहमापी को विस्कोसिटी रेंज में उनकी प्रयोज्यता के अनुसार अलग किया गया है। चिपचिपाहट वाली सामग्री लगभग 0.01 से 1 Pa.s तक होती है। (अधिकांश बहुलक समाधान) केशिका विखंडन प्रवाहमापी, विपरीत जेट उपकरणों, या संकुचन प्रवाह प्रणालियों के साथ सबसे अच्छी तरह से पहचाने जाते हैं। चिपचिपाहट वाली सामग्री लगभग 1 से 1000 Pa.s तक होती है। फिलामेंट स्ट्रेचिंग प्रवाहमापी में उपयोग किया जाता है। उच्च चिपचिपाहट वाली सामग्री> 1000 पास, जैसे कि बहुलक पिघला देता है, निरंतर-लंबाई वाले उपकरणों द्वारा सबसे अच्छी विशेषता होती है।<ref>Springer Handbook of Experimental Fluid Mechanics, Tropea, Foss, Yarin (eds), Chapter 9.1(2007)</ref> | ||
विस्तारित रियोमेट्री आमतौर पर उन सामग्रियों पर किया जाता है जो तन्यता विरूपण के अधीन होते हैं। प्रसंस्करण के दौरान इस प्रकार की विकृति हो सकती है, जैसे इंजेक्शन मोल्डिंग, फाइबर कताई, एक्सट्रूज़न, ब्लो-मोल्डिंग और कोटिंग प्रवाह। यह उपयोग के दौरान भी हो सकता है, जैसे कि चिपकने वाले पदार्थों का सड़ना, हाथ साबुन को पंप करना और तरल खाद्य उत्पादों को संभालना। | विस्तारित रियोमेट्री आमतौर पर उन सामग्रियों पर किया जाता है जो तन्यता विरूपण के अधीन होते हैं। प्रसंस्करण के दौरान इस प्रकार की विकृति हो सकती है, जैसे इंजेक्शन मोल्डिंग, फाइबर कताई, एक्सट्रूज़न, ब्लो-मोल्डिंग और कोटिंग प्रवाह। यह उपयोग के दौरान भी हो सकता है, जैसे कि चिपकने वाले पदार्थों का सड़ना, हाथ साबुन को पंप करना और तरल खाद्य उत्पादों को संभालना। | ||
वर्तमान में और पूर्व में बाजार में उपलब्ध व्यावसायिक रूप से उपलब्ध एक्सटेन्शनल | वर्तमान में और पूर्व में बाजार में उपलब्ध व्यावसायिक रूप से उपलब्ध एक्सटेन्शनल प्रवाहमापी की सूची नीचे दी गई तालिका में दिखाई गई है। | ||
===व्यावसायिक रूप से उपलब्ध विस्तारित rheometers=== | ===व्यावसायिक रूप से उपलब्ध विस्तारित rheometers=== | ||
| Line 108: | Line 108: | ||
==== रियोटेन्स ==== | ==== रियोटेन्स ==== | ||
रियोटेन्स एक फाइबर स्पिनिंग | रियोटेन्स एक फाइबर स्पिनिंग प्रवाहमापी है, जो पॉलिमरिक मेल्ट्स के लिए उपयुक्त है। सामग्री को अपस्ट्रीम ट्यूब से पंप किया जाता है, और पहियों का एक सेट स्ट्रैंड को बढ़ाता है। पहियों में से एक पर चढ़ा हुआ बल ट्रांसड्यूसर परिणामी विस्तार बल को मापता है। प्री-शियर प्रेरित होने के कारण द्रव को अपस्ट्रीम ट्यूब के माध्यम से ले जाया जाता है, एक वास्तविक विस्तारित चिपचिपाहट प्राप्त करना मुश्किल होता है। हालांकि, सामग्री के समरूप सेट के विस्तार प्रवाह गुणों की तुलना करने के लिए रियोटेंस उपयोगी है। | ||
====कैबर ==== | ====कैबर ==== | ||
| Line 114: | Line 114: | ||
==== फिशर ==== | ==== फिशर ==== | ||
FiSER (फिलामेंट स्ट्रेचिंग एक्सटेन्शनल | FiSER (फिलामेंट स्ट्रेचिंग एक्सटेन्शनल प्रवाहमापी) श्रीधर एट अल के कार्यों पर आधारित है। और अन्ना एट अल।<ref>Sridhar, J. Non-Newtonian Fluid Mech., vol 40, 271–280 (1991); Anna, J. Non-Newtonian Fluid Mech., vol 87, 307–335 (1999)</ref> इस उपकरण में, रैखिक मोटर्स का एक सेट समय और स्थिति के कार्य के रूप में बल और व्यास को मापने के दौरान तेजी से बढ़ते वेग पर एक द्रव फिलामेंट को अलग करता है। एक घातीय रूप से बढ़ती दर पर विकृत करके, नमूनों में एक निरंतर तनाव दर प्राप्त की जा सकती है (एंडप्लेट प्रवाह सीमाओं को छोड़कर)। यह प्रणाली तनाव-निर्भर विस्तारित चिपचिपाहट की निगरानी कर सकती है, साथ ही प्रवाह समाप्ति के बाद तनाव क्षय भी कर सकती है। फिलामेंट स्ट्रेचिंग रिओमेट्री के विभिन्न उपयोगों पर एक विस्तृत प्रस्तुति एमआईटी वेब साइट पर पाई जा सकती है।<ref name=McKinley>{{cite web|url=http://web.mit.edu/nnf/presentation/sld001.htm|first=G.|last=McKinley|work=web.mit.edu|title=A decade of filament stretching rheometry}}</ref> | ||
==== संतमानत ==== | ==== संतमानत ==== | ||
सेंटमैनैट एक्सटेंशनल | सेंटमैनैट एक्सटेंशनल प्रवाहमापी (एसईआर) वास्तव में एक स्थिरता है जिसे कतरनी प्रवाहमापी पर स्थापित किया जा सकता है। बहुलक की एक फिल्म दो घूर्णन ड्रमों पर लपेटी जाती है, जो बहुलक फिल्म पर निरंतर या चर तनाव दर के विस्तार संबंधी विरूपण को लागू करती है। तनाव ड्रमों द्वारा लगाए गए टॉर्क से निर्धारित होता है। | ||
=== अन्य प्रकार के विस्तारित | === अन्य प्रकार के विस्तारित प्रवाहमापी === | ||
==== [[ध्वनिक रियोमीटर]] ==== | ==== [[ध्वनिक रियोमीटर|ध्वनिक प्रवाहमापी]] ==== | ||
ध्वनिक | ध्वनिक प्रवाहमापी एक पीजो-इलेक्ट्रिक क्रिस्टल का उपयोग करते हैं जो द्रव में विस्तार और संकुचन की एक क्रमिक लहर को आसानी से लॉन्च कर सकता है। यह गैर-संपर्क विधि एक दोलनशील विस्तारात्मक तनाव लागू करती है। ध्वनिक प्रवाहमापी मेगाहर्ट्ज़ रेंज में आवृत्तियों के एक सेट के लिए ध्वनि की गति और अल्ट्रासाउंड के क्षीणन को मापते हैं। ध्वनि की गति प्रणाली लोच का एक उपाय है। इसे द्रव संपीड्यता में परिवर्तित किया जा सकता है। क्षीणन चिपचिपे गुणों का एक उपाय है। इसे चिपचिपे अनुदैर्ध्य मापांक में परिवर्तित किया जा सकता है। न्यूटोनियन तरल के मामले में, क्षीणन मात्रा की चिपचिपाहट के बारे में जानकारी देता है। इस प्रकार के प्रवाहमापी दूसरों की तुलना में बहुत अधिक आवृत्तियों पर काम करते हैं। यह किसी भी अन्य प्रवाहमापी की तुलना में बहुत कम [[तनाव में छूट]] वाले प्रभावों का अध्ययन करने के लिए उपयुक्त है। | ||
==== प्लेट गिरना ==== | ==== प्लेट गिरना ==== | ||
फिलामेंट स्ट्रेचिंग | फिलामेंट स्ट्रेचिंग प्रवाहमापी का एक सरल संस्करण, दो ठोस सतहों के बीच गिरने वाली प्लेट प्रवाहमापी सैंडविच तरल। शीर्ष प्लेट तय हो गई है, और नीचे की प्लेट गुरुत्वाकर्षण के प्रभाव में गिरती है, तरल की एक स्ट्रिंग खींचती है। | ||
====केशिका/संकुचन प्रवाह==== | ====केशिका/संकुचन प्रवाह==== | ||
अन्य प्रणालियों में तरल एक छिद्र के माध्यम से जा रहा है, एक केशिका से विस्तार कर रहा है, या एक सतह से एक वैक्यूम द्वारा एक स्तंभ में चूसा जाता है। द्रव भोजन के थर्मल उपचार को डिजाइन करने के लिए एक दबावयुक्त केशिका | अन्य प्रणालियों में तरल एक छिद्र के माध्यम से जा रहा है, एक केशिका से विस्तार कर रहा है, या एक सतह से एक वैक्यूम द्वारा एक स्तंभ में चूसा जाता है। द्रव भोजन के थर्मल उपचार को डिजाइन करने के लिए एक दबावयुक्त केशिका प्रवाहमापी का उपयोग किया जा सकता है। यह उपकरण तरल पदार्थ के अधिक और कम प्रसंस्करण को रोकने में मदद कर सकता है क्योंकि उच्च तापमान के लिए एक्सट्रपलेशन आवश्यक नहीं होगा। <ref>{{cite journal |last1=Ros-Polski |first1=Valquíria |title=माइक्रोवेव-हीटेड प्रेशराइज्ड कैपिलरी रियोमीटर का उपयोग करके उच्च तापमान पर सुक्रोज समाधान का रियोलॉजिकल विश्लेषण|journal=Food Science |date=5 March 2014 |volume=79 |issue=4 |pages=E540–E545 |doi=10.1111/1750-3841.12398 |pmid=24597707 }}</ref> | ||
== यह भी देखें == | == यह भी देखें == | ||
{{Commons category|Rheometers}} | {{Commons category|Rheometers}} | ||
* ध्वनिक | * ध्वनिक प्रवाहमापी | ||
* डायनेमिक शियर | * डायनेमिक शियर प्रवाहमापी | ||
*[[खाद्य रियोलॉजी]] | *[[खाद्य रियोलॉजी|खाद्य प्रवाहिकी]] | ||
*[[ दबाव नापने का यंत्र ]] | *[[ दबाव नापने का यंत्र ]] | ||
*[[रियोमेट्री]] | *[[रियोमेट्री]] | ||
Revision as of 10:50, 25 April 2023
This article needs additional citations for verification. (फरवरी 2015) (Learn how and when to remove this template message) |
| Part of a series on |
| सातत्यक यांत्रिकी |
|---|
एक प्रवाहमापी एक प्रयोगशाला उपकरण है जिसका उपयोग उस तरीके को मापने के लिए किया जाता है जिसमें एक श्यान तरल (एक तरल, निलंबन या घोल) लागू बलों के साथ प्रतिक्रिया करता है। इसका उपयोग उन तरल पदार्थों के लिए किया जाता है जिन्हें श्यानता के एकल मान द्वारा परिभाषित नहीं किया जा सकता है और इसलिए श्यानतामापी के मामले की तुलना में अधिक मापदंडों को सेट करने और मापने की आवश्यकता होती है। यह द्रव के प्रवाहिकी को मापता है।
दो अलग-अलग प्रकार के प्रवाहमापी हैं। लागू कतरनी तनाव या कतरनी तनाव को नियंत्रित करने वाले प्रवाहमापी को घूर्णी या कतरनी प्रवाहमापी के प्रकार कहा जाता है, जबकि प्रवाहमापी जो विस्तारित तनाव या विस्तारित तनाव को लागू करते हैं, वे #विस्तार प्रवाहमापी के प्रकार होते हैं। घूर्णी या कतरनी प्रकार के प्रवाहमापी आमतौर पर या तो एक देशी तनाव-नियंत्रित उपकरण के रूप में डिज़ाइन किए जाते हैं (उपयोगकर्ता-परिभाषित कतरनी तनाव को नियंत्रित और लागू करते हैं जो परिणामी कतरनी तनाव को माप सकते हैं) या एक देशी तनाव-नियंत्रित उपकरण (उपयोगकर्ता-परिभाषित नियंत्रण और लागू करते हैं) कतरनी तनाव (यांत्रिकी) और परिणामी कतरनी तनाव को मापें)।
अर्थ और उत्पत्ति
प्रवाहमापी शब्द ग्रीक से आया है, और इसका अर्थ मुख्य प्रवाह को मापने के लिए एक उपकरण है।[1] 19वीं शताब्दी में इसका उपयोग आमतौर पर विद्युत प्रवाह को मापने के लिए उपकरणों के लिए किया जाता था, जब तक कि शब्द बिजली की शक्ति नापने का यंत्र और एम्मिटर द्वारा प्रतिस्थापित नहीं किया गया था। इसका उपयोग चिकित्सा पद्धति (रक्त के प्रवाह) और सिविल इंजीनियरिंग (पानी के प्रवाह) में तरल पदार्थ के प्रवाह के मापन के लिए भी किया जाता था। यह बाद का उपयोग कुछ क्षेत्रों में 20वीं शताब्दी के उत्तरार्ध तक बना रहा। प्रवाहिकी शब्द के निर्माण के बाद शब्द प्रवाह की मात्रा के बजाय चरित्र को मापने के लिए उपकरणों पर लागू किया जाने लगा, और अन्य अर्थ अप्रचलित हैं। (प्रमुख स्रोत: ऑक्सफोर्ड इंग्लिश डिक्शनरी) प्रवाहमापी के सिद्धांत और कार्यप्रणाली का वर्णन कई ग्रंथों में किया गया है।[2][3]
कतरनी प्रवाहमापी के प्रकार
ज्यामितीय कतरन
चार मूल अपरूपण तलों को उनकी ज्यामिति के अनुसार परिभाषित किया जा सकता है,
- Couette ड्रैग प्लेट फ्लो
- बेलनाकार प्रवाह
- Poiseuille एक ट्यूब में प्रवाहित होता है और
- प्लेट-प्लेट प्रवाह
विभिन्न प्रकार के अपरूपण प्रवाहमापी तब एक या इन ज्यामितीयों के संयोजन का उपयोग करते हैं।
रैखिक कतरनी
लीनियर शीयर प्रवाहमापी का एक उदाहरण गुडइयर लीनियर स्किन प्रवाहमापी है, जिसका उपयोग कॉस्मेटिक क्रीम योगों का परीक्षण करने के लिए किया जाता है, और चिकित्सा अनुसंधान उद्देश्यों के लिए ऊतक के लोचदार गुणों की मात्रा निर्धारित करने के लिए किया जाता है। डिवाइस परीक्षण के तहत ऊतक की सतह पर एक रैखिक जांच संलग्न करके काम करता है, एक नियंत्रित चक्रीय बल लागू होता है, और परिणामी कतरनी बल लोड सेल का उपयोग करके मापा जाता है। विस्थापन को एलवीडीटी का उपयोग करके मापा जाता है। इस प्रकार परीक्षण के तहत ऊतक की गतिशील वसंत दर प्राप्त करने के लिए बुनियादी तनाव-तनाव मापदंडों को पकड़ लिया जाता है और उनका विश्लेषण किया जाता है।
पाइप या केशिका
लामिनार प्रवाह की स्थितियों के तहत निरंतर क्रॉस-सेक्शन और सटीक ज्ञात आयामों की एक ट्यूब के माध्यम से तरल को मजबूर किया जाता है। या तो प्रवाह-दर या दबाव ड्रॉप तय हो जाती है और दूसरा मापा जाता है। आयामों को जानने के बाद, प्रवाह-दर को कतरनी दर के मान में परिवर्तित किया जा सकता है और दबाव कतरनी तनाव के मान में गिर जाता है। दबाव या प्रवाह को बदलने से प्रवाह वक्र निर्धारित किया जा सकता है। जब रियोमेट्रिक लक्षण वर्णन के लिए अपेक्षाकृत कम मात्रा में द्रव उपलब्ध होता है, तो नियंत्रित प्रवाह दर के लिए दबाव ड्रॉप को मापने के लिए एम्बेडेड दबाव सेंसर के साथ एक माइक्रोफ्लुइडिक प्रवाहमापी का उपयोग किया जा सकता है।[4][5] केशिका rheometers चिकित्सकीय प्रोटीन समाधान के लक्षण वर्णन के लिए विशेष रूप से फायदेमंद होते हैं क्योंकि यह सीरिंज होने की क्षमता निर्धारित करता है।[6] इसके अतिरिक्त, रियोमेट्री और समाधान स्थिरता के साथ-साथ थर्मोडायनामिक इंटरैक्शन के बीच एक व्युत्क्रम संबंध है।
डायनेमिक शियर प्रवाहमापी
एक गतिशील कतरनी प्रवाहमापी, जिसे आमतौर पर डीएसआर के रूप में जाना जाता है, का उपयोग अनुसंधान और विकास के साथ-साथ सामग्री की एक विस्तृत श्रृंखला के निर्माण में गुणवत्ता नियंत्रण के लिए किया जाता है। डायनेमिक शीयर प्रवाहमापी का उपयोग 1993 से किया जा रहा है, जब सुपरपाव का उपयोग पिघले हुए और ठोस दोनों अवस्थाओं में डामर बाइंडर्स के उच्च तापमान रियोलॉजिकल गुणों को समझने और समझने के लिए किया गया था और रसायन विज्ञान तैयार करने और इन सामग्रियों के अंतिम-उपयोग प्रदर्शन की भविष्यवाणी करने के लिए मौलिक है।
घूर्णी सिलेंडर
तरल को एक सिलेंडर के एनुलस (गणित) में दूसरे के अंदर रखा जाता है। सिलेंडरों में से एक को निर्धारित गति से घुमाया जाता है। यह वलय के अंदर कतरनी दर निर्धारित करता है। तरल दूसरे सिलेंडर को गोल खींचने की कोशिश करता है, और उस सिलेंडर (टोक़) पर लगने वाले बल को मापा जाता है, जिसे कतरनी तनाव में परिवर्तित किया जा सकता है। इसका एक संस्करण फैन वी-जी श्यानतामापी है, जो दो गति (300 और 600 आरपीएम) पर चलता है और इसलिए प्रवाह वक्र पर केवल दो अंक देता है। यह एक बिंघम प्लास्टिक मॉडल को परिभाषित करने के लिए पर्याप्त है जो खोदने वाला द्रव पदार्थ के प्रवाह चरित्र को निर्धारित करने के लिए तेल उद्योग में एक बार व्यापक रूप से उपयोग किया जाता था। हाल के वर्षों में 600, 300, 200, 100, 6 और 3 RPM पर स्पिन करने वाले प्रवाहमापी अधिक सामान्य हो गए हैं। यह अधिक जटिल तरल पदार्थ मॉडल जैसे कि हर्शल-बल्कली द्रव | हर्शल-बल्कली का उपयोग करने की अनुमति देता है। कुछ मॉडल क्रमादेशित फैशन में गति को लगातार बढ़ाने और घटाने की अनुमति देते हैं, जो समय-निर्भर गुणों की माप की अनुमति देता है।
शंकु और थाली
तरल को क्षैतिज प्लेट पर रखा जाता है और उसमें एक उथला शंकु रखा जाता है। शंकु की सतह और प्लेट के बीच का कोण लगभग 1-2 डिग्री है, लेकिन चलाए जा रहे परीक्षणों के प्रकार के आधार पर भिन्न हो सकता है। आमतौर पर प्लेट को घुमाया जाता है और शंकु पर टॉर्क को मापा जाता है। इस उपकरण का एक प्रसिद्ध संस्करण वीसेनबर्ग रियोगोनियोमीटर है, जिसमें शंकु के संचलन को धातु के एक पतले टुकड़े द्वारा प्रतिरोधित किया जाता है, जो मुड़ता है - जिसे मरोड़ वसंत के रूप में जाना जाता है। मरोड़ वसंत की ज्ञात प्रतिक्रिया और मोड़ की डिग्री कतरनी तनाव देती है, जबकि घूर्णी गति और शंकु आयाम कतरनी दर देते हैं। सिद्धांत रूप में Weissenberg rheogoniometer माप का एक पूर्ण तरीका है बशर्ते इसे सटीक रूप से सेट किया गया हो। इस सिद्धांत पर काम करने वाले अन्य उपकरणों का उपयोग करना आसान हो सकता है लेकिन ज्ञात द्रव के साथ अंशांकन की आवश्यकता होती है। लोचदार गुणों को मापने के लिए या संयुक्त घूर्णी और दोलन मोड में कोन और प्लेट प्रवाहमापी को दोलन मोड में भी संचालित किया जा सकता है।
विस्तृत प्रवाहमापी के प्रकार
एक सजातीय विस्तारित प्रवाह उत्पन्न करने से जुड़ी चुनौतियों के कारण, विस्तारित rheometers का विकास कतरनी rheometers की तुलना में अधिक धीरे-धीरे आगे बढ़ा है। सबसे पहले, परीक्षण तरल पदार्थ की बातचीत या ठोस इंटरफेस के साथ पिघलने के परिणामस्वरूप कतरनी प्रवाह का एक घटक होगा, जो परिणामों से समझौता करेगा। दूसरे, सभी भौतिक तत्वों के तनाव इतिहास को नियंत्रित और जाना जाना चाहिए। तीसरा, तनाव की दर और तनाव का स्तर इतना अधिक होना चाहिए कि पॉलीमेरिक श्रृंखलाओं को उनके सामान्य दायरे से परे फैलाया जा सके, जिसके लिए विरूपण दर की एक बड़ी रेंज और एक बड़ी यात्रा दूरी के साथ इंस्ट्रूमेंटेशन की आवश्यकता होती है।[7][8] व्यावसायिक रूप से उपलब्ध एक्सटेंडल प्रवाहमापी को विस्कोसिटी रेंज में उनकी प्रयोज्यता के अनुसार अलग किया गया है। चिपचिपाहट वाली सामग्री लगभग 0.01 से 1 Pa.s तक होती है। (अधिकांश बहुलक समाधान) केशिका विखंडन प्रवाहमापी, विपरीत जेट उपकरणों, या संकुचन प्रवाह प्रणालियों के साथ सबसे अच्छी तरह से पहचाने जाते हैं। चिपचिपाहट वाली सामग्री लगभग 1 से 1000 Pa.s तक होती है। फिलामेंट स्ट्रेचिंग प्रवाहमापी में उपयोग किया जाता है। उच्च चिपचिपाहट वाली सामग्री> 1000 पास, जैसे कि बहुलक पिघला देता है, निरंतर-लंबाई वाले उपकरणों द्वारा सबसे अच्छी विशेषता होती है।[9] विस्तारित रियोमेट्री आमतौर पर उन सामग्रियों पर किया जाता है जो तन्यता विरूपण के अधीन होते हैं। प्रसंस्करण के दौरान इस प्रकार की विकृति हो सकती है, जैसे इंजेक्शन मोल्डिंग, फाइबर कताई, एक्सट्रूज़न, ब्लो-मोल्डिंग और कोटिंग प्रवाह। यह उपयोग के दौरान भी हो सकता है, जैसे कि चिपकने वाले पदार्थों का सड़ना, हाथ साबुन को पंप करना और तरल खाद्य उत्पादों को संभालना।
वर्तमान में और पूर्व में बाजार में उपलब्ध व्यावसायिक रूप से उपलब्ध एक्सटेन्शनल प्रवाहमापी की सूची नीचे दी गई तालिका में दिखाई गई है।
व्यावसायिक रूप से उपलब्ध विस्तारित rheometers
| Instrument name | Viscosity Range [Pa.s] | Flow Type | Manufacturer | |
|---|---|---|---|---|
| Currently marketed | Rheotens | >100 | Fiber spinning | Goettfert |
| CaBER | 0.01-10 | Capillary breakup | Thermo Scientific | |
| Sentmanat extensional rheometer | >10000 | Constant length | Xpansion Instruments | |
| FiSER | 1–1000 | Filament stretching | Cambridge Polymer Group | |
| VADER | >100 | Controlled Filament stretching | Rheo Filament | |
| Previously marketed | RFX | 0.01-1 | Opposed Jet | Rheometric Scientific |
| RME | >10000 | Constant length | Rheometric Scientific | |
| MXR2 | >10000 | Constant length | Magna Projects |
रियोटेन्स
रियोटेन्स एक फाइबर स्पिनिंग प्रवाहमापी है, जो पॉलिमरिक मेल्ट्स के लिए उपयुक्त है। सामग्री को अपस्ट्रीम ट्यूब से पंप किया जाता है, और पहियों का एक सेट स्ट्रैंड को बढ़ाता है। पहियों में से एक पर चढ़ा हुआ बल ट्रांसड्यूसर परिणामी विस्तार बल को मापता है। प्री-शियर प्रेरित होने के कारण द्रव को अपस्ट्रीम ट्यूब के माध्यम से ले जाया जाता है, एक वास्तविक विस्तारित चिपचिपाहट प्राप्त करना मुश्किल होता है। हालांकि, सामग्री के समरूप सेट के विस्तार प्रवाह गुणों की तुलना करने के लिए रियोटेंस उपयोगी है।
कैबर
कैबर एक केशिका गोलमाल रियोमेट्री है। प्लेटों के बीच सामग्री की एक छोटी मात्रा रखी जाती है, जो तनाव के एक निश्चित स्तर तक तेजी से खिंच जाती है। मध्यबिंदु व्यास की निगरानी समय के एक समारोह के रूप में की जाती है क्योंकि द्रव फिलामेंट गर्दन करता है और सतह के तनाव, गुरुत्वाकर्षण और विस्कोलेस्टिक के संयुक्त बलों के तहत टूट जाता है। विस्तारित चिपचिपाहट को डेटा से तनाव और तनाव दर के कार्य के रूप में निकाला जा सकता है। यह प्रणाली कम चिपचिपापन तरल पदार्थ, स्याही, पेंट, चिपकने वाले और जैविक तरल पदार्थ के लिए उपयोगी है।
फिशर
FiSER (फिलामेंट स्ट्रेचिंग एक्सटेन्शनल प्रवाहमापी) श्रीधर एट अल के कार्यों पर आधारित है। और अन्ना एट अल।[10] इस उपकरण में, रैखिक मोटर्स का एक सेट समय और स्थिति के कार्य के रूप में बल और व्यास को मापने के दौरान तेजी से बढ़ते वेग पर एक द्रव फिलामेंट को अलग करता है। एक घातीय रूप से बढ़ती दर पर विकृत करके, नमूनों में एक निरंतर तनाव दर प्राप्त की जा सकती है (एंडप्लेट प्रवाह सीमाओं को छोड़कर)। यह प्रणाली तनाव-निर्भर विस्तारित चिपचिपाहट की निगरानी कर सकती है, साथ ही प्रवाह समाप्ति के बाद तनाव क्षय भी कर सकती है। फिलामेंट स्ट्रेचिंग रिओमेट्री के विभिन्न उपयोगों पर एक विस्तृत प्रस्तुति एमआईटी वेब साइट पर पाई जा सकती है।[11]
संतमानत
सेंटमैनैट एक्सटेंशनल प्रवाहमापी (एसईआर) वास्तव में एक स्थिरता है जिसे कतरनी प्रवाहमापी पर स्थापित किया जा सकता है। बहुलक की एक फिल्म दो घूर्णन ड्रमों पर लपेटी जाती है, जो बहुलक फिल्म पर निरंतर या चर तनाव दर के विस्तार संबंधी विरूपण को लागू करती है। तनाव ड्रमों द्वारा लगाए गए टॉर्क से निर्धारित होता है।
अन्य प्रकार के विस्तारित प्रवाहमापी
ध्वनिक प्रवाहमापी
ध्वनिक प्रवाहमापी एक पीजो-इलेक्ट्रिक क्रिस्टल का उपयोग करते हैं जो द्रव में विस्तार और संकुचन की एक क्रमिक लहर को आसानी से लॉन्च कर सकता है। यह गैर-संपर्क विधि एक दोलनशील विस्तारात्मक तनाव लागू करती है। ध्वनिक प्रवाहमापी मेगाहर्ट्ज़ रेंज में आवृत्तियों के एक सेट के लिए ध्वनि की गति और अल्ट्रासाउंड के क्षीणन को मापते हैं। ध्वनि की गति प्रणाली लोच का एक उपाय है। इसे द्रव संपीड्यता में परिवर्तित किया जा सकता है। क्षीणन चिपचिपे गुणों का एक उपाय है। इसे चिपचिपे अनुदैर्ध्य मापांक में परिवर्तित किया जा सकता है। न्यूटोनियन तरल के मामले में, क्षीणन मात्रा की चिपचिपाहट के बारे में जानकारी देता है। इस प्रकार के प्रवाहमापी दूसरों की तुलना में बहुत अधिक आवृत्तियों पर काम करते हैं। यह किसी भी अन्य प्रवाहमापी की तुलना में बहुत कम तनाव में छूट वाले प्रभावों का अध्ययन करने के लिए उपयुक्त है।
प्लेट गिरना
फिलामेंट स्ट्रेचिंग प्रवाहमापी का एक सरल संस्करण, दो ठोस सतहों के बीच गिरने वाली प्लेट प्रवाहमापी सैंडविच तरल। शीर्ष प्लेट तय हो गई है, और नीचे की प्लेट गुरुत्वाकर्षण के प्रभाव में गिरती है, तरल की एक स्ट्रिंग खींचती है।
केशिका/संकुचन प्रवाह
अन्य प्रणालियों में तरल एक छिद्र के माध्यम से जा रहा है, एक केशिका से विस्तार कर रहा है, या एक सतह से एक वैक्यूम द्वारा एक स्तंभ में चूसा जाता है। द्रव भोजन के थर्मल उपचार को डिजाइन करने के लिए एक दबावयुक्त केशिका प्रवाहमापी का उपयोग किया जा सकता है। यह उपकरण तरल पदार्थ के अधिक और कम प्रसंस्करण को रोकने में मदद कर सकता है क्योंकि उच्च तापमान के लिए एक्सट्रपलेशन आवश्यक नहीं होगा। [12]
यह भी देखें
- ध्वनिक प्रवाहमापी
- डायनेमिक शियर प्रवाहमापी
- खाद्य प्रवाहिकी
- दबाव नापने का यंत्र
- रियोमेट्री
संदर्भ
- ↑ Mezger, Thomas (2014). एप्लाइड रियोलॉजी (6th ed.). Austria: Anton Paar. p. 192. ISBN 9783950401608.
- ↑ Macosko, Christopher W. (1994). Rheology: Principles, Measurements, and Applications. Wiley-VCH. ISBN 0-471-18575-2.
- ↑ Ferry, JD (1980). पॉलिमर के विस्कोलेस्टिक गुण. Wiley. ISBN 0-471-04894-1.
- ↑ Pipe, CJ; Majmudar, TS; McKinley, GH (2008). "उच्च शियर-रेट विस्कोमेट्री". Rheologica Acta. 47 (5–6): 621–642. doi:10.1007/s00397-008-0268-1. S2CID 16953617.
- ↑ Chevalier, J; Ayela, F. (2008). "चिप विस्कोमीटर पर माइक्रोफ्लुइडिक". Rev. Sci. Instrum. 79 (7): 076102. Bibcode:2008RScI...79g6102C. doi:10.1063/1.2940219. PMID 18681739.
- ↑ Hudson, Steven (10 October 2014). "प्रोटीन समाधान की विशेषता के लिए एक माइक्रोलिटर केशिका रियोमीटर". Journal of Pharmaceutical Sciences. 104 (2): 678–685. doi:10.1002/jps.24201. PMID 25308758.
- ↑ Macosko, Christopher W. (1994). Rheology : principles, measurements, and applications. New York: VCH. ISBN 1-56081-579-5.
- ↑ Barnes, Howard A. (2000). प्राथमिक रियोलॉजी की एक पुस्तिका. Aberystwyth: Univ. of Wales, Institute of Non-Newtonian Fluid Mechanics. ISBN 0-9538032-0-1.
- ↑ Springer Handbook of Experimental Fluid Mechanics, Tropea, Foss, Yarin (eds), Chapter 9.1(2007)
- ↑ Sridhar, J. Non-Newtonian Fluid Mech., vol 40, 271–280 (1991); Anna, J. Non-Newtonian Fluid Mech., vol 87, 307–335 (1999)
- ↑ McKinley, G. "A decade of filament stretching rheometry". web.mit.edu.
- ↑ Ros-Polski, Valquíria (5 March 2014). "माइक्रोवेव-हीटेड प्रेशराइज्ड कैपिलरी रियोमीटर का उपयोग करके उच्च तापमान पर सुक्रोज समाधान का रियोलॉजिकल विश्लेषण". Food Science. 79 (4): E540–E545. doi:10.1111/1750-3841.12398. PMID 24597707.
- K. Walters (1975) Rheometry (Chapman & Hall) ISBN 0-412-12090-9
- A.S.Dukhin and P.J.Goetz "Ultrasound for characterizing colloids", Elsevier, (2002)