तापीय धारिता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
{{Distinguish|एन्ट्रॉपी}}
{{Distinguish|एन्ट्रॉपी}}
{{Thermodynamics |potentials}}
{{Thermodynamics |potentials}}
तापीय धारिता {{IPAc-en|ˈ|ɛ|n|θ|əl|p|i|audio=en-US-enthalpy.ogg}}, [[थर्मोडायनामिक प्रणाली|ऊष्मागतिक प्रणाली]] की एक गुण, प्रणाली की [[आंतरिक ऊर्जा]] और उसके दाब और आयतन के उत्पाद का योग है।<ref name=":0">{{GoldBookRef |title=enthalpy |file=E02141 }}</ref> यह एक स्थिर दाब पर रासायनिक, जैविक और भौतिक प्रणालियों में कई मापों में उपयोग किया जाने वाला एक अवस्था कार्य है, जो बड़े परिवेशी वातावरण द्वारा सरलता से प्रदान किया जाता है। दाब-मात्रा पद प्रणाली के भौतिक आयामों को स्थापित करने के लिए आवश्यक कार्य (भौतिकी) को व्यक्त करता है, अर्थात इसके परिवेश को विस्थापित करके इसके लिए स्थान बनाना।<ref>{{cite book|first=Mark W. |last=Zemansky |date=1968 |title=ऊष्मा और ऊष्मप्रवैगिकी|url=https://archive.org/details/heatthermodynami0000zema |url-access=registration |chapter=Chapter 11 |edition=5th |page=[https://archive.org/details/heatthermodynami0000zema/page/275 275] |publisher=McGraw-Hill |location=New York, NY}}</ref><ref>{{cite book|first1=G. J. |last1=Van Wylen |first2=R. E. |last2=Sonntag |date=1985 |title=शास्त्रीय ऊष्मप्रवैगिकी के मूल तत्व|chapter=Section 5.5 |edition=3rd |publisher=John Wiley & Sons |location=New York |isbn=978-0-471-82933-1}}</ref> सामान्य परिस्थितियों में ठोस और तरल पदार्थ के लिए दाब-आयतन पद बहुत छोटा है, और गैसों के लिए अत्यधिक छोटा है। इसलिए, तापीय धारिता रासायनिक प्रणालियों में ऊर्जा के लिए स्थानापन्न है; [[बंधन ऊर्जा]], [[जाली ऊर्जा|जालक ऊर्जा]], विलायकयोजन और रसायन विज्ञान में अन्य ऊर्जाएं वस्तुतः तापीय धारिता अंतर हैं। अवस्था कार्य के रूप में, तापीय धारिता मात्र आंतरिक ऊर्जा, दाब और आयतन के अंतिम विन्यास पर निर्भर करती है, इसे प्राप्त करने के लिए अपनाए गए पथ पर नहीं।
तापीय धारिता {{IPAc-en|ˈ|ɛ|n|θ|əl|p|i|audio=en-US-enthalpy.ogg}}, [[थर्मोडायनामिक प्रणाली|ऊष्मागतिक प्रणाली]] की एक गुण, प्रणाली की [[आंतरिक ऊर्जा]] और उसके दाब और आयतन के उत्पाद का योग है।<ref name=":0">{{GoldBookRef |title=enthalpy |file=E02141 }}</ref> यह एक स्थिर दाब पर रासायनिक, जैविक और भौतिक प्रणालियों में कई मापों में उपयोग किया जाने वाला एक अवस्था कार्य है, जो बड़े परिवेशी वातावरण द्वारा सरलता से प्रदान किया जाता है। दाब-आयतन पद प्रणाली के भौतिक आयामों को स्थापित करने के लिए आवश्यक कार्य (भौतिकी) को व्यक्त करता है, अर्थात इसके परिवेश को विस्थापित करके इसके लिए स्थान बनाना।<ref>{{cite book|first=Mark W. |last=Zemansky |date=1968 |title=ऊष्मा और ऊष्मप्रवैगिकी|url=https://archive.org/details/heatthermodynami0000zema |url-access=registration |chapter=Chapter 11 |edition=5th |page=[https://archive.org/details/heatthermodynami0000zema/page/275 275] |publisher=McGraw-Hill |location=New York, NY}}</ref><ref>{{cite book|first1=G. J. |last1=Van Wylen |first2=R. E. |last2=Sonntag |date=1985 |title=शास्त्रीय ऊष्मप्रवैगिकी के मूल तत्व|chapter=Section 5.5 |edition=3rd |publisher=John Wiley & Sons |location=New York |isbn=978-0-471-82933-1}}</ref> सामान्य परिस्थितियों में ठोस और तरल पदार्थ के लिए दाब-आयतन पद बहुत छोटा है, और गैसों के लिए अत्यधिक छोटा है। इसलिए, तापीय धारिता रासायनिक प्रणालियों में ऊर्जा के लिए स्थानापन्न है; [[बंधन ऊर्जा]], [[जाली ऊर्जा|जालक ऊर्जा]], विलायकयोजन और रसायन विज्ञान में अन्य ऊर्जाएं वस्तुतः तापीय धारिता अंतर हैं। अवस्था कार्य के रूप में, तापीय धारिता मात्र आंतरिक ऊर्जा, दाब और आयतन के अंतिम विन्यास पर निर्भर करती है, इसे प्राप्त करने के लिए अपनाए गए पथ पर नहीं।


[[इकाइयों की अंतर्राष्ट्रीय प्रणाली]] (SI) में, तापीय धारिता के लिए माप की इकाई जूल है। अन्य ऐतिहासिक परंपरागत इकाइयां अभी भी उपयोग में हैं जिनमें [[कैलोरी]] और [[ब्रिटिश थर्मल यूनिट]] (बीटीयू) सम्मिलित हैं।
[[इकाइयों की अंतर्राष्ट्रीय प्रणाली]] (SI) में, तापीय धारिता के लिए माप की इकाई जूल है। अन्य ऐतिहासिक परंपरागत इकाइयां अभी भी उपयोग में हैं जिनमें [[कैलोरी]] और [[ब्रिटिश थर्मल यूनिट]] (बीटीयू) सम्मिलित हैं।
Line 68: Line 68:
बन जाता है, जहां {{math|''μ''<sub>''i''</sub>}} एक {{mvar|i}}-प्रकार कण एक के लिए प्रति कण रासायनिक क्षमता है, और {{math|''N''<sub>''i''</sub>}} ऐसे कणों की संख्या है। अंतिम पद को {{math|''μ<sub>i</sub>''&thinsp;''dn''<sub>''i''</sub>}} के रूप में भी लिखा जा सकता है ( {{math|''dn''<sub>''i''</sub>}} के साथ प्रणाली में जोड़े गए घटक {{mvar|i}} के ग्राम अणु की संख्या और, इस स्थिति में, {{math|''μ''<sub>''i''</sub>}} मोलर रासायनिक क्षमता) या {{math|''μ''<sub>''i''</sub>&thinsp;''dm''<sub>''i''</sub>}} के रूप में ({{math|''dm''<sub>''i''</sub>}} के साथ घटक {{mvar|i}} का द्रव्यमान प्रणाली में जोड़ा जाता है और, इस स्थिति में, विशिष्ट रासायनिक क्षमता {{math|''μ''<sub>''i''</sub>}})।
बन जाता है, जहां {{math|''μ''<sub>''i''</sub>}} एक {{mvar|i}}-प्रकार कण एक के लिए प्रति कण रासायनिक क्षमता है, और {{math|''N''<sub>''i''</sub>}} ऐसे कणों की संख्या है। अंतिम पद को {{math|''μ<sub>i</sub>''&thinsp;''dn''<sub>''i''</sub>}} के रूप में भी लिखा जा सकता है ( {{math|''dn''<sub>''i''</sub>}} के साथ प्रणाली में जोड़े गए घटक {{mvar|i}} के ग्राम अणु की संख्या और, इस स्थिति में, {{math|''μ''<sub>''i''</sub>}} मोलर रासायनिक क्षमता) या {{math|''μ''<sub>''i''</sub>&thinsp;''dm''<sub>''i''</sub>}} के रूप में ({{math|''dm''<sub>''i''</sub>}} के साथ घटक {{mvar|i}} का द्रव्यमान प्रणाली में जोड़ा जाता है और, इस स्थिति में, विशिष्ट रासायनिक क्षमता {{math|''μ''<sub>''i''</sub>}})।


=== विशेषता कार्य और प्राकृतिक अवस्था चर ===
=== विशेषता फलन और प्राकृतिक अवस्था चर ===


तापीय धारिता, {{math|''H''(''S''[''p''], ''p'', {{mset|''N<sub>i</sub>''}})}}, ऊर्जा प्रतिनिधित्व में एक प्रणाली के ऊष्मप्रवैगिकी को व्यक्त करता है। एक अवस्था कार्य के रूप में, इसके तर्कों में एक सघन और कई व्यापक अवस्था चर सम्मिलित हैं। अवस्था चर {{math|''S''[''p'']}}, {{math|''p''}}, और {{math|{{mset|''N<sub>i</sub>''}}}} को इस प्रतिनिधित्व में ऊष्मागतिक क्षमता कहा जाता है। वे उन प्रक्रियाओं का वर्णन करने के लिए उपयुक्त हैं जिनमें वे परिवेश के कारकों द्वारा निर्धारित होते हैं। उदाहरण के लिए, जब वायुमंडलीय वायु का एक आभासी पार्सल एक अलग ऊंचाई पर जाता है, तो इसके निकट का दाब बदल जाता है, और यह प्रक्रिया प्रायः इतनी तीव्र होती है कि ऊष्मा स्थानांतरण के लिए बहुत कम समय मिलता है। यह तथाकथित रुद्धोष्म सन्निकटन का आधार है जिसका उपयोग ऋतु विज्ञान में किया जाता है।<ref>Iribarne, J.V., Godson, W.L. (1981). ''Atmospheric Thermodynamics'', 2nd edition, Kluwer Academic Publishers, Dordrecht, {{ISBN|90-277-1297-2}}, pp. 235–236.</ref>
तापीय धारिता, {{math|''H''(''S''[''p''], ''p'', {{mset|''N<sub>i</sub>''}})}}, ऊर्जा प्रतिनिधित्व में एक प्रणाली के ऊष्मप्रवैगिकी को व्यक्त करता है। एक अवस्था फलन के रूप में, इसके तर्कों में एक सघन और कई व्यापक अवस्था चर सम्मिलित हैं। अवस्था चर {{math|''S''[''p'']}}, {{math|''p''}}, और {{math|{{mset|''N<sub>i</sub>''}}}} को इस प्रतिनिधित्व में ऊष्मागतिक क्षमता कहा जाता है। वे उन प्रक्रियाओं का वर्णन करने के लिए उपयुक्त हैं जिनमें वे परिवेश के कारकों द्वारा निर्धारित होते हैं। उदाहरण के लिए, जब वायुमंडलीय वायु का एक आभासी पार्सल एक अलग ऊंचाई पर जाता है, तो इसके निकट का दाब बदल जाता है, और यह प्रक्रिया प्रायः इतनी तीव्र होती है कि ऊष्मा स्थानांतरण के लिए बहुत कम समय मिलता है। यह तथाकथित रुद्धोष्म सन्निकटन का आधार है जिसका उपयोग ऋतु विज्ञान में किया जाता है।<ref>Iribarne, J.V., Godson, W.L. (1981). ''Atmospheric Thermodynamics'', 2nd edition, Kluwer Academic Publishers, Dordrecht, {{ISBN|90-277-1297-2}}, pp. 235–236.</ref>


तापीय धारिता के साथ संयुग्मित, इन तर्कों के साथ, ऊष्मागतिक प्रणाली की स्थिति का अन्य विशिष्ट कार्य इसकी एन्ट्रापी है, एक कार्य के रूप में, {{math|''S''[''p''](''H'', ''p'', {{mset|''N<sub>i</sub>''}})}}, अवस्था के चर की एक ही सूची के, अतिरिक्त इसके कि एंट्रॉपी, {{math|''S''[''p'']}}, को तापीय धारिता, {{math|''H''}} द्वारा सूची में प्रतिस्थापित किया गया है। यह एंट्रॉपी प्रतिनिधित्व व्यक्त करता है। अवस्था चर {{math|''H''}}, {{math|''p''}}, और {{math|{{mset|''N<sub>i</sub>''}}}} को इस प्रतिनिधित्व में प्राकृतिक अवस्था चर कहा जाता है। वे उन प्रक्रियाओं का वर्णन करने के लिए उपयुक्त हैं जिनमें उन्हें प्रयोगात्मक रूप से नियंत्रित किया जाता है। उदाहरण के लिए, {{math|''H''}} और {{math|''p''}} ऊष्मा स्थानांतरण की अनुमति देकर और प्रणाली की मात्रा निर्धारित करने वाले पिस्टन पर मात्र बाहरी दाब को बदलकर नियंत्रित किया जा सकता है।<ref>Tschoegl, N.W. (2000). ''Fundamentals of Equilibrium and Steady-State Thermodynamics'', Elsevier, Amsterdam, {{ISBN|0-444-50426-5}}, p. 17.</ref><ref>Callen, H. B. (1960/1985), ''Thermodynamics and an Introduction to Thermostatistics'', (first edition 1960), second edition 1985, John Wiley & Sons, New York, {{ISBN|0-471-86256-8}}, Chapter 5.</ref><ref>Münster, A. (1970), Classical Thermodynamics, translated by E. S. Halberstadt, Wiley–Interscience, London, {{ISBN|0-471-62430-6}}, p. 6.</ref>
तापीय धारिता के साथ संयुग्मित, इन तर्कों के साथ, ऊष्मागतिक प्रणाली की स्थिति का अन्य विशिष्ट कार्य इसकी एन्ट्रापी है, एक कार्य के रूप में, {{math|''S''[''p''](''H'', ''p'', {{mset|''N<sub>i</sub>''}})}}, अवस्था के चर की एक ही सूची के, अतिरिक्त इसके कि एंट्रॉपी, {{math|''S''[''p'']}}, को तापीय धारिता, {{math|''H''}} द्वारा सूची में प्रतिस्थापित किया गया है। यह एंट्रॉपी प्रतिनिधित्व व्यक्त करता है। अवस्था चर {{math|''H''}}, {{math|''p''}}, और {{math|{{mset|''N<sub>i</sub>''}}}} को इस प्रतिनिधित्व में प्राकृतिक अवस्था चर कहा जाता है। वे उन प्रक्रियाओं का वर्णन करने के लिए उपयुक्त हैं जिनमें उन्हें प्रयोगात्मक रूप से नियंत्रित किया जाता है। उदाहरण के लिए, {{math|''H''}} और {{math|''p''}} ऊष्मा स्थानांतरण की अनुमति देकर और प्रणाली की मात्रा निर्धारित करने वाले पिस्टन पर मात्र बाहरी दाब को बदलकर नियंत्रित किया जा सकता है।<ref>Tschoegl, N.W. (2000). ''Fundamentals of Equilibrium and Steady-State Thermodynamics'', Elsevier, Amsterdam, {{ISBN|0-444-50426-5}}, p. 17.</ref><ref>Callen, H. B. (1960/1985), ''Thermodynamics and an Introduction to Thermostatistics'', (first edition 1960), second edition 1985, John Wiley & Sons, New York, {{ISBN|0-471-86256-8}}, Chapter 5.</ref><ref>Münster, A. (1970), Classical Thermodynamics, translated by E. S. Halberstadt, Wiley–Interscience, London, {{ISBN|0-471-62430-6}}, p. 6.</ref>
Line 77: Line 77:
{{mvar|U}} पद प्रणाली की ऊर्जा है, और {{mvar|pV}} पद की व्याख्या उस कार्य (ऊष्मप्रवैगिकी) के रूप में की जा सकती है, जो पर्यावरण के दाब के स्थिर रहने पर प्रणाली के लिए स्थान बनाने के लिए आवश्यक होगा। जब एक प्रणाली, उदाहरण के लिए, {{mvar|n}} आयतन (ऊष्मागतिकी) की गैस का ग्राम अणु (इकाई) {{mvar|V}} दाब में {{mvar|p}} और [[तापमान]] {{mvar|T}}, पूर्ण शून्य से अपनी वर्तमान स्थिति में बनाया या लाया जाता है, तो इसकी आंतरिक ऊर्जा के बराबर ऊर्जा की आपूर्ति की जानी चाहिए {{mvar|U}} धन {{mvar|pV}}, जहां {{mvar|pV}} परिवेश (वायुमंडलीय) दाब के विरुद्ध धकेलने में किया जाने वाला कार्य (भौतिकी) है।
{{mvar|U}} पद प्रणाली की ऊर्जा है, और {{mvar|pV}} पद की व्याख्या उस कार्य (ऊष्मप्रवैगिकी) के रूप में की जा सकती है, जो पर्यावरण के दाब के स्थिर रहने पर प्रणाली के लिए स्थान बनाने के लिए आवश्यक होगा। जब एक प्रणाली, उदाहरण के लिए, {{mvar|n}} आयतन (ऊष्मागतिकी) की गैस का ग्राम अणु (इकाई) {{mvar|V}} दाब में {{mvar|p}} और [[तापमान]] {{mvar|T}}, पूर्ण शून्य से अपनी वर्तमान स्थिति में बनाया या लाया जाता है, तो इसकी आंतरिक ऊर्जा के बराबर ऊर्जा की आपूर्ति की जानी चाहिए {{mvar|U}} धन {{mvar|pV}}, जहां {{mvar|pV}} परिवेश (वायुमंडलीय) दाब के विरुद्ध धकेलने में किया जाने वाला कार्य (भौतिकी) है।


भौतिकी और [[सांख्यिकीय यांत्रिकी]] में एक स्थिर-आयतन प्रणाली के आंतरिक गुणों का अध्ययन करना अधिक रुचिपूर्ण हो सकता है और इसलिए आंतरिक ऊर्जा का उपयोग किया जाता है।<ref>{{cite book|first=F. |last=Reif |title=सांख्यिकीय भौतिकी|publisher=McGraw-Hill |location=London |date=1967}}</ref><ref>{{cite book|first1=C. |last1=Kittel |first2=H. |last2=Kroemer |title=ऊष्मीय भौतिकी|publisher=Freeman |location=London |date=1980}}</ref> [[रसायन विज्ञान]] में, प्रयोग प्रायः स्थिर वायुमंडलीय दाब पर किए जाते हैं, और दाब-मात्रा का काम वातावरण के साथ एक छोटे, ठीक रूप से परिभाषित ऊर्जा विनिमय का प्रतिनिधित्व करता है, ताकि {{math|Δ''H''}} [[प्रतिक्रिया की गर्मी|अभिक्रिया की]] ऊष्मा के लिए उपयुक्त अभिव्यक्ति है। एक ऊष्मा इंजन के लिए, एक पूर्ण चक्र के बाद इसकी तापीय धारिता में परिवर्तन शून्य के बराबर होता है, क्योंकि अंतिम और प्रारंभिक अवस्था समान होती है।
भौतिकी और [[सांख्यिकीय यांत्रिकी]] में एक स्थिर-आयतन प्रणाली के आंतरिक गुणों का अध्ययन करना अधिक रुचिपूर्ण हो सकता है और इसलिए आंतरिक ऊर्जा का उपयोग किया जाता है।<ref>{{cite book|first=F. |last=Reif |title=सांख्यिकीय भौतिकी|publisher=McGraw-Hill |location=London |date=1967}}</ref><ref>{{cite book|first1=C. |last1=Kittel |first2=H. |last2=Kroemer |title=ऊष्मीय भौतिकी|publisher=Freeman |location=London |date=1980}}</ref> [[रसायन विज्ञान]] में, प्रयोग प्रायः स्थिर वायुमंडलीय दाब पर किए जाते हैं, और दाब-मात्रा का कार्य वातावरण के साथ एक छोटे, ठीक रूप से परिभाषित ऊर्जा विनिमय का प्रतिनिधित्व करता है, ताकि {{math|Δ''H''}} [[प्रतिक्रिया की गर्मी|अभिक्रिया की]] ऊष्मा के लिए उपयुक्त अभिव्यक्ति है। एक ऊष्मा इंजन के लिए, एक पूर्ण चक्र के बाद इसकी तापीय धारिता में परिवर्तन शून्य के बराबर होता है, क्योंकि अंतिम और प्रारंभिक अवस्था समान होती है।


== ताप से संबंध ==
== ताप से संबंध ==
तापीय धारिता वृद्धि और ऊष्मा की आपूर्ति के बीच के संबंध पर चर्चा करने के लिए, हम बंद प्रणालियों के लिए प्रथम नियम पर लौटते हैं, भौतिकी चिह्न परिपाटी के साथ: {{math|1=''dU'' = ''δQ'' − ''δW''}}, जहां ऊष्मा {{mvar|δQ}} चालन, विकिरण, [[जूल हीटिंग|जूल ऊष्मा]] द्वारा आपूर्ति की जाती है। हम इसे विशेष स्थिति में सतह पर स्थिर दाब के साथ लागू करते हैं। इस स्थिति में काम {{math|''p''&thinsp;''dV''}} द्वारा दिया जाता है (जहां {{mvar|p}} सतह पर दाब है, {{mvar|dV}} प्रणाली की मात्रा में वृद्धि है)। लंबी दूरी के विद्युत चुम्बकीय अन्योन्यक्रिया की स्थितियों को उनके निर्माण में और अधिक अवस्था चर की आवश्यकता होती है, और यहां पर विचार नहीं किया जाता है। इस स्थिति में प्रथम नियम पढ़ता है:
तापीय धारिता वृद्धि और ऊष्मा की आपूर्ति के बीच के संबंध पर चर्चा करने के लिए, हम बंद प्रणालियों के लिए प्रथम नियम पर लौटते हैं, भौतिकी चिह्न परिपाटी के साथ: {{math|1=''dU'' = ''δQ'' − ''δW''}}, जहां ऊष्मा {{mvar|δQ}} चालन, विकिरण, [[जूल हीटिंग|जूल ऊष्मा]] द्वारा आपूर्ति की जाती है। हम इसे विशेष स्थिति में सतह पर स्थिर दाब के साथ लागू करते हैं। इस स्थिति में कार्य {{math|''p''&thinsp;''dV''}} द्वारा दिया जाता है (जहां {{mvar|p}} सतह पर दाब है, {{mvar|dV}} प्रणाली की मात्रा में वृद्धि है)। लंबी दूरी के विद्युत चुम्बकीय अन्योन्यक्रिया की स्थितियों को उनके निर्माण में और अधिक अवस्था चर की आवश्यकता होती है, और यहां पर विचार नहीं किया जाता है। इस स्थिति में प्रथम नियम पढ़ता है:
<math display="block">dU = \delta Q - p\,dV.</math>
<math display="block">dU = \delta Q - p\,dV.</math>
अभी,
अभी,
Line 97: Line 97:
ऊष्मप्रवैगिकी में, "शून्यता" से एक प्रणाली बनाने के लिए आवश्यकताओं को निर्धारित करके एन्थैल्पी की गणना की जा सकती है; आवश्यक यांत्रिक कार्य, {{mvar|pV}}, ऊष्मागतिक प्रणाली के निर्माण के समय प्राप्त होने वाली स्थितियों के आधार पर भिन्न होता है।
ऊष्मप्रवैगिकी में, "शून्यता" से एक प्रणाली बनाने के लिए आवश्यकताओं को निर्धारित करके एन्थैल्पी की गणना की जा सकती है; आवश्यक यांत्रिक कार्य, {{mvar|pV}}, ऊष्मागतिक प्रणाली के निर्माण के समय प्राप्त होने वाली स्थितियों के आधार पर भिन्न होता है।


प्रणाली के निर्माण के लिए स्थान बनाने के लिए निकट के कणों को हटाने के लिए [[ऊर्जा]] की आपूर्ति की जानी चाहिए, यह मानते हुए कि दाब {{mvar|p}} स्थिर रहता है; यह {{mvar|pV}} पद है। आपूर्ति की गई ऊर्जा को आंतरिक ऊर्जा में परिवर्तन भी प्रदान करना चाहिए, {{mvar|U}}, जिसमें [[सक्रियण ऊर्जा]], आयनीकरण ऊर्जा, मिश्रण ऊर्जा, वाष्पीकरण ऊर्जा, रासायनिक बंधन ऊर्जा आदि सम्मिलित हैं। साथ में, ये तापीय धारिता {{math|''U'' + ''pV''}} में परिवर्तन का निर्माण करते हैं। स्थिर दाब पर प्रणाली के लिए, {{mvar|pV}} कार्य के अतिरिक्त कोई बाहरी काम नहीं किया जाता है , तापीय धारिता में परिवर्तन प्रणाली द्वारा प्राप्त ऊष्मा है।
प्रणाली के निर्माण के लिए स्थान बनाने के लिए निकट के कणों को हटाने के लिए [[ऊर्जा]] की आपूर्ति की जानी चाहिए, यह मानते हुए कि दाब {{mvar|p}} स्थिर रहता है; यह {{mvar|pV}} पद है। आपूर्ति की गई ऊर्जा को आंतरिक ऊर्जा में परिवर्तन भी प्रदान करना चाहिए, {{mvar|U}}, जिसमें [[सक्रियण ऊर्जा]], आयनीकरण ऊर्जा, मिश्रण ऊर्जा, वाष्पीकरण ऊर्जा, रासायनिक बंधन ऊर्जा आदि सम्मिलित हैं। साथ में, ये तापीय धारिता {{math|''U'' + ''pV''}} में परिवर्तन का निर्माण करते हैं। स्थिर दाब पर प्रणाली के लिए, {{mvar|pV}} कार्य के अतिरिक्त कोई बाहरी कार्य नहीं किया जाता है , तापीय धारिता में परिवर्तन प्रणाली द्वारा प्राप्त ऊष्मा है।


स्थिर दाब पर कणों की एक स्थिर संख्या के साथ एक सरल प्रणाली के लिए, तापीय धारिता में अंतर एक समदाब ऊष्मागतिक प्रक्रिया से प्राप्त होने वाली तापीय धारिता ऊर्जा की अधिकतम मात्रा है।<ref>{{cite book|last1=Rathakrishnan|title=हाई एन्थैल्पी गैस डायनामिक्स|publisher=John Wiley and Sons Singapore Pte. Ltd.|isbn=978-1118821893|date=2015}}</ref>
स्थिर दाब पर कणों की एक स्थिर संख्या के साथ एक सरल प्रणाली के लिए, तापीय धारिता में अंतर एक समदाब ऊष्मागतिक प्रक्रिया से प्राप्त होने वाली तापीय धारिता ऊर्जा की अधिकतम मात्रा है।<ref>{{cite book|last1=Rathakrishnan|title=हाई एन्थैल्पी गैस डायनामिक्स|publisher=John Wiley and Sons Singapore Pte. Ltd.|isbn=978-1118821893|date=2015}}</ref>
Line 150: Line 150:


=== विवृत प्रणाली ===
=== विवृत प्रणाली ===
[[thermodynamic|ऊष्मागतिक]] विवृत प्रणाली (प्रणाली सिद्धांत) में, द्रव्यमान (पदार्थों का) प्रणाली की सीमाओं के अंदर और बाहर प्रवाहित हो सकता है। विवृत प्रणाली के लिए ऊष्मप्रवैगिकी का प्रथम नियम कहता है: किसी प्रणाली की आंतरिक ऊर्जा में वृद्धि द्रव्यमान प्रवाहित होने और गर्म होने से प्रणाली में जोड़ी गई ऊर्जा की मात्रा के बराबर होती है, जो द्रव्यमान के बाहर और रूप में बहने वाली मात्रा से कम होती है। प्रणाली द्वारा किए गए कार्य का:
[[thermodynamic|ऊष्मागतिक]] विवृत प्रणाली (प्रणाली सिद्धांत) में, द्रव्यमान (पदार्थों का) प्रणाली की सीमाओं के अंदर और बाहर प्रवाहित हो सकता है। विवृत प्रणाली के लिए ऊष्मप्रवैगिकी का प्रथम नियम कहता है: एक प्रणाली की आंतरिक ऊर्जा में वृद्धि प्रणाली में प्रवाहित होने वाली ऊर्जा की मात्रा के बराबर होती है और गर्म होने से, द्रव्यमान के बहिर्वाह और प्रणाली द्वारा किए गए कार्य के रूप में खोई हुई मात्रा को घटाती है: प्रणाली द्वारा किए गए कार्य का:


<math display="block">dU = \delta Q + dU_\text{in} - dU_\text{out} - \delta W,</math>
<math display="block">dU = \delta Q + dU_\text{in} - dU_\text{out} - \delta W,</math>
जहां {{math|''U''<sub>in</sub>}} प्रणाली में प्रवेश करने वाली औसत आंतरिक ऊर्जा है, और {{math|''U''<sub>out</sub>}} प्रणाली छोड़ने वाली औसत आंतरिक ऊर्जा है।
जहां {{math|''U''<sub>in</sub>}} प्रणाली में प्रवेश करने वाली औसत आंतरिक ऊर्जा है, और {{math|''U''<sub>out</sub>}} प्रणाली छोड़ने वाली औसत आंतरिक ऊर्जा है।


[[Image:First law open system.svg|250px|thumb|right|स्थिर, निरंतर संचालन के समय, एक खुली प्रणाली पर लागू एक ऊर्जा संतुलन प्रणाली द्वारा किए गए शाफ्ट कार्य को जोड़ा गया तापीय धारिता और अतिरिक्त तापीय धारिता के बराबर करता है।]]खुली प्रणाली की सीमाओं से घिरे अंतरिक्ष के क्षेत्र को सामान्यतः नियंत्रण आयतन कहा जाता है, और यह भौतिक दीवारों के अनुरूप हो भी सकता है और नहीं भी। यदि हम [[नियंत्रण मात्रा]] का आकार चुनते हैं जैसे कि सभी प्रवाह अंदर या बाहर इसकी सतह पर लंबवत होते हैं, तो प्रणाली में द्रव्यमान का प्रवाह कार्य करता है जैसे कि यह तरल पदार्थ का एक पिस्टन था जो द्रव्यमान को प्रणाली में धकेलता है, और प्रणाली प्रदर्शन करता है द्रव्यमान के प्रवाह पर काम करें जैसे कि यह द्रव का एक पिस्टन चला रहा हो। तब दो प्रकार के कार्य किए जाते हैं: ऊपर वर्णित प्रवाह कार्य, जो द्रव पर किया जाता है (इसे प्रायः कहा जाता है{{mvar|pV}} काम), और शाफ्ट काम, जो कुछ यांत्रिक उपकरण जैसे टरबाइन या पंप पर किया जा सकता है।
[[Image:First law open system.svg|250px|thumb|right|स्थिर, निरंतर संचालन के समय, एक खुली प्रणाली पर लागू एक ऊर्जा संतुलन प्रणाली द्वारा किए गए शाफ्ट कार्य को जोड़ा गया तापीय धारिता और अतिरिक्त तापीय धारिता के बराबर करता है।]]खुली प्रणाली की सीमाओं से घिरे स्थान के क्षेत्र को सामान्यतः नियंत्रण आयतन कहा जाता है, और यह भौतिक दीवारों के अनुरूप हो भी सकता है और नहीं भी। यदि हम [[नियंत्रण मात्रा|नियंत्रण आयतन]] का आकार चुनते हैं जैसे कि सभी प्रवाह अंदर या बाहर इसकी सतह पर लंबवत होते हैं, तो प्रणाली में द्रव्यमान का प्रवाह कार्य करता है जैसे कि यह तरल पदार्थ का एक पिस्टन था जो द्रव्यमान को प्रणाली में धकेलता है, और प्रणाली प्रदर्शन करता है द्रव्यमान के प्रवाह पर कार्य करें जैसे कि यह द्रव का एक पिस्टन चला रहा हो। तब दो प्रकार के कार्य किए जाते हैं: ऊपर वर्णित प्रवाह कार्य, जो द्रव पर किया जाता है (इसे प्रायः {{mvar|pV}} कार्य भी कहा जाता है), और शाफ्ट कार्य, जो कुछ यांत्रिक उपकरण जैसे टरबाइन या पंप पर किया जा सकता है।


इन दो प्रकार के कार्यों को समीकरण में व्यक्त किया गया है
इन दो प्रकार के कार्यों को समीकरण
<math display="block">\delta W = d(p_\text{out}V_\text{out}) - d(p_\text{in}V_\text{in}) + \delta W_\text{shaft}.</math>
<math display="block">\delta W = d(p_\text{out}V_\text{out}) - d(p_\text{in}V_\text{in}) + \delta W_\text{shaft}</math>में व्यक्त किया जाता है।
नियंत्रण मात्रा (सीवी) पैदावार के लिए उपरोक्त समीकरण में प्रतिस्थापन:
 
नियंत्रण मात्रा (सीवी) उपज के लिए उपरोक्त समीकरण में प्रतिस्थापन:


<math display="block">dU_\text{cv} = \delta Q + dU_\text{in} + d(p_\text{in}V_\text{in}) - dU_\text{out} - d(p_\text{out}V_\text{out}) - \delta W_\text{shaft}.</math>
<math display="block">dU_\text{cv} = \delta Q + dU_\text{in} + d(p_\text{in}V_\text{in}) - dU_\text{out} - d(p_\text{out}V_\text{out}) - \delta W_\text{shaft}.</math>
तापीय धारिता की परिभाषा, {{mvar|H}}, हमें आंतरिक ऊर्जा और दोनों के लिए इस [[थर्मोडायनामिक क्षमता|ऊष्मागतिक क्षमता]] का उपयोग करने की अनुमति देता है {{mvar|pV}} विवृत प्रणाली के लिए तरल पदार्थ में काम करें:
तापीय धारिता, {{mvar|H}} की परिभाषा हमें इस [[थर्मोडायनामिक क्षमता|ऊष्मागतिक क्षमता]] का उपयोग करने की अनुमति देती है ताकि विवृत प्रणाली के लिए तरल पदार्थ में आंतरिक ऊर्जा और {{mvar|pV}} दोनों के लिए महत्त्व हो:


<math display="block">dU_\text{cv} = \delta Q + dH_\text{in} - dH_\text{out} - \delta W_\text{shaft}.</math>
<math display="block">dU_\text{cv} = \delta Q + dH_\text{in} - dH_\text{out} - \delta W_\text{shaft}.</math>
अगर हम प्रणाली की सीमा को स्थानांतरित करने की अनुमति भी देते हैं (उदाहरण के लिए चलती पिस्टन के कारण), तो हमें विवृत प्रणाली के लिए प्रथम नियम का एक सामान्य रूप मिलता है।<ref>{{cite book|first1=M. J. |last1=Moran |first2=H. N. |last2=Shapiro |title=इंजीनियरिंग ऊष्मप्रवैगिकी के मूल तत्व|url=https://archive.org/details/fundamentalsengi00mora_077 |url-access=limited |edition=5th |date=2006 |publisher=John Wiley & Sons|page=[https://archive.org/details/fundamentalsengi00mora_077/page/n141 129]|isbn=9780470030370 }}</ref> समय व्युत्पन्न के संदर्भ में यह पढ़ता है:
यदि हम प्रणाली की सीमा को स्थानांतरित करने की अनुमति भी देते हैं (उदाहरण के लिए चलती पिस्टन के कारण), तो हमें विवृत प्रणाली के लिए प्रथम नियम का एक सामान्य रूप मिलता है।<ref>{{cite book|first1=M. J. |last1=Moran |first2=H. N. |last2=Shapiro |title=इंजीनियरिंग ऊष्मप्रवैगिकी के मूल तत्व|url=https://archive.org/details/fundamentalsengi00mora_077 |url-access=limited |edition=5th |date=2006 |publisher=John Wiley & Sons|page=[https://archive.org/details/fundamentalsengi00mora_077/page/n141 129]|isbn=9780470030370 }}</ref> समय व्युत्पन्न के संदर्भ में यह पढ़ता है:


<math display="block">\frac{dU}{dt} = \sum_k \dot Q_k + \sum_k \dot H_k - \sum_k p_k\frac{dV_k}{dt} - P,</math>
<math display="block">\frac{dU}{dt} = \sum_k \dot Q_k + \sum_k \dot H_k - \sum_k p_k\frac{dV_k}{dt} - P,</math>
विभिन्न स्थानों पर रकम के साथ {{mvar|k}} जहां ऊष्मा की आपूर्ति की जाती है, द्रव्यमान प्रणाली में प्रवाहित होता है, और सीमाएं चलती हैं। {{mvar|Ḣ<sub>k</sub>}}<nowiki> }} प्रतिबन्धें तापीय धारिता प्रवाह का प्रतिनिधित्व करती हैं, जिसे इस रूप में लिखा जा सकता है</nowiki>
विभिन्न स्थानों के योगों {{mvar|k}} साथ जहां ऊष्मा की आपूर्ति की जाती है, द्रव्यमान प्रणाली में प्रवाहित होता है, और सीमाएं चलती हैं। {{mvar|Ḣ<sub>k</sub>}} प्रतिबन्धें तापीय धारिता प्रवाह का प्रतिनिधित्व करती हैं, जिसे


<math display="block">\dot H_k = h_k\dot m_k = H_\mathrm{m}\dot n_k,</math>
<math display="block">\dot H_k = h_k\dot m_k = H_\mathrm{m}\dot n_k,</math>
साथ {{mvar|ṁ<sub>k</sub>}} द्रव्यमान प्रवाह और {{mvar|ṅ<sub>k</sub>}} स्थिति पर मोलर प्रवाह {{mvar|k}} क्रमश। पद {{math|{{sfrac|''dV''<sub>''k''</sub>|''dt''}}}} स्थिति में प्रणाली आयतन के परिवर्तन की दर का प्रतिनिधित्व करता है {{mvar|k}} जिसका परिणाम होता है {{mvar|pV}} शक्ति प्रणाली द्वारा किया जाता है। पैरामीटर {{math|''P''}} प्रणाली द्वारा की गई शक्ति के अन्य सभी रूपों का प्रतिनिधित्व करता है जैसे कि शाफ्ट शक्ति, परन्तु यह विद्युत शक्ति संयंत्र द्वारा उत्पादित विद्युत शक्ति भी हो सकती है।
के रूप में लिखा जा सकता है, क्रमशः {{mvar|ṁ<sub>k</sub>}} द्रव्यमान प्रवाह और {{mvar|ṅ<sub>k</sub>}} मोलर प्रवाह क्रमशः स्थिति {{mvar|k}} पर  । पद {{math|{{sfrac|''dV''<sub>''k''</sub>|''dt''}}}} स्थिति में प्रणाली आयतन के परिवर्तन की दर का प्रतिनिधित्व करता है {{mvar|k}} जिसका परिणाम होता है {{mvar|pV}} शक्ति प्रणाली द्वारा किया जाता है। पैरामीटर {{math|''P''}} प्रणाली द्वारा की गई शक्ति के अन्य सभी रूपों का प्रतिनिधित्व करता है जैसे कि शाफ्ट शक्ति, परन्तु यह विद्युत शक्ति संयंत्र द्वारा उत्पादित विद्युत शक्ति भी हो सकती है।


ध्यान दें कि पिछली अभिव्यक्ति तभी सही होती है जब प्रणाली इनलेट और आउटलेट के बीच गतिशील ऊर्जा प्रवाह दर संरक्षित होती है।{{clarify|reason=This new type of energy, kinetic energy, was not mentioned before. Is it part of U? Does it need to be conserved, or just the net flow across boundary be zero?|date=March 2015}} अन्यथा, इसे तापीय धारिता बैलेंस में सम्मिलित करना होगा। स्थिर-अवस्था (रासायनिक अभियांत्रिकी) के समय | एक उपकरण का स्थिर-अवस्था संचालन ([[टर्बाइन]], [[पंप]] और [[यन्त्र]] देखें), औसत {{math|{{sfrac|''dU''|''dt''}}}} को शून्य के बराबर समूह किया जा सकता है। यह रासायनिक अभिक्रियाओं के अभाव में इन उपकरणों के लिए औसत [[शक्ति (भौतिकी)]] उत्पादन के लिए एक उपयोगी अभिव्यक्ति देता है:
ध्यान दें कि पिछली अभिव्यक्ति तभी सही होती है जब प्रणाली इनलेट और आउटलेट के बीच गतिशील ऊर्जा प्रवाह दर संरक्षित होती है।{{clarify|reason=This new type of energy, kinetic energy, was not mentioned before. Is it part of U? Does it need to be conserved, or just the net flow across boundary be zero?|date=March 2015}} अन्यथा, इसे तापीय धारिता बैलेंस में सम्मिलित करना होगा। स्थिर-अवस्था (रासायनिक अभियांत्रिकी) के समय | एक उपकरण का स्थिर-अवस्था संचालन ([[टर्बाइन]], [[पंप]] और [[यन्त्र]] देखें), औसत {{math|{{sfrac|''dU''|''dt''}}}} को शून्य के बराबर समूह किया जा सकता है। यह रासायनिक अभिक्रियाओं के अभाव में इन उपकरणों के लिए औसत [[शक्ति (भौतिकी)]] उत्पादन के लिए एक उपयोगी अभिव्यक्ति देता है:
Line 258: Line 259:
ऊष्मा पदार्थ की अवधारणा का परिचय {{mvar|H}} बेनोइट पॉल एमिल क्लैपेरॉन और रूडोल्फ क्लॉज़ियस (क्लॉज़ियस-क्लैपेरॉन संबंध, 1850) के साथ जुड़ा हुआ है।
ऊष्मा पदार्थ की अवधारणा का परिचय {{mvar|H}} बेनोइट पॉल एमिल क्लैपेरॉन और रूडोल्फ क्लॉज़ियस (क्लॉज़ियस-क्लैपेरॉन संबंध, 1850) के साथ जुड़ा हुआ है।


तापीय धारिता पद पहली बार 1909 में छपा था।<ref>{{cite journal |last1=Dalton |first1=J. P. |title=जूल-केल्विन-प्रभाव पर शोध, विशेष रूप से कम तापमान पर। I. हाइड्रोजन के लिए गणना|journal=Proceedings of the Section of Sciences (Koninklijke Akademie van Wetenschappen te Amsterdam [Royal Academy of Sciences at Amsterdam]) |date=1909 |volume=11 (part 2) |pages=863–873 |url=https://www.biodiversitylibrary.org/item/49173#page/453/mode/1up| bibcode=1908KNAB...11..863D }} ; see p. 864, footnote (1).</ref> इसका श्रेय [[हेइके कामेरलिंग ओन्स]] को दिया जाता है, जिन्होंने पेरिस में इंस्टीट्यूट ऑफ रेफ्रिजरेशन की पहली बैठक में इसे एक साल पहले मौखिक रूप से पेश किया था।<ref>See:
तापीय धारिता पद पहली बार 1909 में छपा था।<ref>{{cite journal |last1=Dalton |first1=J. P. |title=जूल-केल्विन-प्रभाव पर शोध, विशेष रूप से कम तापमान पर। I. हाइड्रोजन के लिए गणना|journal=Proceedings of the Section of Sciences (Koninklijke Akademie van Wetenschappen te Amsterdam [Royal Academy of Sciences at Amsterdam]) |date=1909 |volume=11 (part 2) |pages=863–873 |url=https://www.biodiversitylibrary.org/item/49173#page/453/mode/1up| bibcode=1908KNAB...11..863D }} ; see p. 864, footnote (1).</ref> इसका श्रेय [[हेइके कामेरलिंग ओन्स|हेइके कार्येरलिंग ओन्स]] को दिया जाता है, जिन्होंने पेरिस में इंस्टीट्यूट ऑफ रेफ्रिजरेशन की पहली बैठक में इसे एक साल पहले मौखिक रूप से पेश किया था।<ref>See:
* {{Cite book|last1= Laidler|first1= Keith|author-link= Keith J. Laidler|title= The World of Physical Chemistry|publisher= Oxford University Press|year= 1995|page= 110}}
* {{Cite book|last1= Laidler|first1= Keith|author-link= Keith J. Laidler|title= The World of Physical Chemistry|publisher= Oxford University Press|year= 1995|page= 110}}
* {{Cite journal |last= Van Ness|first= Hendrick C. |year= 2003 |title=''H'' Is for Enthalpy |journal= Journal of Chemical Education|volume= 80|issue= 6|pages= 486 |bibcode= 2003JChEd..80..486V|doi= 10.1021/ed080p486.1|doi-access= free}}</ref>
* {{Cite journal |last= Van Ness|first= Hendrick C. |year= 2003 |title=''H'' Is for Enthalpy |journal= Journal of Chemical Education|volume= 80|issue= 6|pages= 486 |bibcode= 2003JChEd..80..486V|doi= 10.1021/ed080p486.1|doi-access= free}}</ref>
Line 306: Line 307:
==इस पेज में लापता आंतरिक लिंक की सूची==
==इस पेज में लापता आंतरिक लिंक की सूची==


*काम (भौतिकी)
*कार्य (भौतिकी)
*अवस्था कार्य
*अवस्था कार्य
*मानक स्थिति
*मानक स्थिति
Line 325: Line 326:
*ताप प्रसार प्रसार गुणांक
*ताप प्रसार प्रसार गुणांक
*अवस्था चर
*अवस्था चर
*अंतरिक्ष-विज्ञान
*स्थान-विज्ञान
*एडियाबेटिक सन्निकटन
*एडियाबेटिक सन्निकटन
*काम (ऊष्मागतिकी)
*कार्य (ऊष्मागतिकी)
*शून्य निरपेक्ष
*शून्य निरपेक्ष
*भौतिक विज्ञान
*भौतिक विज्ञान

Revision as of 23:50, 27 April 2023

तापीय धारिता /ˈɛnθəlpi/ ({{error|Audio file "en-US-enthalpy.ogg" not found}}), ऊष्मागतिक प्रणाली की एक गुण, प्रणाली की आंतरिक ऊर्जा और उसके दाब और आयतन के उत्पाद का योग है।[1] यह एक स्थिर दाब पर रासायनिक, जैविक और भौतिक प्रणालियों में कई मापों में उपयोग किया जाने वाला एक अवस्था कार्य है, जो बड़े परिवेशी वातावरण द्वारा सरलता से प्रदान किया जाता है। दाब-आयतन पद प्रणाली के भौतिक आयामों को स्थापित करने के लिए आवश्यक कार्य (भौतिकी) को व्यक्त करता है, अर्थात इसके परिवेश को विस्थापित करके इसके लिए स्थान बनाना।[2][3] सामान्य परिस्थितियों में ठोस और तरल पदार्थ के लिए दाब-आयतन पद बहुत छोटा है, और गैसों के लिए अत्यधिक छोटा है। इसलिए, तापीय धारिता रासायनिक प्रणालियों में ऊर्जा के लिए स्थानापन्न है; बंधन ऊर्जा, जालक ऊर्जा, विलायकयोजन और रसायन विज्ञान में अन्य ऊर्जाएं वस्तुतः तापीय धारिता अंतर हैं। अवस्था कार्य के रूप में, तापीय धारिता मात्र आंतरिक ऊर्जा, दाब और आयतन के अंतिम विन्यास पर निर्भर करती है, इसे प्राप्त करने के लिए अपनाए गए पथ पर नहीं।

इकाइयों की अंतर्राष्ट्रीय प्रणाली (SI) में, तापीय धारिता के लिए माप की इकाई जूल है। अन्य ऐतिहासिक परंपरागत इकाइयां अभी भी उपयोग में हैं जिनमें कैलोरी और ब्रिटिश थर्मल यूनिट (बीटीयू) सम्मिलित हैं।

किसी प्रणाली की कुल तापीय धारिता को प्रत्यक्षतया नहीं मापा जा सकता है क्योंकि आंतरिक ऊर्जा में ऐसे घटक होते हैं जो अज्ञात होते हैं, सरलता से सुलभ नहीं होते हैं, या ऊष्मप्रवैगिकी में रुचि नहीं रखते हैं। व्यवहार में, तापीय धारिता में परिवर्तन स्थिर दाब पर मापन के लिए अधिमानित अभिव्यक्ति है क्योंकि यह ऊर्जा स्थानांतरण के विवरण को सरल करता है। जब प्रणाली में या बाहर पदार्थ के स्थानांतरण को भी रोका जाता है और कोई विद्युत या शाफ्ट कार्य नहीं किया जाता है, तो स्थिर दाब में तापीय धारिता परिवर्तन ऊष्मा द्वारा पर्यावरण के साथ बदले गए ऊर्जा के बराबर होता है।

रसायन विज्ञान में, अभिक्रिया की मानक तापीय धारिता वह तापीय धारिता परिवर्तन है जब अभिकारक अपनी मानक अवस्थाओं (p = 1 bar; सामान्यतः T = 298 K) में अपने मानक अवस्थाओं में उत्पादों में बदलते हैं।[4] यह मात्रा स्थिर दाब और तापमान पर अभिक्रिया की मानक तापीय धारिता है, परन्तु माप के समय तापमान भिन्न होने पर भी इसे कैलोरीमीटर विधियों द्वारा मापा जा सकता है, परंतु प्रारंभिक और अंतिम दाब और तापमान मानक स्थिति के अनुरूप हों। मान प्रारंभिक से अंतिम अवस्था तक के पथ पर निर्भर नहीं करता है क्योंकि तापीय धारिता एक अवस्था कार्य है।

रासायनिक पदार्थों की तापीय धारिता सामान्यतः एक मानक स्थिति के रूप में 1 bar (100 kPa) दाब के लिए सूचीबद्ध होती हैं। अभिक्रियाओं के लिए तापीय धारिता और तापीय धारिता परिवर्तन तापमान के एक कार्य के रूप में भिन्न होते हैं,[5] परन्तु तालिका सामान्यतः 25 °C (298 K) पर पदार्थों के निर्माण के मानक तापों को सूचीबद्ध करती हैं। ऊष्माशोषी (ऊष्मा-अवशोषित) प्रक्रियाओं के लिए, परिवर्तन ΔH एक धनात्मक मान है; ऊष्माक्षेपी (ऊष्मा-विमोचन) प्रक्रियाओं के लिए यह ऋणात्मक है।

एक आदर्श गैस की तापीय धारिता इसके दाब या आयतन से स्वप्रणाली होती है, और मात्र इसके तापमान पर निर्भर करती है, जो इसकी तापीय धारिता ऊर्जा से संबंधित होती है। सामान्य तापमान और दाबों पर वास्तविक गैसें प्रायः इस व्यवहार के निकट होती हैं, जो व्यावहारिक ऊष्मागतिक डिजाइन और विश्लेषण को सरल बनाती है।

परिभाषा

ऊष्मागतिक प्रणाली की तापीय धारिता H आंतरिक ऊर्जा और उसके दाब और आयतन के उत्पाद के रूप में परिभाषित किया गया है[1]: H = U + pV,

जहां U आंतरिक ऊर्जा है, p दाब है, और V प्रणाली का आयतन (ऊष्मागतिकी) है; pV को कभी-कभी दाब ऊर्जा ƐP कहा जाता है।[citation needed]

तापीय धारिता एक व्यापक गुण है; यह प्रणाली के आकार (सजातीय प्रणालियों के लिए) के समानुपाती होता है। सघन गुणों के रूप में, विशिष्ट तापीय धारिता h = H/m को प्रणाली के द्रव्यमान m की एक इकाई के रूप में संदर्भित किया जाता है, और मोलर तापीय धारिता Hm is H/n है, जहाँ n ग्राम अणु (इकाई) की संख्या है। विषम प्रणालियों के लिए तापीय धारिता घटक उपप्रणालियों की तापीय धारिता का योग है:

जहां

  • H सभी उपप्रणालियों की कुल तापीय धारिता है,
  • k विभिन्न उप-प्रणालियों को संदर्भित करता है,
  • Hk प्रत्येक उपप्रणाली की तापीय धारिता को संदर्भित करता है।

एक बंद प्रणाली एक स्थैतिक गुरुत्वाकर्षण क्षेत्र में ऊष्मागतिक संतुलन में हो सकती है, ताकि इसका दाब p ऊंचाई के साथ निरंतर परिवर्तनीय रहे, जबकि संतुलन की आवश्यकता के कारण इसका तापमान T ऊंचाई के साथ अपरिवर्तनीय है। (तदनुसार, प्रणाली का गुरुत्वीय संभावित ऊर्जा घनत्व भी ऊंचाई के साथ बदलता रहता है।) तब तापीय धारिता योग एक अभिन्न अंग बन जाता है:

जहां

  • ρ (रो) घनत्व है (द्रव्यमान प्रति इकाई आयतन),
  • h विशिष्ट तापीय धारिता (प्रति इकाई द्रव्यमान तापीय धारिता) है,
  • (ρh) ऊर्जा घनत्व का प्रतिनिधित्व करता है (प्रति इकाई आयतन तापीय धारिता),
  • dV प्रणाली के भीतर मात्रा के एक अत्यम्त सूक्ष्म मात्रा में छोटे तत्व को दर्शाता है, उदाहरण के लिए, अत्यम्त सूक्ष्म मात्रा में पतली क्षैतिज परत का आयतन, इसलिए समाकलन आयतन के सभी तत्वों की तापीय धारिता के योग का प्रतिनिधित्व करता है।

एक बंद सजातीय प्रणाली की तापीय धारिता इसका ऊर्जा कार्य H(S,p) है, इसके एंट्रॉपी S[p] और इसके दाब p ऊष्मप्रवैगिकी क्षमता के रूप में है जो निम्न प्रकार से व्युत्पन्न सरलतम रूप के के लिए एक अंतर संबंध प्रदान करता है। हम एक अतिसूक्ष्म प्रक्रिया के लिए बंद प्रणालियों के लिए ऊष्मप्रवैगिकी के प्रथम नियम से प्रारम्भ करते हैं:

जहां

  • 𝛿Q प्रणाली में जोड़ी गई ऊष्मा की एक छोटी मात्रा है,
  • 𝛿W प्रणाली द्वारा निष्पादित कार्य की एक छोटी राशि है।

एक सजातीय प्रणाली में जिसमें मात्र प्रतिवर्ती प्रक्रिया (ऊष्मप्रवैगिकी) प्रक्रियाओं या शुद्ध ताप स्थानांतरण पर विचार किया जाता है, ऊष्मप्रवैगिकी का दूसरा नियम 𝛿Q = T dS देता है, T के साथ पूर्ण तापमान और dS प्रणाली के एन्ट्रापी S में अतिसूक्ष्म परिवर्तन होता है। इसके अतिरिक्त, यदि मात्र pV कार्य किया जाता है, 𝛿W = p dV। फलस्वरूप,

इस व्यंजक के दोनों पक्षों में d(pV) जोड़ने पर
या
प्राप्त होता है।

तो

और प्राकृतिक चर अंतर और के गुणांक मात्र एक चर और हैं।

अन्य अभिव्यक्ति

एन्ट्रापी और दाब के संदर्भ में dH की उपरोक्त अभिव्यक्ति कुछ पाठकों के लिए अपरिचित हो सकती है। तापमान और दाब जैसे अधिक प्रत्यक्ष रूप से मापने योग्य चर के संदर्भ में भी अभिव्यक्तियाँ हैं:[6]: 88 [7]

यहां Cp ताप क्षमता है और α तापीय प्रसार का गुणांक है | (घन) तापीय प्रसार का गुणांक:

इस अभिव्यक्ति के साथ, सैद्धांतिक रूप से, यदि Cp और V को p और T के कार्यों के रूप में जाना जाता है, तो तापीय धारिता निर्धारित कर सकते हैं। यद्यपि अभिव्यक्ति की तुलना में अधिक जटिल है क्योंकि T, तापीय धारिता H के लिए एक प्राकृतिक चर नहीं है।

स्थिर दाब में, ताकि । एक आदर्श गैस के लिए, इस रूप में कम हो जाता है भले ही प्रक्रिया में दाब परिवर्तन सम्मिलित हो, क्योंकि αT = 1,[note 1]

अधिक सामान्य रूप में, प्रथम नियम रासायनिक क्षमता और विभिन्न प्रकार के कणों की संख्या को सम्मिलित करने वाली अतिरिक्त प्रतिबन्धों के साथ आंतरिक ऊर्जा का वर्णन करता है। dH के लिए अंतर कथन तब

बन जाता है, जहां μi एक i-प्रकार कण एक के लिए प्रति कण रासायनिक क्षमता है, और Ni ऐसे कणों की संख्या है। अंतिम पद को μidni के रूप में भी लिखा जा सकता है ( dni के साथ प्रणाली में जोड़े गए घटक i के ग्राम अणु की संख्या और, इस स्थिति में, μi मोलर रासायनिक क्षमता) या μidmi के रूप में (dmi के साथ घटक i का द्रव्यमान प्रणाली में जोड़ा जाता है और, इस स्थिति में, विशिष्ट रासायनिक क्षमता μi)।

विशेषता फलन और प्राकृतिक अवस्था चर

तापीय धारिता, H(S[p], p, {Ni}), ऊर्जा प्रतिनिधित्व में एक प्रणाली के ऊष्मप्रवैगिकी को व्यक्त करता है। एक अवस्था फलन के रूप में, इसके तर्कों में एक सघन और कई व्यापक अवस्था चर सम्मिलित हैं। अवस्था चर S[p], p, और {Ni} को इस प्रतिनिधित्व में ऊष्मागतिक क्षमता कहा जाता है। वे उन प्रक्रियाओं का वर्णन करने के लिए उपयुक्त हैं जिनमें वे परिवेश के कारकों द्वारा निर्धारित होते हैं। उदाहरण के लिए, जब वायुमंडलीय वायु का एक आभासी पार्सल एक अलग ऊंचाई पर जाता है, तो इसके निकट का दाब बदल जाता है, और यह प्रक्रिया प्रायः इतनी तीव्र होती है कि ऊष्मा स्थानांतरण के लिए बहुत कम समय मिलता है। यह तथाकथित रुद्धोष्म सन्निकटन का आधार है जिसका उपयोग ऋतु विज्ञान में किया जाता है।[8]

तापीय धारिता के साथ संयुग्मित, इन तर्कों के साथ, ऊष्मागतिक प्रणाली की स्थिति का अन्य विशिष्ट कार्य इसकी एन्ट्रापी है, एक कार्य के रूप में, S[p](H, p, {Ni}), अवस्था के चर की एक ही सूची के, अतिरिक्त इसके कि एंट्रॉपी, S[p], को तापीय धारिता, H द्वारा सूची में प्रतिस्थापित किया गया है। यह एंट्रॉपी प्रतिनिधित्व व्यक्त करता है। अवस्था चर H, p, और {Ni} को इस प्रतिनिधित्व में प्राकृतिक अवस्था चर कहा जाता है। वे उन प्रक्रियाओं का वर्णन करने के लिए उपयुक्त हैं जिनमें उन्हें प्रयोगात्मक रूप से नियंत्रित किया जाता है। उदाहरण के लिए, H और p ऊष्मा स्थानांतरण की अनुमति देकर और प्रणाली की मात्रा निर्धारित करने वाले पिस्टन पर मात्र बाहरी दाब को बदलकर नियंत्रित किया जा सकता है।[9][10][11]

भौतिक व्याख्या

U पद प्रणाली की ऊर्जा है, और pV पद की व्याख्या उस कार्य (ऊष्मप्रवैगिकी) के रूप में की जा सकती है, जो पर्यावरण के दाब के स्थिर रहने पर प्रणाली के लिए स्थान बनाने के लिए आवश्यक होगा। जब एक प्रणाली, उदाहरण के लिए, n आयतन (ऊष्मागतिकी) की गैस का ग्राम अणु (इकाई) V दाब में p और तापमान T, पूर्ण शून्य से अपनी वर्तमान स्थिति में बनाया या लाया जाता है, तो इसकी आंतरिक ऊर्जा के बराबर ऊर्जा की आपूर्ति की जानी चाहिए U धन pV, जहां pV परिवेश (वायुमंडलीय) दाब के विरुद्ध धकेलने में किया जाने वाला कार्य (भौतिकी) है।

भौतिकी और सांख्यिकीय यांत्रिकी में एक स्थिर-आयतन प्रणाली के आंतरिक गुणों का अध्ययन करना अधिक रुचिपूर्ण हो सकता है और इसलिए आंतरिक ऊर्जा का उपयोग किया जाता है।[12][13] रसायन विज्ञान में, प्रयोग प्रायः स्थिर वायुमंडलीय दाब पर किए जाते हैं, और दाब-मात्रा का कार्य वातावरण के साथ एक छोटे, ठीक रूप से परिभाषित ऊर्जा विनिमय का प्रतिनिधित्व करता है, ताकि ΔH अभिक्रिया की ऊष्मा के लिए उपयुक्त अभिव्यक्ति है। एक ऊष्मा इंजन के लिए, एक पूर्ण चक्र के बाद इसकी तापीय धारिता में परिवर्तन शून्य के बराबर होता है, क्योंकि अंतिम और प्रारंभिक अवस्था समान होती है।

ताप से संबंध

तापीय धारिता वृद्धि और ऊष्मा की आपूर्ति के बीच के संबंध पर चर्चा करने के लिए, हम बंद प्रणालियों के लिए प्रथम नियम पर लौटते हैं, भौतिकी चिह्न परिपाटी के साथ: dU = δQδW, जहां ऊष्मा δQ चालन, विकिरण, जूल ऊष्मा द्वारा आपूर्ति की जाती है। हम इसे विशेष स्थिति में सतह पर स्थिर दाब के साथ लागू करते हैं। इस स्थिति में कार्य pdV द्वारा दिया जाता है (जहां p सतह पर दाब है, dV प्रणाली की मात्रा में वृद्धि है)। लंबी दूरी के विद्युत चुम्बकीय अन्योन्यक्रिया की स्थितियों को उनके निर्माण में और अधिक अवस्था चर की आवश्यकता होती है, और यहां पर विचार नहीं किया जाता है। इस स्थिति में प्रथम नियम पढ़ता है:

अभी,
इसलिए
यदि प्रणाली समदाब रेखीय प्रणाली के अंतर्गत है, dp = 0 और फलस्वरूप, प्रणाली की तापीय धारिता में वृद्धि जोड़े गए ताप के बराबर है:

यही कारण है कि 19वीं शताब्दी में अब अप्रचलित पद ताप पदार्थ का उपयोग किया गया था।

अनुप्रयोग

ऊष्मप्रवैगिकी में, "शून्यता" से एक प्रणाली बनाने के लिए आवश्यकताओं को निर्धारित करके एन्थैल्पी की गणना की जा सकती है; आवश्यक यांत्रिक कार्य, pV, ऊष्मागतिक प्रणाली के निर्माण के समय प्राप्त होने वाली स्थितियों के आधार पर भिन्न होता है।

प्रणाली के निर्माण के लिए स्थान बनाने के लिए निकट के कणों को हटाने के लिए ऊर्जा की आपूर्ति की जानी चाहिए, यह मानते हुए कि दाब p स्थिर रहता है; यह pV पद है। आपूर्ति की गई ऊर्जा को आंतरिक ऊर्जा में परिवर्तन भी प्रदान करना चाहिए, U, जिसमें सक्रियण ऊर्जा, आयनीकरण ऊर्जा, मिश्रण ऊर्जा, वाष्पीकरण ऊर्जा, रासायनिक बंधन ऊर्जा आदि सम्मिलित हैं। साथ में, ये तापीय धारिता U + pV में परिवर्तन का निर्माण करते हैं। स्थिर दाब पर प्रणाली के लिए, pV कार्य के अतिरिक्त कोई बाहरी कार्य नहीं किया जाता है , तापीय धारिता में परिवर्तन प्रणाली द्वारा प्राप्त ऊष्मा है।

स्थिर दाब पर कणों की एक स्थिर संख्या के साथ एक सरल प्रणाली के लिए, तापीय धारिता में अंतर एक समदाब ऊष्मागतिक प्रक्रिया से प्राप्त होने वाली तापीय धारिता ऊर्जा की अधिकतम मात्रा है।[14]


अभिक्रिया की ऊष्मा

किसी प्रणाली की कुल तापीय धारिता को सीधे नहीं मापा जा सकता है; इसके अतिरिक्त एक प्रणाली (ऊष्मप्रवैगिकी) के तापीय धारिता परिवर्तन को मापा जाता है। तापीय धारिता परिवर्तन निम्नलिखित समीकरण द्वारा परिभाषित किया गया है:

जहां

  • ΔH तापीय धारिता परिवर्तन है,
  • Hf प्रणाली की अंतिम तापीय धारिता है (रासायनिक अभिक्रिया में, उत्पादों की तापीय धारिता या संतुलन पर प्रणाली),
  • Hi प्रणाली की प्रारंभिक तापीय धारिता है (एक रासायनिक अभिक्रिया में, अभिकारकों की तापीय धारिता)।

स्थिर दाब पर एक ऊष्माक्षेपी अभिक्रिया के लिए, तापीय धारिता में प्रणाली का परिवर्तन, ΔH, अभिकारकों की तुलना में एक छोटे तापीय धारिता वाले अभिक्रिया के उत्पादों के कारण ऋणात्मक है, और यदि कोई विद्युत या शाफ्ट कार्य नहीं किया जाता है तो अभिक्रिया में जारी ऊष्मा के बराबर होता है। दूसरे पदों में, तापीय धारिता में समग्र कमी ऊष्मा के उत्पादन द्वारा प्राप्त की जाती है।[15] इसके विपरीत, एक स्थिर-दाब ऊष्माशोषी अभिक्रिया के लिए, ΔH धनात्मक है और अभिक्रिया में अवशोषित ऊष्मा के बराबर है।

तापीय धारिता की H = U + pV के रूप में परिभाषा से, स्थिर दाब पर तापीय धारिता परिवर्तन ΔH = ΔU + p ΔV है। यद्यपि अधिकांश रासायनिक अभिक्रियाओं के लिए, कार्य पद p ΔV आंतरिक ऊर्जा परिवर्तन ΔU से बहुत छोटा है, जो लगभग ΔH के बराबर है। उदहारण के लिए, कार्बन मोनोऑक्साइड 2CO(g) + O2(g) → 2 CO2(g), ΔH = −566.0 kJ और ΔU = −563.5 kJ के दहन के लिए।[16] चूंकि अंतर इतने छोटे हैं, अभिक्रिया तापीय धारिता को प्रायः अभिक्रिया ऊर्जा के रूप में वर्णित किया जाता है और बंधन ऊर्जा के संदर्भ में विश्लेषण किया जाता है।

विशिष्ट तापीय धारिता

एक समान प्रणाली की विशिष्ट तापीय धारिता के रूप में परिभाषित किया गया है h = H/m जहां m प्रणाली का द्रव्यमान है। विशिष्ट तापीय धारिता के लिए SI इकाई जूल प्रति किलोग्राम है। इसे अन्य विशिष्ट मात्राओं में h = u + pv द्वारा व्यक्त किया जा सकता है, जहाँ u विशिष्ट आंतरिक ऊर्जा है, p दाब है, और v विशिष्ट मात्रा है, जो 1/ρ के बराबर है, जहां ρ घनत्व है।

तापीय धारिता परिवर्तन

एक तापीय धारिता परिवर्तन एक परिवर्तन या रासायनिक अभिक्रिया के प्रशिक्षणाधीन से गुजरते समय एक ऊष्मागतिकी प्रणाली के घटकों में देखी गई तापीय धारिता में परिवर्तन का वर्णन करता है। यह प्रक्रिया पूर्ण होने के बाद तापीय धारिता के बीच का अंतर है, अर्थात उत्पाद (रसायन विज्ञान) की तापीय धारिता यह मानते हुए कि अभिक्रिया पूर्ण हो जाती है, और प्रणाली की प्रारंभिक तापीय धारिता, अर्थात् अभिकारक। इन प्रक्रियाओं को पूर्ण रूप से उनके प्रारंभिक और अंतिम अवस्थाों द्वारा निर्दिष्ट किया जाता है, ताकि रिवर्स के लिए तापीय धारिता परिवर्तन आगे की प्रक्रिया के लिए ऋणात्मक हो।

एक सामान्य मानक तापीय धारिता परिवर्तन निर्माण की तापीय धारिता है, जो बड़ी संख्या में पदार्थों के लिए निर्धारित किया गया है। तापीय धारिता परिवर्तनों को नियमित रूप से मापा जाता है और रासायनिक और भौतिक संदर्भ कार्यों में संकलित किया जाता है, जैसे रसायन विज्ञान और भौतिकी के लिए सीआरसी पुस्तिका निम्नलिखित ऊष्मागतिकी में सामान्यतः पहचाने जाने वाले तापीय धारिता परिवर्तनों का चयन है।

जब इन मान्यता प्राप्त प्रतिबन्धों में उपयोग किया जाता है तो क्वालीफायर परिवर्तन सामान्यतः गिरा दिया जाता है और गुण को 'प्रक्रिया' की तापीय धारिता कहा जाता है। चूंकि इन गुणों को प्रायः संदर्भ मानों के रूप में उपयोग किया जाता है, इसलिए उन्हें पर्यावरणीय मानकों के मानकीकृत समूह, या मानक स्थितियों के लिए उद्धृत करना बहुत सामान्य है, जिनमें निम्न सम्मिलित हैं:

  • एक वायुमंडल का दाब (1 एटीएम या 101.325 केपीए) या 1 बार
  • 25 °C या 298.15 K का तापमान
  • तत्व या यौगिक के विलयन में होने पर 1.0 M की सांद्रता
  • तत्व या यौगिक अपनी सामान्य भौतिक अवस्थाओं में, अर्थात मानक अवस्था में

ऐसे मानकीकृत मानों के लिए तापीय धारिता का नाम सामान्यतः मानक पद के साथ जोड़ा जाता है, उदा. निर्माण की मानक तापीय धारिता।

रासायनिक गुण:

  • अभिक्रिया की तापीय धारिता, एक ग्राम अणु पदार्थ के पूर्ण रूप से अभिक्रिया करने पर ऊष्मागतिक प्रणाली के एक घटक में देखे गए तापीय धारिता परिवर्तन के रूप में परिभाषित किया गया है।
  • निर्माण की तापीय धारिता, एक ऊष्मागतिक प्रणाली के एक घटक में मनाया जाने वाला तापीय धारिता परिवर्तन के रूप में परिभाषित किया गया है, जब एक यौगिक का एक ग्राम अणु इसके प्रारंभिक पूर्ववर्ती से बनता है।
  • दहन की तापीय धारिता, ऊष्मागतिक प्रणाली के एक घटक में देखे गए तापीय धारिता परिवर्तन के रूप में परिभाषित किया जाता है जब पदार्थ का एक ग्राम अणु ऑक्सीजन के साथ पूर्ण रूप से जलता है।
  • हाइड्रोजनीकरण की तापीय धारिता, एक ऊष्मागतिक प्रणाली के एक घटक में देखे गए तापीय धारिता परिवर्तन के रूप में परिभाषित किया गया है जब एक असंतृप्त यौगिक का एक ग्राम अणु संतृप्त यौगिक बनाने के लिए हाइड्रोजन की अधिकता के साथ पूर्ण रूप से अभिक्रिया करता है।
  • परमाणुकरण की तापीय धारिता, किसी पदार्थ के एक ग्राम अणु को उसके घटक परमाणुओं में पूर्ण रूप से अलग करने के लिए आवश्यक तापीय धारिता परिवर्तन के रूप में परिभाषित किया गया है।
  • उदासीनीकरण की तापीय धारिता, एक ऊष्मागतिक प्रणाली के एक घटक में देखे गए तापीय धारिता परिवर्तन के रूप में परिभाषित किया जाता है जब एक अम्ल और क्षार अभिक्रिया करते समय जल का एक ग्राम अणु बनता है।
  • विलयन की मानक तापीय धारिता, ऊष्मागतिक प्रणाली के एक घटक में देखे गए तापीय धारिता परिवर्तन के रूप में परिभाषित किया गया है, जब विलेय का एक ग्राम अणु विलायक की अधिकता में पूर्ण रूप से घुल जाता है,जिससे कि विलयन अनंत तनुता पर होता है।
  • विकृतीकरण (जैव रसायन) की मानक तापीय धारिता, यौगिक के एक ग्राम अणु को विकृत करने के लिए आवश्यक तापीय धारिता परिवर्तन के रूप में परिभाषित किया गया है।
  • जलयोजन ऊर्जा, जब गैसीय आयनों का एक ग्राम अणु जल में पूर्ण रूप से घुल जाता है और जलीय आयनों का एक ग्राम अणु बनता है, तब देखे गए तापीय धारिता परिवर्तन के रूप में परिभाषित किया जाता है।

भौतिक गुण:

  • संलयन की तापीय धारिता, ठोस से तरल में पदार्थ के एक ग्राम अणु की स्थिति को पूर्ण रूप से बदलने के लिए आवश्यक तापीय धारिता परिवर्तन के रूप में परिभाषित किया गया है।
  • वाष्पीकरण की तापीय धारिता, द्रव से गैस में पदार्थ के एक ग्राम अणु की स्थिति को पूर्ण रूप से बदलने के लिए आवश्यक तापीय धारिता परिवर्तन के रूप में परिभाषित किया गया है।
  • उर्ध्वपातन की तापीय धारिता, ठोस से गैस में पदार्थ के एक ग्राम अणु की स्थिति को पूर्ण रूप से बदलने के लिए आवश्यक तापीय धारिता परिवर्तन के रूप में परिभाषित किया गया है।
  • जालीदार तापीय धारिता, एक आयनिक यौगिक के एक ग्राम अणु को अलग-अलग गैसीय आयनों में एक अनंत दूरी तक अलग करने के लिए आवश्यक ऊर्जा के रूप में परिभाषित किया गया है (जिसका अर्थ आकर्षण का कोई बल नहीं है)।
  • तापीय धारितामिश्रण का, दो (गैर-अभिक्रियाशील) रासायनिक पदार्थों के मिश्रण पर तापीय धारिता परिवर्तन के रूप में परिभाषित किया गया।

विवृत प्रणाली

ऊष्मागतिक विवृत प्रणाली (प्रणाली सिद्धांत) में, द्रव्यमान (पदार्थों का) प्रणाली की सीमाओं के अंदर और बाहर प्रवाहित हो सकता है। विवृत प्रणाली के लिए ऊष्मप्रवैगिकी का प्रथम नियम कहता है: एक प्रणाली की आंतरिक ऊर्जा में वृद्धि प्रणाली में प्रवाहित होने वाली ऊर्जा की मात्रा के बराबर होती है और गर्म होने से, द्रव्यमान के बहिर्वाह और प्रणाली द्वारा किए गए कार्य के रूप में खोई हुई मात्रा को घटाती है: प्रणाली द्वारा किए गए कार्य का:

जहां Uin प्रणाली में प्रवेश करने वाली औसत आंतरिक ऊर्जा है, और Uout प्रणाली छोड़ने वाली औसत आंतरिक ऊर्जा है।

File:First law open system.svg
स्थिर, निरंतर संचालन के समय, एक खुली प्रणाली पर लागू एक ऊर्जा संतुलन प्रणाली द्वारा किए गए शाफ्ट कार्य को जोड़ा गया तापीय धारिता और अतिरिक्त तापीय धारिता के बराबर करता है।

खुली प्रणाली की सीमाओं से घिरे स्थान के क्षेत्र को सामान्यतः नियंत्रण आयतन कहा जाता है, और यह भौतिक दीवारों के अनुरूप हो भी सकता है और नहीं भी। यदि हम नियंत्रण आयतन का आकार चुनते हैं जैसे कि सभी प्रवाह अंदर या बाहर इसकी सतह पर लंबवत होते हैं, तो प्रणाली में द्रव्यमान का प्रवाह कार्य करता है जैसे कि यह तरल पदार्थ का एक पिस्टन था जो द्रव्यमान को प्रणाली में धकेलता है, और प्रणाली प्रदर्शन करता है द्रव्यमान के प्रवाह पर कार्य करें जैसे कि यह द्रव का एक पिस्टन चला रहा हो। तब दो प्रकार के कार्य किए जाते हैं: ऊपर वर्णित प्रवाह कार्य, जो द्रव पर किया जाता है (इसे प्रायः pV कार्य भी कहा जाता है), और शाफ्ट कार्य, जो कुछ यांत्रिक उपकरण जैसे टरबाइन या पंप पर किया जा सकता है।

इन दो प्रकार के कार्यों को समीकरण

में व्यक्त किया जाता है।

नियंत्रण मात्रा (सीवी) उपज के लिए उपरोक्त समीकरण में प्रतिस्थापन:

तापीय धारिता, H की परिभाषा हमें इस ऊष्मागतिक क्षमता का उपयोग करने की अनुमति देती है ताकि विवृत प्रणाली के लिए तरल पदार्थ में आंतरिक ऊर्जा और pV दोनों के लिए महत्त्व हो:

यदि हम प्रणाली की सीमा को स्थानांतरित करने की अनुमति भी देते हैं (उदाहरण के लिए चलती पिस्टन के कारण), तो हमें विवृत प्रणाली के लिए प्रथम नियम का एक सामान्य रूप मिलता है।[17] समय व्युत्पन्न के संदर्भ में यह पढ़ता है:

विभिन्न स्थानों के योगों k साथ जहां ऊष्मा की आपूर्ति की जाती है, द्रव्यमान प्रणाली में प्रवाहित होता है, और सीमाएं चलती हैं। k प्रतिबन्धें तापीय धारिता प्रवाह का प्रतिनिधित्व करती हैं, जिसे

के रूप में लिखा जा सकता है, क्रमशः k द्रव्यमान प्रवाह और k मोलर प्रवाह क्रमशः स्थिति k पर । पद dVk/dt स्थिति में प्रणाली आयतन के परिवर्तन की दर का प्रतिनिधित्व करता है k जिसका परिणाम होता है pV शक्ति प्रणाली द्वारा किया जाता है। पैरामीटर P प्रणाली द्वारा की गई शक्ति के अन्य सभी रूपों का प्रतिनिधित्व करता है जैसे कि शाफ्ट शक्ति, परन्तु यह विद्युत शक्ति संयंत्र द्वारा उत्पादित विद्युत शक्ति भी हो सकती है।

ध्यान दें कि पिछली अभिव्यक्ति तभी सही होती है जब प्रणाली इनलेट और आउटलेट के बीच गतिशील ऊर्जा प्रवाह दर संरक्षित होती है।[clarification needed] अन्यथा, इसे तापीय धारिता बैलेंस में सम्मिलित करना होगा। स्थिर-अवस्था (रासायनिक अभियांत्रिकी) के समय | एक उपकरण का स्थिर-अवस्था संचालन (टर्बाइन, पंप और यन्त्र देखें), औसत dU/dt को शून्य के बराबर समूह किया जा सकता है। यह रासायनिक अभिक्रियाओं के अभाव में इन उपकरणों के लिए औसत शक्ति (भौतिकी) उत्पादन के लिए एक उपयोगी अभिव्यक्ति देता है:

जहाँ कोण कोष्ठक समय औसत को दर्शाते हैं। तापीय धारिता का तकनीकी महत्व सीधे विवृत प्रणाली के लिए प्रथम नियम में इसकी उपस्थिति से संबंधित है, जैसा कि ऊपर तैयार किया गया है।

डायग्राम

Error creating thumbnail:
Ts नाइट्रोजन का आरेख।[18] बाईं ओर लाल वक्र पिघलने वाला वक्र है। लाल गुंबद दो-चरण क्षेत्र का प्रतिनिधित्व करता है जिसमें कम-एन्ट्रॉपी पक्ष संतृप्त तरल और उच्च-एन्ट्रॉपी पक्ष संतृप्त गैस है। काले वक्र देते हैं Ts आइसोबार के साथ संबंध। दाबों को बार में दर्शाया गया है। नीले वक्र isenthalps (स्थिर तापीय धारिता के वक्र) हैं। मानों को केजे / किग्रा में नीले रंग में दर्शाया गया है। मुख्य पाठ में विशिष्ट बिंदुओं ए, बी, आदि का इलाज किया जाता है।

वाणिज्यिक सॉफ्टवेयर का उपयोग करके महत्वपूर्ण पदार्थों के तापीय धारिता मान प्राप्त किए जा सकते हैं। व्यावहारिक रूप से सभी प्रासंगिक भौतिक गुणों को सारणीबद्ध या चित्रमय रूप में प्राप्त किया जा सकता है। डायग्राम कई प्रकार के होते हैं, जैसे hT आरेख, जो विभिन्न दाबों के लिए तापमान के कार्य के रूप में विशिष्ट तापीय धारिता देते हैं, और hp आरेख, जो देते हैं h के कार्य के रूप में p विभिन्न के लिए T। सबसे सामान्य आरेखों में से एक तापमान-विशिष्ट एन्ट्रॉपी आरेख है (Ts आरेख)। यह पिघलने की अवस्था और संतृप्त तरल और वाष्प मानों को एक साथ आइसोबार और आइसन्थल्प्स देता है। ये आरेख ऊष्मा इंजीनियर के हाथों में शक्तिशाली उपकरण हैं।

कुछ बुनियादी अनुप्रयोग

चित्र में a से h तक के बिंदु इस खंड में चर्चा में एक भूमिका निभाते हैं।

Point T (K) p (bar) s (kJ/(kg K)) h (kJ/kg)
a 300 1 6.85 461
b 380 2 6.85 530
c 300 200 5.16 430
d 270 1 6.79 430
e 108 13 3.55 100
f 77.2 1 3.75 100
g 77.2 1 2.83 28
h 77.2 1 5.41 230

अंक ई और जी संतृप्त तरल पदार्थ हैं, और बिंदु एच एक संतृप्त गैस है।

थ्रॉटलिंग

File:Schematic of throttling.png
स्थिर अवस्था में थ्रॉटलिंग का योजनाबद्ध आरेख। द्रव बिंदु 1 पर प्रणाली (बिंदीदार आयत) में प्रवेश करता है और इसे बिंदु 2 पर छोड़ देता है। द्रव्यमान प्रवाह है

तापीय धारिता की अवधारणा के सरल अनुप्रयोगों में से एक तथाकथित थ्रॉटलिंग प्रक्रिया है, जिसे जूल-थॉमसन प्रभाव | जूल-थॉमसन प्रसार के रूप में भी जाना जाता है। यह एक प्रवाह प्रतिरोध (वाल्व, झरझरा प्लग, या किसी अन्य प्रकार के प्रवाह प्रतिरोध) के माध्यम से एक तरल पदार्थ के स्थिर स्थिरोष्म प्रवाह से संबंधित है जैसा कि चित्र में दिखाया गया है। यह प्रक्रिया बहुत महत्वपूर्ण है, क्योंकि यह घरेलू रेफ़्रिजरेटर के केंद्र में है, जहां यह परिवेश के तापमान और रेफ्रिजरेटर के इंटीरियर के बीच तापमान में गिरावट के लिए जिम्मेदार है। यह कई प्रकार के द्रवीभूतों का अंतिम चरण भी है।

एक स्थिर अवस्था प्रवाह व्यवस्था के लिए, प्रणाली की तापीय धारिता (बिंदीदार आयत) को स्थिर होना चाहिए। अत

चूँकि द्रव्यमान प्रवाह स्थिर है, प्रवाह प्रतिरोध के दोनों किनारों पर विशिष्ट तापीय धारिता समान हैं:

अर्थात्, थ्रॉटलिंग के समय तापीय धारिता प्रति इकाई द्रव्यमान नहीं बदलता है। इस संबंध के परिणामों का उपयोग करके प्रदर्शित किया जा सकता है Ts ऊपर आरेख।

उदाहरण 1

बिंदु c 200 बार और कमरे के तापमान (300 K) पर है। 200 बार से 1 बार तक एक जूल-थॉमसन प्रसार 400 और 450 kJ/kg आइसेंथाल्प्स के बीच लगभग 425 kJ/kg (आरेख में नहीं दिखाया गया है) की स्थिर तापीय धारिता के वक्र का अनुसरण करता है और बिंदु d पर समाप्त होता है, जो एक पर है लगभग 270 K का तापमान। इसलिए 200 बार से 1 बार तक प्रसार नाइट्रोजन को 300 K से 270 K तक ठंडा करता है। वाल्व में बहुत अधिक घर्षण होता है, और बहुत अधिक एन्ट्रापी उत्पन्न होती है, परन्तु फिर भी अंतिम तापमान नीचे होता है प्रारंभिक मान।

उदाहरण 2

प्वाइंट ई चुना जाता है ताकि यह संतृप्त तरल रेखा पर हो h = 100 केजे/किग्रा। यह मोटे तौर पर मेल खाता है p = 13 बार और T = 108 K। इस बिंदु से 1 बार के दाब तक थ्रॉटलिंग दो-चरण क्षेत्र (बिंदु f) में समाप्त होता है। इसका मतलब है कि गैस और तरल का मिश्रण थ्रॉटलिंग वाल्व को छोड़ देता है। चूँकि तापीय धारिता एक व्यापक प्राचल है, f में तापीय धारिता (hf) जी में तापीय धारिता के बराबर है (hg) च में तरल अंश से गुणा (xf) धन एच में तापीय धारिता (hh) च में गैस अंश से गुणा (1 − xf)। इसलिए

संख्याओं के साथ: 100 = xf × 28 + (1 − xf) × 230, इसलिए xf = 0.64। इसका मतलब यह है कि थ्रॉटलिंग वाल्व छोड़ने वाले तरल-गैस मिश्रण में तरल का द्रव्यमान अंश 64% है।

कंप्रेशर्स

File:Schematic of compressor.png
स्थिर अवस्था में एक कंप्रेसर का योजनाबद्ध आरेख। द्रव बिंदु 1 पर प्रणाली (बिंदीदार आयत) में प्रवेश करता है और इसे बिंदु 2 पर छोड़ देता है। द्रव्यमान प्रवाह है । शक्ति P लागू किया जाता है और एक ऊष्मा प्रवाह परिवेश के तापमान पर निकट के लिए जारी किया जाता है Ta

शक्ति P लागू किया जाता है उदा। विद्युत शक्ति के रूप में। यदि संपीडन रूद्धोष्म है, तो गैस का तापमान बढ़ जाता है। प्रतिवर्ती स्थिति में यह स्थिर एन्ट्रापी पर होगा, जो कि एक ऊर्ध्वाधर रेखा के साथ मेल खाती है Ts आरेख। उदाहरण के लिए, नाइट्रोजन को 1 बार (बिंदु a) से 2 बार (बिंदु b) तक संपीड़ित करने से तापमान 300 K से 380 K तक बढ़ जाएगा। संपीड़ित गैस को परिवेशी तापमान पर बाहर निकलने देने के लिए Ta, उष्मा विनिमय, उदा. जल ठंडा करके, आवश्यक है। आदर्श स्थिति में संपीड़न इज़ोटेर्मल है। निकट के लिए औसत ऊष्मा प्रवाह है । चूंकि प्रणाली स्थिर स्थिति में है, प्रथम नियम देता है

संपीड़न के लिए आवश्यक न्यूनतम शक्ति का एहसास तब होता है जब संपीड़न प्रतिवर्ती हो। उस स्थिति में विवृत प्रणाली के लिए ऊष्मप्रवैगिकी का दूसरा नियम देता है

खत्म करना न्यूनतम शक्ति के लिए देता है

उदाहरण के लिए, 1 किलो नाइट्रोजन को 1 बार से 200 बार तक कम्प्रेस करने में कम से कम खर्च आता है (hcha) − Ta(scsa)। प्राप्त आंकड़ों के साथ Ts आरेख, हम का मान पाते हैं (430 − 461) − 300 × (5.16 − 6.85) = 476 केजे/किग्रा।

घात के संबंध को इस रूप में लिखकर और सरल बनाया जा सकता है

साथ dh = Tds + vdp, इसका परिणाम अंतिम संबंध में होता है


इतिहास और व्युत्पत्ति

तापीय धारिता पद ऊष्मप्रवैगिकी के इतिहास में अपेक्षाकृत देर से गढ़ा गया था, 20वीं सदी की प्रारम्भ में। 1802 में थॉमस यंग (वैज्ञानिक) द्वारा ऊर्जा को आधुनिक अर्थ में पेश किया गया था, जबकि 1865 में रुडोल्फ क्लॉसियस द्वारा एंट्रॉपी को गढ़ा गया था। ऊर्जा प्राचीन ग्रीक भाषा के पद की जड़ का उपयोग करती है। ἔργον (एर्गन), अर्थ कार्य, कार्य करने की क्षमता के विचार को व्यक्त करने के लिए। एंट्रॉपी ग्रीक पद का उपयोग करता है τροπή (ट्रोपे) अर्थ परिवर्तन या मोड़। तापीय धारिता ग्रीक पद की जड़ का उपयोग करता है θάλπος (थाल्पोस) वार्मथ, हीट ।[19] पद ऊष्मा पदार्थ की अप्रचलित अवधारणा को व्यक्त करता है,[20] जैसा dH मात्र स्थिर दाब पर एक प्रक्रिया में प्राप्त ऊष्मा की मात्रा को संदर्भित करता है,[21] परन्तु सामान्य स्थिति में नहीं जब दाब परिवर्तनशील होता है।[22] योशिय्याह विलार्ड गिब्स ने स्पष्टता के लिए स्थिर दाब के लिए ताप क्रिया पद का प्रयोग किया।[note 2] ऊष्मा पदार्थ की अवधारणा का परिचय H बेनोइट पॉल एमिल क्लैपेरॉन और रूडोल्फ क्लॉज़ियस (क्लॉज़ियस-क्लैपेरॉन संबंध, 1850) के साथ जुड़ा हुआ है।

तापीय धारिता पद पहली बार 1909 में छपा था।[23] इसका श्रेय हेइके कार्येरलिंग ओन्स को दिया जाता है, जिन्होंने पेरिस में इंस्टीट्यूट ऑफ रेफ्रिजरेशन की पहली बैठक में इसे एक साल पहले मौखिक रूप से पेश किया था।[24] इसने मात्र 1920 के दशक में मुद्रा प्राप्त की, विशेष रूप से 1927 में प्रकाशित तापीय धारिता-एन्ट्रॉपी चार्ट के साथ।

1920 के दशक तक, प्रतीक H सामान्य तौर पर ऊष्मा के लिए, कुछ असंगत रूप से इस्तेमाल किया गया था। की परिभाषा H 1922 में औपचारिक रूप से अल्फ्रेड डब्ल्यू पोर्टर द्वारा औपचारिक रूप से स्थिर दाब में तापीय धारिता या ऊष्मा पदार्थ तक सीमित रूप से प्रस्तावित किया गया था।[25][26]


यह भी देखें

टिप्पणियाँ

  1. The Collected Works of J. Willard Gibbs, Vol. I do not contain reference to the word enthalpy, but rather reference the "heat function for constant pressure". See: Henderson, Douglas; Eyring, Henry; Jost, Wilhelm (1967). Physical Chemistry: An Advanced Treatise. Academic Press. p. 29.


संदर्भ

  1. 1.0 1.1 IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "enthalpy". doi:10.1351/goldbook.E02141
  2. Zemansky, Mark W. (1968). "Chapter 11". ऊष्मा और ऊष्मप्रवैगिकी (5th ed.). New York, NY: McGraw-Hill. p. 275.
  3. Van Wylen, G. J.; Sonntag, R. E. (1985). "Section 5.5". शास्त्रीय ऊष्मप्रवैगिकी के मूल तत्व (3rd ed.). New York: John Wiley & Sons. ISBN 978-0-471-82933-1.
  4. Atkins, Peter; de Paula, Julio (2006). एटकिंस की भौतिक रसायन (8th ed.). W.H.Freeman. p. 51. ISBN 0-7167-8759-8.
  5. Laidler, Keith J.; Meiser, John H. (1999). भौतिक रसायन (3 ed.). Boston: Houghton Mifflin. p. 66. ISBN 0-395-91848-0.
  6. Guggenheim, E. A. (1959). ऊष्मप्रवैगिकी. Amsterdam: North-Holland Publishing Company.
  7. Moran, M. J.; Shapiro, H. N. (2006). इंजीनियरिंग ऊष्मप्रवैगिकी के मूल तत्व (5th ed.). John Wiley & Sons. p. 511. ISBN 9780470030370.
  8. Iribarne, J.V., Godson, W.L. (1981). Atmospheric Thermodynamics, 2nd edition, Kluwer Academic Publishers, Dordrecht, ISBN 90-277-1297-2, pp. 235–236.
  9. Tschoegl, N.W. (2000). Fundamentals of Equilibrium and Steady-State Thermodynamics, Elsevier, Amsterdam, ISBN 0-444-50426-5, p. 17.
  10. Callen, H. B. (1960/1985), Thermodynamics and an Introduction to Thermostatistics, (first edition 1960), second edition 1985, John Wiley & Sons, New York, ISBN 0-471-86256-8, Chapter 5.
  11. Münster, A. (1970), Classical Thermodynamics, translated by E. S. Halberstadt, Wiley–Interscience, London, ISBN 0-471-62430-6, p. 6.
  12. Reif, F. (1967). सांख्यिकीय भौतिकी. London: McGraw-Hill.
  13. Kittel, C.; Kroemer, H. (1980). ऊष्मीय भौतिकी. London: Freeman.
  14. Rathakrishnan (2015). हाई एन्थैल्पी गैस डायनामिक्स. John Wiley and Sons Singapore Pte. Ltd. ISBN 978-1118821893.
  15. Laidler, Keith J.; Meiser, John H. (1982). भौतिक रसायन. Benjamin/Cummings. p. 53. ISBN 978-0-8053-5682-3.
  16. Petrucci, Ralph H.; Harwood, William S.; Herring, F. Geoffrey (2002). सामान्य रसायन शास्त्र (8th ed.). Prentice Hall. pp. 237–238. ISBN 978-0-13-014329-7.
  17. Moran, M. J.; Shapiro, H. N. (2006). इंजीनियरिंग ऊष्मप्रवैगिकी के मूल तत्व (5th ed.). John Wiley & Sons. p. 129. ISBN 9780470030370.
  18. Figure composed with data obtained with RefProp, NIST Standard Reference Database 23.
  19. θάλπος in A Greek–English Lexicon.
  20. Howard (2002) quotes J. R. Partington in An Advanced Treatise on Physical Chemistry (1949) as saying that the function H was "usually called the heat content".
  21. Tinoco, Ignacio Jr.; Sauer, Kenneth; Wang, James C. (1995). भौतिक रसायन (3rd ed.). Prentice-Hall. p. 41. ISBN 978-0-13-186545-7.
  22. Laidler, Keith J.; Meiser, John H. (1982). भौतिक रसायन. Benjamin/Cummings. p. 53. ISBN 978-0-8053-5682-3.
  23. Dalton, J. P. (1909). "जूल-केल्विन-प्रभाव पर शोध, विशेष रूप से कम तापमान पर। I. हाइड्रोजन के लिए गणना". Proceedings of the Section of Sciences (Koninklijke Akademie van Wetenschappen te Amsterdam [Royal Academy of Sciences at Amsterdam]). 11 (part 2): 863–873. Bibcode:1908KNAB...11..863D. ; see p. 864, footnote (1).
  24. See:
  25. Porter, Alfred W. (1922). "ठंड का उत्पादन और उपयोग। एक सामान्य चर्चा।". Transactions of the Faraday Society. 18: 139–143. doi:10.1039/tf9221800139.; see p. 140.
  26. Howard, Irmgard (2002). "H Is for Enthalpy, Thanks to Heike Kamerlingh Onnes and Alfred W. Porter". Journal of Chemical Education. 79 (6): 697. Bibcode:2002JChEd..79..697H. doi:10.1021/ed079p697.


ग्रन्थसूची


इस पेज में लापता आंतरिक लिंक की सूची

  • कार्य (भौतिकी)
  • अवस्था कार्य
  • मानक स्थिति
  • solation
  • अभिक्रिया की तापीय धारिता
  • जौल
  • ऊर्जा अंतरण
  • अभिक्रिया की मानक तापीय धारिता
  • आयतन (ऊष्मागतिकी)
  • सघन विशेषताएं
  • गुरुत्वाकर्षण स्थितिज ऊर्जा
  • बहुत छोता
  • ऊष्मप्रवैगिकी का प्रथम नियम
  • प्रतिवर्ती प्रक्रिया (ऊष्मागतिकी)
  • निरपेक्ष तापमान
  • एन्ट्रापी
  • ताप की गुंजाइश
  • ताप प्रसार प्रसार गुणांक
  • अवस्था चर
  • स्थान-विज्ञान
  • एडियाबेटिक सन्निकटन
  • कार्य (ऊष्मागतिकी)
  • शून्य निरपेक्ष
  • भौतिक विज्ञान
  • वायु - दाब
  • इंजन गर्म करें
  • प्रणाली (ऊष्मागतिकी)
  • उष्माक्षेपी अभिक्रिया
  • तथा संयुक्त
  • विशिष्ट आयतन
  • विलयन की तापीय धारिता
  • संलयन की तापीय धारिता
  • एकाग्रता
  • दहन की तापीय धारिता
  • निर्माण की तापीय धारिता
  • मिश्रण की तापीय धारिता
  • परमाणुकरण की तापीय धारिता
  • मानक प्रतिबन्धें
  • उच्च बनाने की क्रिया की तापीय धारिता
  • विवृत प्रणाली (प्रणाली सिद्धांत)
  • स्थिर अवस्था (केमिकल इंजीनियरिंग)
  • कोण ब्रैकेट
  • स्थिरोष्म
  • प्राचीन यूनानी भाषा
  • ठहराव तापीय धारिता

बाहरी कड़ियाँ

श्रेणी: अवस्था कार्य श्रेणी: ऊर्जा (भौतिकी) श्रेणी:भौतिक मात्रा