सामयिक क्वांटम क्षेत्र सिद्धांत: Difference between revisions
No edit summary |
No edit summary |
||
| Line 17: | Line 17: | ||
== विशिष्ट प्रारूप == | == विशिष्ट प्रारूप == | ||
ज्ञात सामयिक क्षेत्रीय सिद्धांत दो सामान्य वर्गों में आते हैं: श्वार्ज- | ज्ञात सामयिक क्षेत्रीय सिद्धांत दो सामान्य वर्गों में आते हैं: श्वार्ज-प्रारूप टीक्यूएफटी और विट्टन-प्रारूप टीक्यूएफटी या विटेन टीक्यूएफटी को कभी-कभी कोहोमोलॉजिकल क्षेत्रीय सिद्धांत भी कहा जाता है। इसके लिए {{Harv|स्क्वार्ज|2000}} को देख सकते हैं। | ||
=== श्वार्ज- | === श्वार्ज-प्रारूप टीक्यूएफटी=== | ||
श्वार्ज- | श्वार्ज-प्रारूप टीक्यूएफटी में इस प्रणाली के सहसंबंध फलन (क्वांटम क्षेत्रीय सिद्धांत) या विभाजन फलन (क्वांटम क्षेत्रीय सिद्धांत) की गणना मीट्रिक-स्वतंत्र क्रिया फलनों के पथ अभिन्न द्वारा की जाती है। उदाहरण के लिए, [[बीएफ मॉडल|बीएफ प्रारूप]] में, स्पेसटाइम द्वि-आयामी कई गुना M का मान देता है, इन वेधशालाओं का निर्माण दो प्रारूपों में एफ के साथ सहायक स्केलर बी और उनके डेरिवेटिव से किया जाता है। इस क्रिया को अभिन्न पथ निर्धारित करती है जिसे इस प्रकार प्रदर्शित करते हैं- | ||
:<math>S=\int\limits_M B F</math> | :<math>S=\int\limits_M B F</math> | ||
| Line 28: | Line 28: | ||
इसका एक प्रमुख प्रसिद्ध उदाहरण चेर्न सीमन्स सिद्धांत है, जिसे गेज के आक्रमणकारियों पर लागू किया जाता है। सामान्यतः विभाजन कार्य मीट्रिक पर निर्भर करते हैं किन्तु उपरोक्त उदाहरण मीट्रिक-स्वतंत्र हैं। | इसका एक प्रमुख प्रसिद्ध उदाहरण चेर्न सीमन्स सिद्धांत है, जिसे गेज के आक्रमणकारियों पर लागू किया जाता है। सामान्यतः विभाजन कार्य मीट्रिक पर निर्भर करते हैं किन्तु उपरोक्त उदाहरण मीट्रिक-स्वतंत्र हैं। | ||
=== विटेन | === विटेन प्रारूप टीक्यूएफटी=== | ||
विटेन प्रारूप टीक्यूएफटी का पहला उदाहरण 1988 में विटन के पेपर में दिखाई दिया था, इस प्रकार {{Harv|विटेन|1988ए}} अर्थात सामयिक यांग मिल्स सिद्धांत चार आयामों में। चूंकि इसके एक्शन कार्यात्मक में स्पेसटाइम मेट्रिक G<sub>αβ</sub> सम्मिलित है, इस कारण सामयिक स्ट्रिंग सिद्धांत के पश्चात सामयिक ट्विस्ट यह मेट्रिक इंडिपेंडेंट का निष्काशन किया जाता हैं। इस प्रकार तनाव ऊर्जा तनाव टी की स्वतंत्रता मेट्रिक से प्रणाली का αβ इस बात पर निर्भर करता है कि क्या [[BRST परिमाणीकरण|बीआरएसटी परिमाणीकरण]] या बीआरएसटी संचालक बंद रहता है। विटेन के उदाहरण के पश्चात [[ सामयिक स्ट्रिंग सिद्धांत |सामयिक स्ट्रिंग सिद्धांत]] में कई अन्य उदाहरण मिल सकते हैं। | |||
विट्टन- | विट्टन-प्रारूप टीक्यूएफटी उत्पन्न होते हैं यदि निम्नलिखित शर्तें पूर्ण होती हैं: इस प्रकार इसमें ये बिन्दु सम्मिलित होते हैं- | ||
# कार्य <math>S</math> टीक्यूएफटी में | # कार्य <math>S</math> टीक्यूएफटी में समरूपता रहती है, अर्थात यदि <math>\delta</math> समरूपता परिवर्तन को दर्शाता है (उदाहरण के लिए एक [[झूठ व्युत्पन्न|असत्य व्युत्पन्न]]) तब <math>\delta S = 0</math> रखती है। | ||
# समरूपता परिवर्तन [[सटीक क्रम|त्रुटिहीन क्रम]] | # समरूपता परिवर्तन [[सटीक क्रम|त्रुटिहीन क्रम]] अर्थात <math>\delta^2 = 0</math> में उपलब्ध रहता है, | ||
# | # <math>O_1, \dots, O_n</math> उपस्थित वेधशालाएँ हैं, जो <math>\delta O_i = 0</math> सभी के लिए <math>i \in \{ 1, \dots, n\}</math> संतुष्ट करता है। | ||
# तनाव-ऊर्जा- | # तनाव-ऊर्जा-तनाव (या समान भौतिक मात्रा) <math>T^{\alpha \beta} = \delta G^{\alpha \beta}</math> का रूप का है, इस प्रकार तनाव के लिए <math>G^{\alpha \beta}</math> मान प्राप्त होता हैं। | ||
उदहारण के लिए {{Harv| | उदहारण के लिए {{Harv|लिंकर|2015}}: 2-फ़ॉर्म क्षेत्रीय दिया गया है, इस प्रकार <math>B</math> अंतर संचालक के साथ <math>\delta</math> जो <math>\delta^2=0</math> समीकरण को संतुष्ट करता है, इस क्रिया में <math>S = \int\limits_M B \wedge \delta B</math> समरूपता है, यदि <math>\delta B \wedge \delta B = 0</math>, इस प्रकार | ||
:<math>\delta S = \int\limits_M \delta(B \wedge \delta B) = \int\limits_M \delta B \wedge \delta B + \int\limits_M B \wedge \delta^2 B = 0</math>. | :<math>\delta S = \int\limits_M \delta(B \wedge \delta B) = \int\limits_M \delta B \wedge \delta B + \int\limits_M B \wedge \delta^2 B = 0</math>. | ||
इसके अतिरिक्त, निम्नलिखित धारण करता है ( | इसके अतिरिक्त, निम्नलिखित धारण करता है ( निर्धारित शर्तों के अनुसार <math>\delta</math> पर <math>B</math> का मान स्वतंत्र रहता है और [[कार्यात्मक व्युत्पन्न]] के समान कार्य करता है): | ||
:<math> | :<math> | ||
\frac{\delta}{\delta B^{\alpha \beta}}S = | \frac{\delta}{\delta B^{\alpha \beta}}S = | ||
| Line 49: | Line 49: | ||
</math>. | </math>. | ||
इस कारण <math>\frac{\delta}{\delta B^{\alpha \beta}}S</math> के लिए आनुपातिक <math>\delta G</math> है, जहाँ दूसरे प्रारूप में 2-फॉर्म के साथ <math>G</math> के मान को प्रदर्शित करता हैं। | |||
अब वेधशालाओं का कोई भी औसत <math>\left\langle O_i \right\rangle := \int d \mu O_i e^{iS}</math> इसी हार उपाय के लिए <math>\mu</math> ज्यामितीय क्षेत्र पर स्वतंत्र | अब वेधशालाओं का कोई भी औसत <math>\left\langle O_i \right\rangle := \int d \mu O_i e^{iS}</math> इसी हार उपाय के लिए <math>\mu</math> ज्यामितीय क्षेत्र पर स्वतंत्र <math>B</math> हैं और इसलिए यह सामयिक अवस्था में रहता हैं: | ||
:<math> \frac{\delta}{\delta B} \left\langle O_i \right\rangle = \int d \mu O_i i \frac{\delta}{\delta B}S e^{iS} \propto \int d \mu O_i \delta G e^{iS} = \delta \left(\int d \mu O_i G e^{iS}\right) = 0</math>. | :<math> \frac{\delta}{\delta B} \left\langle O_i \right\rangle = \int d \mu O_i i \frac{\delta}{\delta B}S e^{iS} \propto \int d \mu O_i \delta G e^{iS} = \delta \left(\int d \mu O_i G e^{iS}\right) = 0</math>. | ||
तीसरी समानता इस तथ्य का उपयोग करती है कि <math>\delta O_i = \delta S = 0</math> और समरूपता परिवर्तनों के अनुसार | तीसरी समानता इस तथ्य का उपयोग करती है कि <math>\delta O_i = \delta S = 0</math> और समरूपता परिवर्तनों के अनुसार इसकी माप का आविष्कार इसलिए किया गया था। तब से <math>\int d \mu O_i G e^{iS}</math> का मान केवल एक संख्या को प्रदर्शित करता है, इसका लाई डेरिवेटिव विलुप्त हो जाता है। | ||
== गणितीय सूत्र == | == गणितीय सूत्र == | ||
=== मूल अतियाः सहगल अभिगृहीत === | === मूल अतियाः सहगल अभिगृहीत === | ||
[[माइकल अतियाह]] ने सामयिक क्वांटम क्षेत्र सिद्धांत के लिए स्वयंसिद्धों के | [[माइकल अतियाह]] ने सामयिक क्वांटम क्षेत्र सिद्धांत के लिए स्वयंसिद्धों के समूह का सुझाव दिया गया था, जो [[ग्रीम सहगल]] के [[अनुरूप क्षेत्र सिद्धांत]] के लिए प्रस्तावित स्वयंसिद्धों से प्रेरित था (इसके पश्चात सेगल के विचार को संक्षेप में प्रस्तुत किया गया था) {{Harvtxt|सेगल|2001}}), और सुपरसिमेट्री के विटन का ज्यामितीय अर्थ {{Harvtxt|विटेन|1982}} द्वारा अतियाह के स्वयंसिद्धों का निर्माण एक भिन्न (सामयिक या निरंतर) परिवर्तन के साथ सीमा को जोड़कर किया जाता है, जबकि सेगल के स्वयंसिद्ध अनुरूप परिवर्तनों के लिए हैं। श्वार्ज-प्रारूप क्यूएफटी के गणितीय उपचार के लिए ये स्वयंसिद्ध अपेक्षाकृत उपयोगी रहे हैं, चूंकि यह स्पष्ट नहीं है कि वे विटेन प्रारूप क्यूएफटी की पूरी संरचना पर अधिकार प्राप्त कर लिया हैं। मूल विचार यह है कि एक टीक्यूएफटी एक निश्चित [[श्रेणी (गणित)]] से लेकर सदिश रिक्त स्थान की श्रेणी तक है। | ||
वास्तव में स्वयंसिद्धों के दो अलग-अलग समूह हैं जिन्हें उचित रूप से अतियाह स्वयंसिद्ध कहा जा सकता है। ये स्वयंसिद्ध मूल रूप से भिन्न होते हैं कि वे एक निश्चित n-आयामी रीमैनियन / लोरेंट्ज़ियन स्पेसटाइम M पर परिभाषित टीक्यूएफटी पर लागू होते हैं या नहीं या | वास्तव में स्वयंसिद्धों के दो अलग-अलग समूह हैं जिन्हें उचित रूप से अतियाह स्वयंसिद्ध कहा जा सकता है। ये स्वयंसिद्ध मूल रूप से भिन्न होते हैं कि वे एक निश्चित n-आयामी रीमैनियन / लोरेंट्ज़ियन स्पेसटाइम M पर परिभाषित टीक्यूएफटी पर लागू होते हैं या नहीं या सभी n-आयामी स्पेसटाइम पर परिभाषित टीक्यूएफटी के लिए उपलब्ध रहते हैं। | ||
चलो Λ 1 के साथ एक [[ क्रमविनिमेय अंगूठी ]] हो (लगभग सभी वास्तविक दुनिया के उद्देश्यों के लिए हमारे पास Λ = 'Z', 'R' या 'C' होगा)। अतियाह ने मूल रूप से ग्राउंड रिंग Λ पर परिभाषित आयाम d में एक सामयिक क्वांटम क्षेत्रीय सिद्धांत (टीक्यूएफटी) के स्वयंसिद्धों को निम्नलिखित के रूप में प्रस्तावित किया: | चलो Λ 1 के साथ एक [[ क्रमविनिमेय अंगूठी ]] हो (लगभग सभी वास्तविक दुनिया के उद्देश्यों के लिए हमारे पास Λ = 'Z', 'R' या 'C' होगा)। इस प्रकार अतियाह ने मूल रूप से ग्राउंड रिंग Λ पर परिभाषित आयाम d में एक सामयिक क्वांटम क्षेत्रीय सिद्धांत (टीक्यूएफटी) के स्वयंसिद्धों को निम्नलिखित के रूप में प्रस्तावित किया: | ||
* | * इस कारण सघनता से उत्पन्न Λ-मॉड्यूल Z (Σ) प्रत्येक उन्मुख बंद समतल d-आयामी मैनिफोल्ड Σ ([[होमोटॉपी]] स्वयंसिद्ध के अनुरूप) से संयोजित रहता है, | ||
* | * किसी तत्व Z (M) ∈ Z (M) प्रत्येक उन्मुख समतल (d + 1) -आयामी कई गुना (सीमा के साथ) M (एक योजक सिद्धांत के अनुरूप) से संयोजित रहता है। | ||
ये डेटा निम्नलिखित स्वयंसिद्धों के अधीन हैं (4 और 5 अतियाह द्वारा जोड़े गए थे): | ये डेटा निम्नलिखित स्वयंसिद्धों के अधीन हैं (4 और 5 अतियाह द्वारा जोड़े गए थे): | ||
| Line 73: | Line 73: | ||
# Z अनैच्छिक है, अर्थात Z(Σ*) = Z(Σ)* जहां Σ* Σ विपरीत अभिविन्यास के साथ है और Z(Σ)* दोहरे मॉड्यूल को दर्शाता है, | # Z अनैच्छिक है, अर्थात Z(Σ*) = Z(Σ)* जहां Σ* Σ विपरीत अभिविन्यास के साथ है और Z(Σ)* दोहरे मॉड्यूल को दर्शाता है, | ||
# Z गुणक है। | # Z गुणक है। | ||
# | # Z (<math>\emptyset</math>) = Λ d-आयामी रिक्त कई गुना और Z के लिए (<math>\emptyset</math>) = 1 (d + 1) -आयामी रिक्त कई गुना हो जाता हैं। | ||
# | # Z (M *) = {{overline|''Z''(''M'')}} ([[ सेस्क्विलिनियर रूप ]] स्वयंसिद्ध) के अनुसार यदि <math>\partial M = \Sigma^*_0 \cup \Sigma_1</math> जिससे कि Z(M) को हर्मिटियन सदिश रिक्त स्थान के बीच एक रैखिक परिवर्तन के रूप में देखा जा सके, तो यह Z(M*) के समान है जो Z(M) का हर्मिटियन आसन्न है। | ||
इस कारण एक टिप्पणी के अनुसार यदि किसी बंद मैनिफोल्ड M के लिए हम Z (M) को एक संख्यात्मक अपरिवर्तनीय के रूप में देखते हैं, तो इस सीमा के साथ कई गुना मान प्राप्त करने के लिए हमें Z (M) ∈ Z (∂ M) को समीपस्थ अपरिवर्तनीयता के रूप में सोचना पड़ता हैं। इस प्रकार f : Σ → Σ अभिविन्यास-संरक्षण भिन्नता को प्रदर्शित करता है, और f द्वारा Σ × I के विपरीत सिरों की पहचान की जाती हैं। यह कई गुना Σ<sub>''f''</sub> देता है और हमारे सिद्धांतों का अर्थ है | |||
: <math>Z(\Sigma_f) = \operatorname{Trace}\ \Sigma(f)</math> | : <math>Z(\Sigma_f) = \operatorname{Trace}\ \Sigma(f)</math> | ||
जहां Σ(f) Z(Σ) का प्रेरित ऑटोमोर्फिज्म है। | जहां Σ(f) Z(Σ) का प्रेरित ऑटोमोर्फिज्म है। | ||
' | 'टिप्पणी' के अनुसार सीमा Σ के साथ कई गुना M के लिए हम हमेशा दोहरा बना सकते हैं <math>M\cup_\Sigma M^*</math> जो एक बंद मैनिफोल्ड है। इसका पांचवां मान स्वयंसिद्धता को दर्शाता है। इस प्रकार- | ||
: <math>Z\left(M\cup_\Sigma M^*\right) = |Z(M)|^2</math> | : <math>Z\left(M\cup_\Sigma M^*\right) = |Z(M)|^2</math> | ||
जहां दाईं ओर हम हर्मिटियन (संभवतः अनिश्चितकालीन) मीट्रिक में मानदंड की गणना करते हैं। | जहां दाईं ओर हम हर्मिटियन (संभवतः अनिश्चितकालीन) मीट्रिक में मानदंड की गणना करते हैं। | ||
| Line 87: | Line 87: | ||
भौतिक रूप से (2) + (4) आपेक्षिकीय आक्रमण से संबंधित हैं जबकि (3) + (5) सिद्धांत की क्वांटम प्रकृति के सूचक हैं। | भौतिक रूप से (2) + (4) आपेक्षिकीय आक्रमण से संबंधित हैं जबकि (3) + (5) सिद्धांत की क्वांटम प्रकृति के सूचक हैं। | ||
Σ भौतिक स्थान को इंगित करने के लिए है (सामान्यतः, मानक भौतिकी के लिए d = 3) और Σ × I में अतिरिक्त आयाम काल्पनिक समय है। स्थान Z(Σ) क्वांटम सिद्धांत का [[हिल्बर्ट अंतरिक्ष]] है और [[हैमिल्टनियन (क्वांटम यांत्रिकी)]] H के साथ एक भौतिक सिद्धांत | Σ भौतिक स्थान को इंगित करने के लिए है (सामान्यतः, मानक भौतिकी के लिए d = 3) और Σ × I में अतिरिक्त आयाम काल्पनिक समय है। इस कारण स्थान Z(Σ) क्वांटम सिद्धांत का [[हिल्बर्ट अंतरिक्ष]] है और [[हैमिल्टनियन (क्वांटम यांत्रिकी)]] H के साथ एक भौतिक सिद्धांत किसी समय विकास संचालिका e<sup>itH</sup> होगा या एक काल्पनिक टाइम संचालक e<sup>−tH</sup> रहता है। इस प्रकार सामयिक क्यूएफटी की मुख्य विशेषता यह है कि H = 0, जिसका तात्पर्य है कि सिलेंडर Σ × I के साथ कोई वास्तविक गतिशीलता या प्रसार नहीं है। चूंकि, Σ<sub>0</sub> से गैर-तुच्छ प्रसार (या टनलिंग एम्पलीट्यूड) हो सकता है। S<sub>1</sub> के लिए एक मध्यवर्ती कई गुना M के साथ <math>\partial M = \Sigma^*_0 \cup \Sigma_1</math>, यह M की टोपोलॉजी को दर्शाता है। | ||
यदि ∂M = Σ, तो हिल्बर्ट अंतरिक्ष Z(Σ) में विशिष्ट | यदि ∂M = Σ, तो हिल्बर्ट अंतरिक्ष Z(Σ) में विशिष्ट सदिश Z(M) को M द्वारा परिभाषित निर्वात स्थिति के रूप में माना जाता है। एक बंद कई गुना M के लिए संख्या Z(M) निर्वात अपेक्षा मान है। [[सांख्यिकीय यांत्रिकी]] के अनुरूप इसे विभाजन कार्य (क्वांटम क्षेत्र सिद्धांत) भी कहा जाता है। | ||
क्यूएफटी के लिए [[फेनमैन पथ अभिन्न]] दृष्टिकोण में शून्य हैमिल्टनियन के साथ एक सिद्धांत को समझदारी से तैयार किया जा सकता है। इसमें सापेक्षवादी आक्रमण सम्मिलित है (जो सामान्य ( | क्यूएफटी के लिए [[फेनमैन पथ अभिन्न]] दृष्टिकोण में शून्य हैमिल्टनियन के साथ एक सिद्धांत को समझदारी से तैयार किया जा सकता है। इसमें सापेक्षवादी आक्रमण सम्मिलित है (जो सामान्य (d + 1) -आयामी स्पेसटाइम पर लागू होता है) और सिद्धांत औपचारिक रूप से उपयुक्त लैग्रैंगियन (क्षेत्र सिद्धांत) द्वारा परिभाषित किया गया है - सिद्धांत के मौलिक क्षेत्रों का कार्यात्मक हैं। इस कारण लैग्रैंगियन मान के लिए जिसमें समय में केवल पहला डेरिवेटिव सम्मिलित होता है, औपचारिक रूप से एक शून्य हैमिल्टन की ओर जाता है, किन्तु लैग्रैंगियन में गैर-तुच्छ विशेषताएं हो सकती हैं जो M की टोपोलॉजी से संबंधित हैं। | ||
=== अतियाह के उदाहरण === | === अतियाह के उदाहरण === | ||
1988 में, | 1988 में, M. अतियाह ने एक पेपर प्रकाशित किया जिसमें उन्होंने सामयिक क्वांटम क्षेत्रीय सिद्धांत के कई नए उदाहरणों का वर्णन किया था, जिन्हें उस समय माना जाता था। {{Harv|एटियाह|1988a}}{{Harv|एटियाह|1988b}} के अनुसार इसमें कुछ नए विचारों के साथ कुछ नए सामयिक इनवेरिएंट सम्मिलित किए गए हैं: [[ कैसन अपरिवर्तनीय ]], [[ डोनाल्डसन अपरिवर्तनीय ]], जियोमेट्रिक समूह सिद्धांत या ग्रोमोव का सिद्धांत, [[फ्लोर होमोलॉजी]] और जोन्स बहुपद या जोन्स-विटन सिद्धांत सम्मिलित हैं। | ||
==== | ====d = 0==== | ||
इस स्थिति में Σ में परिमित रूप से अनेक बिंदु होते हैं। एक बिंदु से हम एक सदिश स्थान V = Z (बिंदु) और n-बिंदुओं को n-गुना टेन्सर उत्पाद से जोड़ते हैं: V<sup>⊗n</sup> = V ⊗ … ⊗ V. [[सममित समूह]] S<sub>n</sub> | इस स्थिति में Σ में परिमित रूप से अनेक बिंदु होते हैं। एक बिंदु से हम एक सदिश स्थान V = Z (बिंदु) और n-बिंदुओं को n-गुना टेन्सर उत्पाद से जोड़ते हैं: V<sup>⊗n</sup> = V ⊗ … ⊗ V. [[सममित समूह]] S<sub>n</sub>V<sup>⊗n</sup> पर कार्य करता है। क्वांटम हिल्बर्ट स्पेस प्राप्त करने का एक मानक विधि मौलिक [[सिंपलेक्टिक मैनिफोल्ड]] (या [[ चरण स्थान ]]) से प्रारंभ करना है और फिर इसे परिमाणित करना है। आइए हम S<sub>n</sub> का विस्तार करें, जहाँ एक कॉम्पैक्ट लाई समूह G के लिए और पूर्णांक कक्षाओं पर विचार करें जिसके लिए सहानुभूतिपूर्ण संरचना [[लाइन बंडल]] से आती है, फिर परिमाणीकरण जी के अप्रासंगिक प्रतिनिधित्व वी की ओर जाता है। यह बोरेल-वील प्रमेय या बोरेल-वील-बॉट की प्रमेय इसकी भौतिक व्याख्या है। इन सिद्धांतों का लैग्रैंगियन मौलिक क्रिया (लाइन बंडल की पवित्रता) है। इस प्रकार सामयिक क्यूएफटी d = 0 के साथ स्वाभाविक रूप से [[झूठ समूह|असत्य समूहों]] और [[समरूपता समूह]] के मौलिक [[प्रतिनिधित्व सिद्धांत]] से संबंधित है। | ||
==== | ====d = 1==== | ||
हमें कॉम्पैक्ट सिम्प्लेक्टिक मैनिफोल्ड एक्स में बंद लूप द्वारा दी गई आवधिक सीमा स्थितियों पर विचार करना चाहिए। साथ में {{Harvtxt| | हमें कॉम्पैक्ट सिम्प्लेक्टिक मैनिफोल्ड एक्स में बंद लूप द्वारा दी गई आवधिक सीमा स्थितियों पर विचार करना चाहिए। इसके साथ में {{Harvtxt|विटेन|1982}} d = 0 के स्थितियोंमें लैग्रेंजियन के रूप में उपयोग किए जाने वाले होलोनॉमी ऐसे लूप का उपयोग हैमिल्टनियन को संशोधित करने के लिए किया जाता है। इस प्रकार बंद सतह M के लिए सिद्धांत का अपरिवर्तनीय Z (M) ग्रोमोव के अर्थ में [[स्यूडोहोलोमॉर्फिक वक्र]] एफ: M → एक्स की संख्या है (वे सामान्य [[होलोमॉर्फिक नक्शा]] हैं यदि एक्स एक काहलर मैनिफोल्ड है)। यदि यह संख्या अपरिमित हो जाती है, अर्थात यदि मॉडुलि हैं, तो हमें M पर और डेटा निश्चित करना होगा। यह कुछ बिंदुओं P<sub>i</sub> को चुनकर किया जा सकता है। इस प्रकार होलोमॉर्फिक मानचित्र f : M → X को f(P<sub>i</sub>) एक निश्चित हाइपरप्लेन पर लेटने के लिए विवश कर सकता हैं। {{Harvtxt|विटेन|1988b}} ने इस सिद्धांत के लिए प्रासंगिक लैग्रैंगियन को लिखा है। फ़्लोर ने विटन के [[मोर्स सिद्धांत]] के विचारों के आधार पर एक कठोर उपचार दिया है, अर्थात फ़्लोर होमोलॉजी, स्थितियोंके लिए जब सीमा की स्थिति आवधिक होने के अतिरिक्त अंतराल पर होती है, तो पथ प्रारंभिक और अंत-बिंदु दो निश्चित [[Lagrangian सबमनीफोल्ड|लैग्रैंगियन सबमनीफोल्ड]] पर स्थित होते हैं। इस सिद्धांत को ग्रोमोव-विटन अपरिवर्तनीय सिद्धांत के रूप में विकसित किया गया है। | ||
एक अन्य उदाहरण [[होलोमॉर्फिक फ़ंक्शन|होलोमॉर्फिक फलन]] कॉनफॉर्मल क्षेत्रीय सिद्धांत है। हो सकता है कि उस समय इसे सख्ती से सामयिक क्वांटम क्षेत्रीय सिद्धांत नहीं माना गया हो क्योंकि हिल्बर्ट रिक्त स्थान अनंत आयामी हैं। [[अनुरूप क्षेत्र सिद्धांत]] भी कॉम्पैक्ट लाई समूह जी से संबंधित हैं जिसमें मौलिक चरण में [[लूप समूह]] (एलजी) का एक केंद्रीय विस्तार होता है। इनका मात्राकरण एलजी के इरेड्यूसिबल (प्रक्षेपी) अभ्यावेदन के सिद्धांत के हिल्बर्ट रिक्त स्थान का उत्पादन करता है। समूह | एक अन्य उदाहरण [[होलोमॉर्फिक फ़ंक्शन|होलोमॉर्फिक फलन]] कॉनफॉर्मल क्षेत्रीय सिद्धांत है। हो सकता है कि उस समय इसे सख्ती से सामयिक क्वांटम क्षेत्रीय सिद्धांत नहीं माना गया हो क्योंकि हिल्बर्ट रिक्त स्थान अनंत आयामी हैं। [[अनुरूप क्षेत्र सिद्धांत]] भी कॉम्पैक्ट लाई समूह जी से संबंधित हैं जिसमें मौलिक चरण में [[लूप समूह]] (एलजी) का एक केंद्रीय विस्तार होता है। इनका मात्राकरण एलजी के इरेड्यूसिबल (प्रक्षेपी) अभ्यावेदन के सिद्धांत के हिल्बर्ट रिक्त स्थान का उत्पादन करता है। समूह Dif<sub>+</sub>(S<sup>1</sup>) अब सममित समूह का स्थान लेता है और महत्वपूर्ण भूमिका निभाता है। इसके परिणाम स्वरुप ऐसे सिद्धांतों में विभाजन कार्य [[ जटिल कई गुना ]] पर निर्भर करता है, इस प्रकार यह विशुद्ध रूप से सामयिक नहीं है। | ||
==== | ====d = 2==== | ||
इस स्थितियोंमें जोन्स-विटन सिद्धांत सबसे महत्वपूर्ण सिद्धांत है। यहाँ मौलिक चरण स्थान, एक बंद सतह के साथ जुड़ा हुआ है, Σ के ऊपर एक समतल जी-बंडल का मोडुली स्थान है। | '''इस स्थितियोंमें जोन्स-विटन सिद्धांत सबसे महत्वपूर्ण सिद्धांत है। यहाँ मौलिक चरण स्थान, एक बंद सतह के साथ जुड़ा हुआ है, Σ के ऊपर एक समतल जी-बंडल का मोडुली स्थान है। लैग्रैंगियन चेर्न-सीमन्स सिद्धांत का''' एक पूर्णांक गुणक है | चेर्न-सिमन्स एक 3-मैनिफ़ोल्ड (जिसे फ़्रेम किया जाना है) पर जी-कनेक्शन का कार्य करता है। पूर्णांक एकाधिक k, जिसे स्तर कहा जाता है, सिद्धांत का एक पैरामीटर है और k → ∞ मौलिक सीमा देता है। सापेक्ष सिद्धांत उत्पन्न करने के लिए इस सिद्धांत को स्वाभाविक रूप से d = 0 सिद्धांत के साथ जोड़ा जा सकता है। विटन द्वारा विवरण का वर्णन किया गया है जो दिखाता है कि 3-गोले में एक (फ़्रेमयुक्त) लिंक के लिए विभाजन फलन एकता की उपयुक्त जड़ के लिए [[जोन्स बहुपद]] का मान है। इस सिद्धांत को संबंधित [[साइक्लोटोमिक क्षेत्र]] पर परिभाषित किया जा सकता है, देखें {{Harvtxt|Atiyah|1988}}. सीमा के साथ एक [[रीमैन सतह]] पर विचार करके, हम इसे d = 2 सिद्धांत को d = 0 से जोड़ने के अतिरिक्त d = 1 अनुरूप सिद्धांत से जोड़ सकते हैं। यह जोन्स-विटन सिद्धांत में विकसित हुआ है और गेज के बीच गहरे संबंधों की खोज का कारण बना है। यह सिद्धांत क्वांटम क्षेत्र का सिद्धांत हैं। | ||
==== | ====d = 3==== | ||
डोनाल्डसन ने एसयू(2)-इंस्टेंटन के मॉडुलि स्पेस का उपयोग करके | डोनाल्डसन ने एसयू(2)-इंस्टेंटन के मॉडुलि स्पेस का उपयोग करके समतल 4-मैनिफोल्ड्स के पूर्णांक इनवेरिएंट को परिभाषित किया है। ये अपरिवर्तनीय दूसरे होमोलॉजी पर बहुपद हैं। इस प्रकार 4-कई गुना में H के सममित बीजगणित से युक्त अतिरिक्त डेटा होना चाहिए<sub>2</sub>. {{Harvtxt|Witten|1988a}} ने एक सुपर-सिमेट्रिक लैग्रैंगियन का निर्माण किया है जो औपचारिक रूप से डोनाल्डसन सिद्धांत को पुन: प्रस्तुत करता है। विटन के सूत्र को गॉस-बोनट प्रमेय के अनंत-आयामी एनालॉग के रूप में समझा जा सकता है। बाद की तारीख में, इस सिद्धांत को और विकसित किया गया और सीबर्ग-विटन सिद्धांत बन गया। सीबर्ग-विटन गेज सिद्धांत जो एन = 2, d = 4 गेज सिद्धांत में एसयू (2) से यू (1) को कम करता है। सिद्धांत का हैमिल्टनियन संस्करण [[एंड्रियास फ्लोर]] द्वारा 3-कई गुना पर कनेक्शन के स्थान के संदर्भ में विकसित किया गया है। फ्लोरर चेर्न-सीमन्स सिद्धांत का उपयोग करता है। विवरण के लिए देखें {{Harvtxt|Atiyah|1988}}. {{Harvtxt|Witten|1988a}} ने यह भी दिखाया है कि कोई कैसे d = 3 और d = 1 सिद्धांतों को एक साथ जोड़ सकता है: यह जोन्स-विटन सिद्धांत में d = 2 और d = 0 के बीच युग्मन के समान है। | ||
अब, सामयिक क्षेत्रीय सिद्धांत को एक निश्चित आयाम पर नहीं बल्कि एक ही समय में सभी आयामों पर एक फ़ैक्टर के रूप में देखा जाता है। | अब, सामयिक क्षेत्रीय सिद्धांत को एक निश्चित आयाम पर नहीं बल्कि एक ही समय में सभी आयामों पर एक फ़ैक्टर के रूप में देखा जाता है। | ||
=== एक निश्चित स्पेसटाइम === का मामला | === एक निश्चित स्पेसटाइम === का मामला | ||
चलो बोर्ड<sub>M</sub>वह श्रेणी हो जिसके आकारिकी | चलो बोर्ड<sub>M</sub>वह श्रेणी हो जिसके आकारिकी M के एन-आयामी सबमनीफोल्ड हैं और जिनकी वस्तुएं ऐसे [[सबमेनिफोल्ड]] की सीमाओं के अंतरिक्ष घटकों से जुड़ी हैं। दो morphisms को समतुल्य मानते हैं यदि वे M के सबमनिफोल्ड्स के माध्यम से होमोटोपी हैं, और इसलिए भागफल श्रेणी hBord बनाते हैं<sub>M</sub>: hBord में वस्तुएँ<sub>M</sub>बोर्ड की वस्तुएं हैं<sub>M</sub>, और hBord के morphisms<sub>M</sub>बोर्ड में आकारिकी के होमोटोपी तुल्यता वर्ग हैं<sub>M</sub>. M पर एक टीक्यूएफटी एचबोर्ड से एक [[सममित monoidal functor]] है<sub>M</sub>वेक्टर रिक्त स्थान की श्रेणी के लिए। | ||
ध्यान दें कि सह-बोर्डवाद, यदि उनकी सीमाएं मेल खाती हैं, तो एक साथ सिल कर एक नया बोर्डवाद बना सकते हैं। यह कोबोर्डिज्म श्रेणी में आकारिकी के लिए रचना नियम है। चूंकि संरचना को संरक्षित करने के लिए फ़ैक्टरों की आवश्यकता होती है, यह कहता है कि एक साथ सिले हुए मोर्फिज्म के अनुरूप रैखिक मानचित्र प्रत्येक टुकड़े के लिए रैखिक मानचित्र की संरचना है। | ध्यान दें कि सह-बोर्डवाद, यदि उनकी सीमाएं मेल खाती हैं, तो एक साथ सिल कर एक नया बोर्डवाद बना सकते हैं। यह कोबोर्डिज्म श्रेणी में आकारिकी के लिए रचना नियम है। चूंकि संरचना को संरक्षित करने के लिए फ़ैक्टरों की आवश्यकता होती है, यह कहता है कि एक साथ सिले हुए मोर्फिज्म के अनुरूप रैखिक मानचित्र प्रत्येक टुकड़े के लिए रैखिक मानचित्र की संरचना है। | ||
| Line 133: | Line 133: | ||
{{Main|Supersymmetric theory of stochastic dynamics}} | {{Main|Supersymmetric theory of stochastic dynamics}} | ||
स्टोचैस्टिक (आंशिक) डिफरेंशियल इक्वेशन (एसडीई) क्वांटम अध: पतन और सुसंगतता के पैमाने से ऊपर प्रकृति में हर चीज के प्रारूप के लिए आधार हैं और अनिवार्य रूप से विटेन- | स्टोचैस्टिक (आंशिक) डिफरेंशियल इक्वेशन (एसडीई) क्वांटम अध: पतन और सुसंगतता के पैमाने से ऊपर प्रकृति में हर चीज के प्रारूप के लिए आधार हैं और अनिवार्य रूप से विटेन-प्रारूप टीक्यूएफटी हैं। सभी एसडीई में सामयिक या बीआरएसटी सुपरसिमेट्री होती है, <math>\delta</math>, और स्टोचैस्टिक डायनेमिक्स के संचालक प्रतिनिधित्व में [[बाहरी व्युत्पन्न]] है, जो स्टोकेस्टिक इवोल्यूशन संचालक के साथ कम्यूटेटिव है। यह सुपरसममेट्री निरंतर प्रवाह द्वारा फेज स्पेस की निरंतरता को निरंतर रखती है, और एक वैश्विक गैर-सुपरसिमेट्रिक ग्राउंड स्टेट द्वारा सुपरसिमेट्रिक स्पॉन्टेनियस ब्रेकडाउन की घटना [[अराजकता सिद्धांत]], [[अशांति]], गुलाबी शोर के रूप में ऐसी अच्छी तरह से स्थापित भौतिक अवधारणाओं को सम्मिलित करती है। 1/f और [[कर्कश शोर]] शोर , [[स्व-संगठित आलोचना]] आदि। किसी भी SDE के लिए सिद्धांत के सामयिक क्षेत्र को विटेन प्रारूप टीक्यूएफटी के रूप में पहचाना जा सकता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Revision as of 21:24, 23 April 2023
गेज सिद्धांत (गणित) और गणितीय भौतिकी में सामयिक क्वांटम क्षेत्र सिद्धांत या टीक्यूएफटी ऐसा क्वांटम क्षेत्र सिद्धांत है जो सामयिक इनवेरिएंट की गणना करता है।
यद्यपि टीक्यूएफटी का आविष्कार भौतिक विज्ञान के जानकारों द्वारा किया गया था, वे गणित में भी रुचि रखते थे, इसकी अन्य बातों के अतिरिक्त, गेज सिद्धांत और बीजगणितीय टोपोलॉजी में इसका महत्व कई गुना हैं और बीजगणितीय ज्यामिति में मोडुली रिक्त स्थानों के सिद्धांत से संबंध रखता हैं। साइमन डोनाल्डसन, वौघन जोंस, एडवर्ड विटन और मैक्सिम कोंटेसेविच ने सामयिक क्षेत्रीय सिद्धांत से संबंधित गणितीय कार्य के लिए क्षेत्रीय मेडल जीते हैं।
संघनित पदार्थ भौतिकी में, सामयिक क्वांटम क्षेत्र सिद्धांत सामयिक ऑर्डर की स्थिति के लिए कम ऊर्जा वाले प्रभावी सिद्धांतों में से प्रमुख हैं, जैसे क्वांटम हॉल प्रभाव स्थिति, स्ट्रिंग नेट कंडेंस्ड स्थिति और अन्य सहसंबद्ध क्वांटम घूर्णन द्रवित स्थिति इसके प्रमुख उदाहरण हैं।
अवलोकन
स्थलीय क्षेत्रीय सिद्धांत में सहसंबंध फंक्शन (क्वांटम क्षेत्र सिद्धांत) अंतरिक्ष समय के मीट्रिक टेन्सर अर्ताथ सामान्य सापेक्षता पर निर्भर नहीं करता है। इसका अर्थ यह है कि सिद्धांत दिक् काल के आकार में परिवर्तन के प्रति संवेदनशील नहीं है, यदि स्पेसटाइम विकृत या सिकुड़ता है, इस कारण सहसंबंध कार्य परिवर्तित नहीं होते हैं। इसके परिणाम स्वरुप वे सामयिक इनवेरिएंट को स्थापित करते हैं।
सामयिक क्षेत्रीय सिद्धांत क्वांटम भौतिकी में उपयोग किए जाने वाले समतल मिन्कोव्स्की स्पेसटाइम पर बहुत रोचक वाक्य स्थापित नहीं करता हैं। इस प्रकार मिन्कोवस्की स्थान ऐसा सिकुड़ा हुआ स्थान हो सकता है, इसलिए मिन्कोवस्की अंतरिक्ष पर लागू टीक्यूएफटी का परिणाम तुच्छ सामयिक इनवेरिएंट में सम्मिलित होता है। इसके परिणाम स्वरुप टीक्यूएफटी सामान्यतः घुमावदार अंतरिक्ष-समय पर लागू होते हैं, जैसे उदाहरण के लिए रीमैन सतह इसका मुख्य उदाहरण हैं। अधिकांशतः इनमें ज्ञात सामयिक क्षेत्रीय सिद्धांतों के लिए पांच से कम विमाओं के कर्व्ड स्पेसटाइम में क्वांटम क्षेत्रीय सिद्धांत को प्रदर्शित करते हैं। इस कारण यह प्रतीत होता हैं कि कुछ उच्च आयामी सिद्धांत इसमें उपस्तिथ रहते हैं, किन्तु उन्हें बहुत अच्छी तरह समझा नहीं गया है।[citation needed].
माना जाता है कि क्वांटम गुरुत्व पृष्ठभूमि स्वतंत्रता या बैकग्राउंड स्वतंत्रता में कुछ उपयुक्त अर्थ सम्मिलित होते हैं, और टीक्यूएफटी बैकग्राउंड स्वतंत्रता क्वांटम क्षेत्रीय सिद्धांत के उदाहरण प्रदान करते हैं। इस प्रारूप के इस वर्ग में चल रहे सैद्धांतिक जांच को प्रेरित किया जाता है।
(चेतावनी: अधिकांशतः यह कहा जाता है कि टीक्यूएफटी के पास स्वतंत्रता की बहुत सी डिग्री होती है। इस कारण यह मौलिक संपत्ति नहीं है। भौतिकविदों और गणितज्ञों का अध्ययन करने वाले अधिकांश उदाहरणों में यह सच होता है, किन्तु यह आवश्यक नहीं है। इस कारण ऐसे स्थलीय सिग्मा प्रारूप अनंत-आयामी प्रोजेक्टिव स्पेस को लक्षित करता है, और यदि ऐसी चीज को परिभाषित किया जाता है तो यह स्वतंत्रता की कई डिग्री अनंत रूप से अनंत होगी।)
विशिष्ट प्रारूप
ज्ञात सामयिक क्षेत्रीय सिद्धांत दो सामान्य वर्गों में आते हैं: श्वार्ज-प्रारूप टीक्यूएफटी और विट्टन-प्रारूप टीक्यूएफटी या विटेन टीक्यूएफटी को कभी-कभी कोहोमोलॉजिकल क्षेत्रीय सिद्धांत भी कहा जाता है। इसके लिए (स्क्वार्ज 2000) को देख सकते हैं।
श्वार्ज-प्रारूप टीक्यूएफटी
श्वार्ज-प्रारूप टीक्यूएफटी में इस प्रणाली के सहसंबंध फलन (क्वांटम क्षेत्रीय सिद्धांत) या विभाजन फलन (क्वांटम क्षेत्रीय सिद्धांत) की गणना मीट्रिक-स्वतंत्र क्रिया फलनों के पथ अभिन्न द्वारा की जाती है। उदाहरण के लिए, बीएफ प्रारूप में, स्पेसटाइम द्वि-आयामी कई गुना M का मान देता है, इन वेधशालाओं का निर्माण दो प्रारूपों में एफ के साथ सहायक स्केलर बी और उनके डेरिवेटिव से किया जाता है। इस क्रिया को अभिन्न पथ निर्धारित करती है जिसे इस प्रकार प्रदर्शित करते हैं-
स्पेसटाइम मेट्रिक सिद्धांत में कहीं भी प्रकट नहीं होता है, इसलिए सिद्धांत स्पष्ट रूप से सामयिक रूप से अपरिवर्तनीय है। पहला उदाहरण 1977 में सामने आया और इसका श्रेय अल्बर्ट श्वार्ज|ए को जाता है। श्वार्ज, इसकी क्रिया इस प्रकार कार्यात्मक होती है:
इसका एक प्रमुख प्रसिद्ध उदाहरण चेर्न सीमन्स सिद्धांत है, जिसे गेज के आक्रमणकारियों पर लागू किया जाता है। सामान्यतः विभाजन कार्य मीट्रिक पर निर्भर करते हैं किन्तु उपरोक्त उदाहरण मीट्रिक-स्वतंत्र हैं।
विटेन प्रारूप टीक्यूएफटी
विटेन प्रारूप टीक्यूएफटी का पहला उदाहरण 1988 में विटन के पेपर में दिखाई दिया था, इस प्रकार (विटेन & 1988ए) अर्थात सामयिक यांग मिल्स सिद्धांत चार आयामों में। चूंकि इसके एक्शन कार्यात्मक में स्पेसटाइम मेट्रिक Gαβ सम्मिलित है, इस कारण सामयिक स्ट्रिंग सिद्धांत के पश्चात सामयिक ट्विस्ट यह मेट्रिक इंडिपेंडेंट का निष्काशन किया जाता हैं। इस प्रकार तनाव ऊर्जा तनाव टी की स्वतंत्रता मेट्रिक से प्रणाली का αβ इस बात पर निर्भर करता है कि क्या बीआरएसटी परिमाणीकरण या बीआरएसटी संचालक बंद रहता है। विटेन के उदाहरण के पश्चात सामयिक स्ट्रिंग सिद्धांत में कई अन्य उदाहरण मिल सकते हैं।
विट्टन-प्रारूप टीक्यूएफटी उत्पन्न होते हैं यदि निम्नलिखित शर्तें पूर्ण होती हैं: इस प्रकार इसमें ये बिन्दु सम्मिलित होते हैं-
- कार्य टीक्यूएफटी में समरूपता रहती है, अर्थात यदि समरूपता परिवर्तन को दर्शाता है (उदाहरण के लिए एक असत्य व्युत्पन्न) तब रखती है।
- समरूपता परिवर्तन त्रुटिहीन क्रम अर्थात में उपलब्ध रहता है,
- उपस्थित वेधशालाएँ हैं, जो सभी के लिए संतुष्ट करता है।
- तनाव-ऊर्जा-तनाव (या समान भौतिक मात्रा) का रूप का है, इस प्रकार तनाव के लिए मान प्राप्त होता हैं।
उदहारण के लिए (लिंकर 2015): 2-फ़ॉर्म क्षेत्रीय दिया गया है, इस प्रकार अंतर संचालक के साथ जो समीकरण को संतुष्ट करता है, इस क्रिया में समरूपता है, यदि , इस प्रकार
- .
इसके अतिरिक्त, निम्नलिखित धारण करता है ( निर्धारित शर्तों के अनुसार पर का मान स्वतंत्र रहता है और कार्यात्मक व्युत्पन्न के समान कार्य करता है):
- .
इस कारण के लिए आनुपातिक है, जहाँ दूसरे प्रारूप में 2-फॉर्म के साथ के मान को प्रदर्शित करता हैं।
अब वेधशालाओं का कोई भी औसत इसी हार उपाय के लिए ज्यामितीय क्षेत्र पर स्वतंत्र हैं और इसलिए यह सामयिक अवस्था में रहता हैं:
- .
तीसरी समानता इस तथ्य का उपयोग करती है कि और समरूपता परिवर्तनों के अनुसार इसकी माप का आविष्कार इसलिए किया गया था। तब से का मान केवल एक संख्या को प्रदर्शित करता है, इसका लाई डेरिवेटिव विलुप्त हो जाता है।
गणितीय सूत्र
मूल अतियाः सहगल अभिगृहीत
माइकल अतियाह ने सामयिक क्वांटम क्षेत्र सिद्धांत के लिए स्वयंसिद्धों के समूह का सुझाव दिया गया था, जो ग्रीम सहगल के अनुरूप क्षेत्र सिद्धांत के लिए प्रस्तावित स्वयंसिद्धों से प्रेरित था (इसके पश्चात सेगल के विचार को संक्षेप में प्रस्तुत किया गया था) सेगल (2001)), और सुपरसिमेट्री के विटन का ज्यामितीय अर्थ विटेन (1982) द्वारा अतियाह के स्वयंसिद्धों का निर्माण एक भिन्न (सामयिक या निरंतर) परिवर्तन के साथ सीमा को जोड़कर किया जाता है, जबकि सेगल के स्वयंसिद्ध अनुरूप परिवर्तनों के लिए हैं। श्वार्ज-प्रारूप क्यूएफटी के गणितीय उपचार के लिए ये स्वयंसिद्ध अपेक्षाकृत उपयोगी रहे हैं, चूंकि यह स्पष्ट नहीं है कि वे विटेन प्रारूप क्यूएफटी की पूरी संरचना पर अधिकार प्राप्त कर लिया हैं। मूल विचार यह है कि एक टीक्यूएफटी एक निश्चित श्रेणी (गणित) से लेकर सदिश रिक्त स्थान की श्रेणी तक है।
वास्तव में स्वयंसिद्धों के दो अलग-अलग समूह हैं जिन्हें उचित रूप से अतियाह स्वयंसिद्ध कहा जा सकता है। ये स्वयंसिद्ध मूल रूप से भिन्न होते हैं कि वे एक निश्चित n-आयामी रीमैनियन / लोरेंट्ज़ियन स्पेसटाइम M पर परिभाषित टीक्यूएफटी पर लागू होते हैं या नहीं या सभी n-आयामी स्पेसटाइम पर परिभाषित टीक्यूएफटी के लिए उपलब्ध रहते हैं।
चलो Λ 1 के साथ एक क्रमविनिमेय अंगूठी हो (लगभग सभी वास्तविक दुनिया के उद्देश्यों के लिए हमारे पास Λ = 'Z', 'R' या 'C' होगा)। इस प्रकार अतियाह ने मूल रूप से ग्राउंड रिंग Λ पर परिभाषित आयाम d में एक सामयिक क्वांटम क्षेत्रीय सिद्धांत (टीक्यूएफटी) के स्वयंसिद्धों को निम्नलिखित के रूप में प्रस्तावित किया:
- इस कारण सघनता से उत्पन्न Λ-मॉड्यूल Z (Σ) प्रत्येक उन्मुख बंद समतल d-आयामी मैनिफोल्ड Σ (होमोटॉपी स्वयंसिद्ध के अनुरूप) से संयोजित रहता है,
- किसी तत्व Z (M) ∈ Z (M) प्रत्येक उन्मुख समतल (d + 1) -आयामी कई गुना (सीमा के साथ) M (एक योजक सिद्धांत के अनुरूप) से संयोजित रहता है।
ये डेटा निम्नलिखित स्वयंसिद्धों के अधीन हैं (4 और 5 अतियाह द्वारा जोड़े गए थे):
- Z Σ और M के भिन्नता को संरक्षित करने वाले अभिविन्यास के संबंध में कार्यात्मक है,
- Z अनैच्छिक है, अर्थात Z(Σ*) = Z(Σ)* जहां Σ* Σ विपरीत अभिविन्यास के साथ है और Z(Σ)* दोहरे मॉड्यूल को दर्शाता है,
- Z गुणक है।
- Z () = Λ d-आयामी रिक्त कई गुना और Z के लिए () = 1 (d + 1) -आयामी रिक्त कई गुना हो जाता हैं।
- Z (M *) = Z(M) (सेस्क्विलिनियर रूप स्वयंसिद्ध) के अनुसार यदि जिससे कि Z(M) को हर्मिटियन सदिश रिक्त स्थान के बीच एक रैखिक परिवर्तन के रूप में देखा जा सके, तो यह Z(M*) के समान है जो Z(M) का हर्मिटियन आसन्न है।
इस कारण एक टिप्पणी के अनुसार यदि किसी बंद मैनिफोल्ड M के लिए हम Z (M) को एक संख्यात्मक अपरिवर्तनीय के रूप में देखते हैं, तो इस सीमा के साथ कई गुना मान प्राप्त करने के लिए हमें Z (M) ∈ Z (∂ M) को समीपस्थ अपरिवर्तनीयता के रूप में सोचना पड़ता हैं। इस प्रकार f : Σ → Σ अभिविन्यास-संरक्षण भिन्नता को प्रदर्शित करता है, और f द्वारा Σ × I के विपरीत सिरों की पहचान की जाती हैं। यह कई गुना Σf देता है और हमारे सिद्धांतों का अर्थ है
जहां Σ(f) Z(Σ) का प्रेरित ऑटोमोर्फिज्म है।
'टिप्पणी' के अनुसार सीमा Σ के साथ कई गुना M के लिए हम हमेशा दोहरा बना सकते हैं जो एक बंद मैनिफोल्ड है। इसका पांचवां मान स्वयंसिद्धता को दर्शाता है। इस प्रकार-
जहां दाईं ओर हम हर्मिटियन (संभवतः अनिश्चितकालीन) मीट्रिक में मानदंड की गणना करते हैं।
भौतिकी से संबंध
भौतिक रूप से (2) + (4) आपेक्षिकीय आक्रमण से संबंधित हैं जबकि (3) + (5) सिद्धांत की क्वांटम प्रकृति के सूचक हैं।
Σ भौतिक स्थान को इंगित करने के लिए है (सामान्यतः, मानक भौतिकी के लिए d = 3) और Σ × I में अतिरिक्त आयाम काल्पनिक समय है। इस कारण स्थान Z(Σ) क्वांटम सिद्धांत का हिल्बर्ट अंतरिक्ष है और हैमिल्टनियन (क्वांटम यांत्रिकी) H के साथ एक भौतिक सिद्धांत किसी समय विकास संचालिका eitH होगा या एक काल्पनिक टाइम संचालक e−tH रहता है। इस प्रकार सामयिक क्यूएफटी की मुख्य विशेषता यह है कि H = 0, जिसका तात्पर्य है कि सिलेंडर Σ × I के साथ कोई वास्तविक गतिशीलता या प्रसार नहीं है। चूंकि, Σ0 से गैर-तुच्छ प्रसार (या टनलिंग एम्पलीट्यूड) हो सकता है। S1 के लिए एक मध्यवर्ती कई गुना M के साथ , यह M की टोपोलॉजी को दर्शाता है।
यदि ∂M = Σ, तो हिल्बर्ट अंतरिक्ष Z(Σ) में विशिष्ट सदिश Z(M) को M द्वारा परिभाषित निर्वात स्थिति के रूप में माना जाता है। एक बंद कई गुना M के लिए संख्या Z(M) निर्वात अपेक्षा मान है। सांख्यिकीय यांत्रिकी के अनुरूप इसे विभाजन कार्य (क्वांटम क्षेत्र सिद्धांत) भी कहा जाता है।
क्यूएफटी के लिए फेनमैन पथ अभिन्न दृष्टिकोण में शून्य हैमिल्टनियन के साथ एक सिद्धांत को समझदारी से तैयार किया जा सकता है। इसमें सापेक्षवादी आक्रमण सम्मिलित है (जो सामान्य (d + 1) -आयामी स्पेसटाइम पर लागू होता है) और सिद्धांत औपचारिक रूप से उपयुक्त लैग्रैंगियन (क्षेत्र सिद्धांत) द्वारा परिभाषित किया गया है - सिद्धांत के मौलिक क्षेत्रों का कार्यात्मक हैं। इस कारण लैग्रैंगियन मान के लिए जिसमें समय में केवल पहला डेरिवेटिव सम्मिलित होता है, औपचारिक रूप से एक शून्य हैमिल्टन की ओर जाता है, किन्तु लैग्रैंगियन में गैर-तुच्छ विशेषताएं हो सकती हैं जो M की टोपोलॉजी से संबंधित हैं।
अतियाह के उदाहरण
1988 में, M. अतियाह ने एक पेपर प्रकाशित किया जिसमें उन्होंने सामयिक क्वांटम क्षेत्रीय सिद्धांत के कई नए उदाहरणों का वर्णन किया था, जिन्हें उस समय माना जाता था। (एटियाह 1988a)(एटियाह 1988b) के अनुसार इसमें कुछ नए विचारों के साथ कुछ नए सामयिक इनवेरिएंट सम्मिलित किए गए हैं: कैसन अपरिवर्तनीय , डोनाल्डसन अपरिवर्तनीय , जियोमेट्रिक समूह सिद्धांत या ग्रोमोव का सिद्धांत, फ्लोर होमोलॉजी और जोन्स बहुपद या जोन्स-विटन सिद्धांत सम्मिलित हैं।
d = 0
इस स्थिति में Σ में परिमित रूप से अनेक बिंदु होते हैं। एक बिंदु से हम एक सदिश स्थान V = Z (बिंदु) और n-बिंदुओं को n-गुना टेन्सर उत्पाद से जोड़ते हैं: V⊗n = V ⊗ … ⊗ V. सममित समूह SnV⊗n पर कार्य करता है। क्वांटम हिल्बर्ट स्पेस प्राप्त करने का एक मानक विधि मौलिक सिंपलेक्टिक मैनिफोल्ड (या चरण स्थान ) से प्रारंभ करना है और फिर इसे परिमाणित करना है। आइए हम Sn का विस्तार करें, जहाँ एक कॉम्पैक्ट लाई समूह G के लिए और पूर्णांक कक्षाओं पर विचार करें जिसके लिए सहानुभूतिपूर्ण संरचना लाइन बंडल से आती है, फिर परिमाणीकरण जी के अप्रासंगिक प्रतिनिधित्व वी की ओर जाता है। यह बोरेल-वील प्रमेय या बोरेल-वील-बॉट की प्रमेय इसकी भौतिक व्याख्या है। इन सिद्धांतों का लैग्रैंगियन मौलिक क्रिया (लाइन बंडल की पवित्रता) है। इस प्रकार सामयिक क्यूएफटी d = 0 के साथ स्वाभाविक रूप से असत्य समूहों और समरूपता समूह के मौलिक प्रतिनिधित्व सिद्धांत से संबंधित है।
d = 1
हमें कॉम्पैक्ट सिम्प्लेक्टिक मैनिफोल्ड एक्स में बंद लूप द्वारा दी गई आवधिक सीमा स्थितियों पर विचार करना चाहिए। इसके साथ में विटेन (1982) d = 0 के स्थितियोंमें लैग्रेंजियन के रूप में उपयोग किए जाने वाले होलोनॉमी ऐसे लूप का उपयोग हैमिल्टनियन को संशोधित करने के लिए किया जाता है। इस प्रकार बंद सतह M के लिए सिद्धांत का अपरिवर्तनीय Z (M) ग्रोमोव के अर्थ में स्यूडोहोलोमॉर्फिक वक्र एफ: M → एक्स की संख्या है (वे सामान्य होलोमॉर्फिक नक्शा हैं यदि एक्स एक काहलर मैनिफोल्ड है)। यदि यह संख्या अपरिमित हो जाती है, अर्थात यदि मॉडुलि हैं, तो हमें M पर और डेटा निश्चित करना होगा। यह कुछ बिंदुओं Pi को चुनकर किया जा सकता है। इस प्रकार होलोमॉर्फिक मानचित्र f : M → X को f(Pi) एक निश्चित हाइपरप्लेन पर लेटने के लिए विवश कर सकता हैं। विटेन (1988b) ने इस सिद्धांत के लिए प्रासंगिक लैग्रैंगियन को लिखा है। फ़्लोर ने विटन के मोर्स सिद्धांत के विचारों के आधार पर एक कठोर उपचार दिया है, अर्थात फ़्लोर होमोलॉजी, स्थितियोंके लिए जब सीमा की स्थिति आवधिक होने के अतिरिक्त अंतराल पर होती है, तो पथ प्रारंभिक और अंत-बिंदु दो निश्चित लैग्रैंगियन सबमनीफोल्ड पर स्थित होते हैं। इस सिद्धांत को ग्रोमोव-विटन अपरिवर्तनीय सिद्धांत के रूप में विकसित किया गया है।
एक अन्य उदाहरण होलोमॉर्फिक फलन कॉनफॉर्मल क्षेत्रीय सिद्धांत है। हो सकता है कि उस समय इसे सख्ती से सामयिक क्वांटम क्षेत्रीय सिद्धांत नहीं माना गया हो क्योंकि हिल्बर्ट रिक्त स्थान अनंत आयामी हैं। अनुरूप क्षेत्र सिद्धांत भी कॉम्पैक्ट लाई समूह जी से संबंधित हैं जिसमें मौलिक चरण में लूप समूह (एलजी) का एक केंद्रीय विस्तार होता है। इनका मात्राकरण एलजी के इरेड्यूसिबल (प्रक्षेपी) अभ्यावेदन के सिद्धांत के हिल्बर्ट रिक्त स्थान का उत्पादन करता है। समूह Dif+(S1) अब सममित समूह का स्थान लेता है और महत्वपूर्ण भूमिका निभाता है। इसके परिणाम स्वरुप ऐसे सिद्धांतों में विभाजन कार्य जटिल कई गुना पर निर्भर करता है, इस प्रकार यह विशुद्ध रूप से सामयिक नहीं है।
d = 2
इस स्थितियोंमें जोन्स-विटन सिद्धांत सबसे महत्वपूर्ण सिद्धांत है। यहाँ मौलिक चरण स्थान, एक बंद सतह के साथ जुड़ा हुआ है, Σ के ऊपर एक समतल जी-बंडल का मोडुली स्थान है। लैग्रैंगियन चेर्न-सीमन्स सिद्धांत का एक पूर्णांक गुणक है | चेर्न-सिमन्स एक 3-मैनिफ़ोल्ड (जिसे फ़्रेम किया जाना है) पर जी-कनेक्शन का कार्य करता है। पूर्णांक एकाधिक k, जिसे स्तर कहा जाता है, सिद्धांत का एक पैरामीटर है और k → ∞ मौलिक सीमा देता है। सापेक्ष सिद्धांत उत्पन्न करने के लिए इस सिद्धांत को स्वाभाविक रूप से d = 0 सिद्धांत के साथ जोड़ा जा सकता है। विटन द्वारा विवरण का वर्णन किया गया है जो दिखाता है कि 3-गोले में एक (फ़्रेमयुक्त) लिंक के लिए विभाजन फलन एकता की उपयुक्त जड़ के लिए जोन्स बहुपद का मान है। इस सिद्धांत को संबंधित साइक्लोटोमिक क्षेत्र पर परिभाषित किया जा सकता है, देखें Atiyah (1988). सीमा के साथ एक रीमैन सतह पर विचार करके, हम इसे d = 2 सिद्धांत को d = 0 से जोड़ने के अतिरिक्त d = 1 अनुरूप सिद्धांत से जोड़ सकते हैं। यह जोन्स-विटन सिद्धांत में विकसित हुआ है और गेज के बीच गहरे संबंधों की खोज का कारण बना है। यह सिद्धांत क्वांटम क्षेत्र का सिद्धांत हैं।
d = 3
डोनाल्डसन ने एसयू(2)-इंस्टेंटन के मॉडुलि स्पेस का उपयोग करके समतल 4-मैनिफोल्ड्स के पूर्णांक इनवेरिएंट को परिभाषित किया है। ये अपरिवर्तनीय दूसरे होमोलॉजी पर बहुपद हैं। इस प्रकार 4-कई गुना में H के सममित बीजगणित से युक्त अतिरिक्त डेटा होना चाहिए2. Witten (1988a) ने एक सुपर-सिमेट्रिक लैग्रैंगियन का निर्माण किया है जो औपचारिक रूप से डोनाल्डसन सिद्धांत को पुन: प्रस्तुत करता है। विटन के सूत्र को गॉस-बोनट प्रमेय के अनंत-आयामी एनालॉग के रूप में समझा जा सकता है। बाद की तारीख में, इस सिद्धांत को और विकसित किया गया और सीबर्ग-विटन सिद्धांत बन गया। सीबर्ग-विटन गेज सिद्धांत जो एन = 2, d = 4 गेज सिद्धांत में एसयू (2) से यू (1) को कम करता है। सिद्धांत का हैमिल्टनियन संस्करण एंड्रियास फ्लोर द्वारा 3-कई गुना पर कनेक्शन के स्थान के संदर्भ में विकसित किया गया है। फ्लोरर चेर्न-सीमन्स सिद्धांत का उपयोग करता है। विवरण के लिए देखें Atiyah (1988). Witten (1988a) ने यह भी दिखाया है कि कोई कैसे d = 3 और d = 1 सिद्धांतों को एक साथ जोड़ सकता है: यह जोन्स-विटन सिद्धांत में d = 2 और d = 0 के बीच युग्मन के समान है।
अब, सामयिक क्षेत्रीय सिद्धांत को एक निश्चित आयाम पर नहीं बल्कि एक ही समय में सभी आयामों पर एक फ़ैक्टर के रूप में देखा जाता है।
=== एक निश्चित स्पेसटाइम === का मामला चलो बोर्डMवह श्रेणी हो जिसके आकारिकी M के एन-आयामी सबमनीफोल्ड हैं और जिनकी वस्तुएं ऐसे सबमेनिफोल्ड की सीमाओं के अंतरिक्ष घटकों से जुड़ी हैं। दो morphisms को समतुल्य मानते हैं यदि वे M के सबमनिफोल्ड्स के माध्यम से होमोटोपी हैं, और इसलिए भागफल श्रेणी hBord बनाते हैंM: hBord में वस्तुएँMबोर्ड की वस्तुएं हैंM, और hBord के morphismsMबोर्ड में आकारिकी के होमोटोपी तुल्यता वर्ग हैंM. M पर एक टीक्यूएफटी एचबोर्ड से एक सममित monoidal functor हैMवेक्टर रिक्त स्थान की श्रेणी के लिए।
ध्यान दें कि सह-बोर्डवाद, यदि उनकी सीमाएं मेल खाती हैं, तो एक साथ सिल कर एक नया बोर्डवाद बना सकते हैं। यह कोबोर्डिज्म श्रेणी में आकारिकी के लिए रचना नियम है। चूंकि संरचना को संरक्षित करने के लिए फ़ैक्टरों की आवश्यकता होती है, यह कहता है कि एक साथ सिले हुए मोर्फिज्म के अनुरूप रैखिक मानचित्र प्रत्येक टुकड़े के लिए रैखिक मानचित्र की संरचना है।
2-आयामी सामयिक क्वांटम क्षेत्रीय सिद्धांतों की श्रेणी और कम्यूटेटिव फ्रोबेनियस बीजगणित की श्रेणी के बीच श्रेणियों की समानता है।
सभी एन-डायमेंशनल स्पेसटाइम एक साथ
सभी स्पेसटाइम पर एक साथ विचार करने के लिए, hBord को बदलना आवश्यक हैMएक बड़ी श्रेणी द्वारा। तो चलो बोर्डnबोर्डिज्म की श्रेणी हो, अर्थात वह श्रेणी जिसका रूपवाद सीमा के साथ एन-डायमेंशनल मैनिफोल्ड हो, और जिसकी वस्तुएं एन-डायमेंशनल मैनिफोल्ड की सीमाओं से जुड़े घटक हों। (ध्यान दें कि कोई भी (n−1)-विमीय कई गुना बोर्ड में एक वस्तु के रूप में प्रकट हो सकता हैn।) ऊपर के रूप में, बोर्ड में दो रूपों पर विचार करेंnसमतुल्य के रूप में यदि वे समरूप हैं, और भागफल श्रेणी hBord बनाते हैंn. किनाराnऑपरेशन के अनुसार एक मोनोइडल श्रेणी है जो दो बोर्डिज्म को उनके अलग संघ से बने बोर्डिज्म में मैप करती है। एन-डायमेंशनल मैनिफोल्ड्स पर एक टीक्यूएफटी तब hBord का एक फ़ंक्टर हैnवेक्टर रिक्त स्थान की श्रेणी के लिए, जो बोर्डिज्म के संघों को उनके टेन्सर उत्पाद से अलग करता है।
उदाहरण के लिए, (1 + 1)-आयामी बोर्डिज्म (1-आयामी कई गुना के बीच 2-आयामी बोर्डिज्म) के लिए, पैंट की एक जोड़ी (गणित) से जुड़ा नक्शा एक उत्पाद या प्रतिउत्पाद देता है, यह इस बात पर निर्भर करता है कि सीमा घटकों को कैसे समूहीकृत किया जाता है - जो क्रमविनिमेय या सहसम्बन्धी है, जबकि एक डिस्क से जुड़ा मानचित्र सीमा घटकों के समूहीकरण के आधार पर एक काउनिट (ट्रेस) या इकाई (स्केलर) देता है, और इस प्रकार (1+1)-आयाम टीक्यूएफटी फ्रोबेनियस बीजगणित के अनुरूप हैं।
इसके अतिरिक्त, हम एक साथ 4-आयामी, 3-आयामी और 2-आयामी कई गुनाओं पर विचार कर सकते हैं, जो ऊपर दिए गए सीमाओं से संबंधित हैं, और उनसे हम पर्याप्त और महत्वपूर्ण उदाहरण प्राप्त कर सकते हैं।
बाद के समय में विकास
सामयिक क्वांटम क्षेत्रीय सिद्धांत के विकास को देखते हुए, हमें साइबर्ग-विटन सिद्धांत के लिए इसके कई अनुप्रयोगों पर विचार करना चाहिए। साइबर्ग-विटन गेज सिद्धांत, सामयिक स्ट्रिंग सिद्धांत, नॉट सिद्धांत और क्वांटम क्षेत्रीय सिद्धांत के बीच संबंध, और क्वांटम गेज अपरिवर्तनीय इसके अतिरिक्त, इसने गणित और भौतिकी दोनों में बहुत रुचि के विषय उत्पन्न किए हैं। टीक्यूएफटी में गैर-स्थानीय ऑपरेटरों की हालिया दिलचस्पी भी महत्वपूर्ण है (Gukov & Kapustin (2013)). यदि स्ट्रिंग सिद्धांत को मौलिक के रूप में देखा जाता है, तो गैर-स्थानीय टीक्यूएफटी को गैर-भौतिक प्रारूप के रूप में देखा जा सकता है जो स्थानीय स्ट्रिंग सिद्धांत को कम्प्यूटेशनल रूप से कुशल सन्निकटन प्रदान करते हैं।
विटेन प्रारूप टीक्यूएफटी और डायनेमिक प्रणाली
स्टोचैस्टिक (आंशिक) डिफरेंशियल इक्वेशन (एसडीई) क्वांटम अध: पतन और सुसंगतता के पैमाने से ऊपर प्रकृति में हर चीज के प्रारूप के लिए आधार हैं और अनिवार्य रूप से विटेन-प्रारूप टीक्यूएफटी हैं। सभी एसडीई में सामयिक या बीआरएसटी सुपरसिमेट्री होती है, , और स्टोचैस्टिक डायनेमिक्स के संचालक प्रतिनिधित्व में बाहरी व्युत्पन्न है, जो स्टोकेस्टिक इवोल्यूशन संचालक के साथ कम्यूटेटिव है। यह सुपरसममेट्री निरंतर प्रवाह द्वारा फेज स्पेस की निरंतरता को निरंतर रखती है, और एक वैश्विक गैर-सुपरसिमेट्रिक ग्राउंड स्टेट द्वारा सुपरसिमेट्रिक स्पॉन्टेनियस ब्रेकडाउन की घटना अराजकता सिद्धांत, अशांति, गुलाबी शोर के रूप में ऐसी अच्छी तरह से स्थापित भौतिक अवधारणाओं को सम्मिलित करती है। 1/f और कर्कश शोर शोर , स्व-संगठित आलोचना आदि। किसी भी SDE के लिए सिद्धांत के सामयिक क्षेत्र को विटेन प्रारूप टीक्यूएफटी के रूप में पहचाना जा सकता है।
यह भी देखें
- क्वांटम टोपोलॉजी
- टोपोलॉजिकल दोष
- भौतिकी में टोपोलॉजिकल एन्ट्रॉपी
- सांस्थितिक क्रम
- टोपोलॉजिकल क्वांटम संख्या
- सामयिक क्वांटम संख्या
- टोपोलॉजिकल स्ट्रिंग थ्योरी
- अंकगणितीय टोपोलॉजी
- कोबोर्डिज्म परिकल्पना
संदर्भ
- Atiyah, Michael (1988a). "New invariants of three and four dimensional manifolds". The Mathematical Heritage of Hermann Weyl. Proceedings of Symposia in Pure Mathematics. Vol. 48. American Mathematical Society. pp. 285–299. doi:10.1090/pspum/048/974342. ISBN 9780821814826.
- Atiyah, Michael (1988b). "Topological quantum field theories" (PDF). Publications Mathématiques de l'IHÉS. 68 (68): 175–186. doi:10.1007/BF02698547. MR 1001453. S2CID 121647908.
- Gukov, Sergei; Kapustin, Anton (2013). "Topological Quantum Field Theory, Nonlocal Operators, and Gapped Phases of Gauge Theories". arXiv:1307.4793 [hep-th].
- Linker, Patrick (2015). "Topological Dipole Field Theory". The Winnower. 2: e144311.19292. doi:10.15200/winn.144311.19292.
- Lurie, Jacob (2009). "On the Classification of Topological Field Theories". arXiv:0905.0465 [math.CT].
- Schwarz, Albert (2000). "Topological quantum field theories". arXiv:hep-th/0011260.
- Segal, Graeme (2001). "Topological structures in string theory". Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. 359 (1784): 1389–1398. Bibcode:2001RSPTA.359.1389S. doi:10.1098/rsta.2001.0841. S2CID 120834154.
- Witten, Edward (1982). "Super-symmetry and Morse Theory". Journal of Differential Geometry. 17 (4): 661–692. doi:10.4310/jdg/1214437492.
- Witten, Edward (1988a). "Topological quantum field theory". Communications in Mathematical Physics. 117 (3): 353–386. Bibcode:1988CMaPh.117..353W. doi:10.1007/BF01223371. MR 0953828. S2CID 43230714.
- Witten, Edward (1988b). "Topological sigma models". Communications in Mathematical Physics. 118 (3): 411–449. Bibcode:1988CMaPh.118..411W. doi:10.1007/bf01466725. S2CID 34042140.