(Created page with "File:Complex color plot of the Laguerre polynomial L n(x) with n as -1 divided by 9 and x as z to the power of 4 from -2-2i to 2+2i.svg|alt=Complex color plot of the Laguerr...")
फिर उन्हें सामान्यीकृत लैगुएरे बहुपद भी नाम दिया गया है, जैसा कि यहां किया जाएगा (वैकल्पिक रूप से जुड़े लैगुएरे बहुपद या, शायद ही कभी, सोनिन बहुपद, उनके आविष्कारक के बाद<ref>{{cite journal|title=Recherches sur les fonctions cylindriques et le développement des fonctions continues en séries|author=N. Sonine|journal=[[Math. Ann.]]|date=1880|volume=16| issue=1|pages=1–80|doi=10.1007/BF01459227|s2cid=121602983|url=http://www.digizeitschriften.de/dms/img/?PPN=PPN235181684_0016&DMDID=dmdlog8}}</ref> [[निकोलाई याकोवलेविच सोनिन]])।
फिर उन्हें सामान्यीकृत लैगुएरे बहुपद भी नाम दिया गया है, जैसा कि यहां किया जाएगा (वैकल्पिक रूप से जुड़े लैगुएरे बहुपद या, शायद ही कभी, सोनिन बहुपद, उनके आविष्कारक के बाद<ref>{{cite journal|title=Recherches sur les fonctions cylindriques et le développement des fonctions continues en séries|author=N. Sonine|journal=[[Math. Ann.]]|date=1880|volume=16| issue=1|pages=1–80|doi=10.1007/BF01459227|s2cid=121602983|url=http://www.digizeitschriften.de/dms/img/?PPN=PPN235181684_0016&DMDID=dmdlog8}}</ref> [[निकोलाई याकोवलेविच सोनिन]])।
अधिक आम तौर पर, लैगुएरे फ़ंक्शन एक समाधान होता है जब {{mvar|n}} आवश्यक रूप से एक गैर-ऋणात्मक पूर्णांक नहीं है।
अधिक सामान्यतः, लैगुएरे फ़ंक्शन एक समाधान होता है जब {{mvar|n}} आवश्यक रूप से एक गैर-ऋणात्मक पूर्णांक नहीं है।
लैगुएरे बहुपदों का उपयोग गॉसियन चतुर्भुज के रूप में संख्यात्मक रूप से पूर्णांकों की गणना करने के लिए किया जाता है
लैगुएरे बहुपदों का उपयोग गॉसियन चतुर्भुज के रूप में संख्यात्मक रूप से पूर्णांकों की गणना करने के लिए किया जाता है
ये बहुपद, आमतौर पर निरूपित होते हैं {{math|''L''<sub>0</sub>}}, {{math|''L''<sub>1</sub>}}, …, एक [[बहुपद अनुक्रम]] है जिसे रोड्रिग्स सूत्र#रॉड्रिक्स सूत्र द्वारा परिभाषित किया जा सकता है,
ये बहुपद, सामान्यतः निरूपित होते हैं {{math|''L''<sub>0</sub>}}, {{math|''L''<sub>1</sub>}}, …, एक [[बहुपद अनुक्रम]] है जिसे रोड्रिग्स सूत्र#रॉड्रिक्स सूत्र द्वारा परिभाषित किया जा सकता है,
* अगर {{math|''α''}} गैर-ऋणात्मक है, तो L<sub>''n''</sub><sup>(α)</sup> में n [[वास्तविक संख्या]] है, एक फ़ंक्शन का सख्ती से सकारात्मक रूट (ध्यान दें कि <math>\left((-1)^{n-i} L_{n-i}^{(\alpha)}\right)_{i=0}^n</math> एक स्टर्म श्रृंखला है), जो सभी [[अंतराल (गणित)]] में हैं <math>\left( 0, n+\alpha+ (n-1) \sqrt{n+\alpha} \, \right].</math>{{citation needed|date=September 2011}}
* यदि {{math|''α''}} गैर-ऋणात्मक है, तो L<sub>''n''</sub><sup>(α)</sup> में n [[वास्तविक संख्या]] है, एक फ़ंक्शन का सख्ती से सकारात्मक रूट (ध्यान दें कि <math>\left((-1)^{n-i} L_{n-i}^{(\alpha)}\right)_{i=0}^n</math> एक स्टर्म श्रृंखला है), जो सभी [[अंतराल (गणित)]] में हैं <math>\left( 0, n+\alpha+ (n-1) \sqrt{n+\alpha} \, \right].</math>{{citation needed|date=September 2011}}
* बड़े के लिए बहुपदों का स्पर्शोन्मुख व्यवहार {{mvar|n}}, लेकिन तय है {{mvar|α}} और {{math|''x'' > 0}}, द्वारा दिया गया है<ref>Szegő, p. 198.</ref><ref>D. Borwein, J. M. Borwein, R. E. Crandall, "Effective Laguerre asymptotics", ''SIAM J. Numer. Anal.'', vol. 46 (2008), no. 6, pp. 3285–3312 {{doi|10.1137/07068031X}}</ref> <math display="block">
* बड़े के लिए बहुपदों का स्पर्शोन्मुख व्यवहार {{mvar|n}}, लेकिन तय है {{mvar|α}} और {{math|''x'' > 0}}, द्वारा दिया गया है<ref>Szegő, p. 198.</ref><ref>D. Borwein, J. M. Borwein, R. E. Crandall, "Effective Laguerre asymptotics", ''SIAM J. Numer. Anal.'', vol. 46 (2008), no. 6, pp. 3285–3312 {{doi|10.1137/07068031X}}</ref> <math display="block">
\begin{align}
\begin{align}
Line 182:
Line 182:
0 & \text{otherwise.}
0 & \text{otherwise.}
\end{cases}</math>
\end{cases}</math>
यह एक विशेष मामले की ओर इशारा करता है ({{math|1=''α'' = 0}}) उपरोक्त सूत्र का: पूर्णांक के लिए {{math|1=''α'' = ''k''}} सामान्यीकृत बहुपद लिखा जा सकता है
यह एक विशेष स्थितियोंकी ओर इशारा करता है ({{math|1=''α'' = 0}}) उपरोक्त सूत्र का: पूर्णांक के लिए {{math|1=''α'' = ''k''}} सामान्यीकृत बहुपद लिखा जा सकता है
भौतिक विज्ञान के साहित्य में एक और परिपाटी का प्रयोग किया जाता है, हालांकि इसकी आवृत्ति कम होती है। इस परिपाटी के तहत लैगुएरे बहुपदों को दिया जाता है <ref>{{cite book |last1=Schiff |first1=Leonard I. |title=क्वांटम यांत्रिकी|date=1968 |publisher=McGraw-Hill |location=New York |isbn=0070856435 |edition=3d}}</ref><ref>{{cite book |last1=Messiah |first1=Albert |title=क्वांटम यांत्रिकी।|date=2014 |publisher=Dover Publications |isbn=9780486784557}}</ref><ref>{{cite book |last1=Boas |first1=Mary L. |title=भौतिक विज्ञान में गणितीय तरीके|date=2006 |publisher=Wiley |location=Hoboken, NJ |isbn=9780471198260 |edition=3rd}}</ref>
भौतिक विज्ञान के साहित्य में एक और परिपाटी का प्रयोग किया जाता है, चूंकि इसकी आवृत्ति कम होती है। इस परिपाटी के अनुसार लैगुएरे बहुपदों को दिया जाता है <ref>{{cite book |last1=Schiff |first1=Leonard I. |title=क्वांटम यांत्रिकी|date=1968 |publisher=McGraw-Hill |location=New York |isbn=0070856435 |edition=3d}}</ref><ref>{{cite book |last1=Messiah |first1=Albert |title=क्वांटम यांत्रिकी।|date=2014 |publisher=Dover Publications |isbn=9780486784557}}</ref><ref>{{cite book |last1=Boas |first1=Mary L. |title=भौतिक विज्ञान में गणितीय तरीके|date=2006 |publisher=Wiley |location=Hoboken, NJ |isbn=9780471198260 |edition=3rd}}</ref>
लैगुएरे बहुपद L n(x) के जटिल रंग प्लॉट को -1 के रूप में विभाजित किया गया 9 और x के रूप में z से 4 की घात -2-2i से 2+2i तक
गणित में, एडमंड लागुएरे (1834-1886) के नाम पर लैगुएरे बहुपद, लैगुएरे के अंतर समीकरण के समाधान हैं:
जो एक द्वितीय कोटि का रेखीय अवकल समीकरण है। इस समीकरण का केवल एकवचन समाधान है यदि n एक गैर-ऋणात्मक पूर्णांक है।
कभी-कभी लैगुएरे बहुपद नाम का उपयोग समाधान के लिए किया जाता है
कहाँ n अभी भी एक गैर-ऋणात्मक पूर्णांक है।
फिर उन्हें सामान्यीकृत लैगुएरे बहुपद भी नाम दिया गया है, जैसा कि यहां किया जाएगा (वैकल्पिक रूप से जुड़े लैगुएरे बहुपद या, शायद ही कभी, सोनिन बहुपद, उनके आविष्कारक के बाद[1]निकोलाई याकोवलेविच सोनिन)।
अधिक सामान्यतः, लैगुएरे फ़ंक्शन एक समाधान होता है जब n आवश्यक रूप से एक गैर-ऋणात्मक पूर्णांक नहीं है।
लैगुएरे बहुपदों का उपयोग गॉसियन चतुर्भुज के रूप में संख्यात्मक रूप से पूर्णांकों की गणना करने के लिए किया जाता है
ये बहुपद, सामान्यतः निरूपित होते हैं L0, L1, …, एक बहुपद अनुक्रम है जिसे रोड्रिग्स सूत्र#रॉड्रिक्स सूत्र द्वारा परिभाषित किया जा सकता है,
निम्नलिखित खंड के बंद रूप को कम करना।
वे एक आंतरिक उत्पाद के संबंध में ओर्थोगोनल बहुपद हैं
लैगुएरे बहुपदों का क्रम n! Ln एक शेफ़र अनुक्रम है,
कॉम्बिनेटरिक्स में किश्ती बहुपद कमोबेश लैगुएरे बहुपद के समान हैं, चर के प्राथमिक परिवर्तन तक। आगे ट्रिकोमी-कार्लिट्ज़ बहुपद देखें।
एक-इलेक्ट्रॉन परमाणु के लिए श्रोडिंगर समीकरण के समाधान के रेडियल भाग में लैगुएरे बहुपद क्वांटम यांत्रिकी में उत्पन्न होते हैं। वे फेज स्पेस फॉर्म्युलेशन # सिंपल हार्मोनिक ऑसिलेटर में ऑसिलेटर सिस्टम के स्टैटिक विग्नर फंक्शन्स का भी वर्णन करते हैं। वे आगे मोर्स क्षमता और क्वांटम हार्मोनिक ऑसिलेटर # उदाहरण के क्वांटम यांत्रिकी में प्रवेश करते हैं: 3 डी आइसोट्रोपिक हार्मोनिक ऑसिलेटर।
भौतिक विज्ञानी कभी-कभी लैगुएरे बहुपदों के लिए एक परिभाषा का उपयोग करते हैं जो n! के गुणक द्वारा यहां उपयोग की गई परिभाषा से बड़ी होती है। (इसी तरह, कुछ भौतिक विज्ञानी तथाकथित संबंधित लैगुएरे बहुपदों की कुछ भिन्न परिभाषाओं का उपयोग कर सकते हैं।)
कहाँ सामान्यीकृत द्विपद गुणांक है। कब n एक पूर्णांक है जो फ़ंक्शन डिग्री के बहुपद तक कम हो जाता है n. इसकी वैकल्पिक अभिव्यक्ति है[4]
कंफ्लुएंट हाइपरज्यामेट्रिक फ़ंक्शन के संदर्भ में | दूसरी तरह का कुमार का फ़ंक्शन।
डिग्री के इन सामान्यीकृत लैगुएरे बहुपदों के लिए बंद रूप n है[5]
लीबनिज नियम (सामान्यीकृत उत्पाद नियम) लागू करके प्राप्त किया गया | रोड्रिग्स के फार्मूले से उत्पाद के विभेदन के लिए लाइबनिज की प्रमेय।
लैगुएरे बहुपदों में एक विभेदक संकारक प्रतिनिधित्व होता है, जो बहुत निकट से संबंधित हर्मिट बहुपदों की तरह होता है। अर्थात्, चलो और अंतर ऑपरेटर पर विचार करें . तब .
पहले कुछ सामान्यीकृत लागुएरे बहुपद हैं:
अग्रणी पद का गुणांक है (−1)n/n!;
स्थिर पद, जिसका मान 0 है, है
यदि α गैर-ऋणात्मक है, तो Ln(α) में n वास्तविक संख्या है, एक फ़ंक्शन का सख्ती से सकारात्मक रूट (ध्यान दें कि एक स्टर्म श्रृंखला है), जो सभी अंतराल (गणित) में हैं [citation needed]
बड़े के लिए बहुपदों का स्पर्शोन्मुख व्यवहार n, लेकिन तय है α और x > 0, द्वारा दिया गया है[6][7]
और संक्षेप में
कहाँ बेसेल फ़ंक्शन#असिम्प्टोटिक रूप है।
=== एक समोच्च अभिन्न === के रूप में
ऊपर निर्दिष्ट जनरेटिंग फ़ंक्शन को देखते हुए, बहुपदों को समोच्च अभिन्न के रूप में व्यक्त किया जा सकता है
जहां समोच्च 1 पर आवश्यक विलक्षणता को बंद किए बिना एक वामावर्त दिशा में एक बार मूल को घेरता है
घातीय समारोह के लिए। अपूर्ण गामा फ़ंक्शन का प्रतिनिधित्व होता है
क्वांटम यांत्रिकी में
क्वांटम यांत्रिकी में हाइड्रोजन जैसे परमाणु के लिए श्रोडिंगर समीकरण गोलाकार निर्देशांक में चरों को अलग करके बिल्कुल हल करने योग्य है। वेव फ़ंक्शन का रेडियल भाग एक (सामान्यीकृत) लैगुएरे बहुपद है।[11]
फ्रेंक-कॉन्डन सन्निकटन में वाइब्रोनिक युग्मन को लैगुएरे बहुपदों का उपयोग करके भी वर्णित किया जा सकता है।[12]
Laguerre बहुपदों को हाइपरज्यामितीय कार्यों के संदर्भ में परिभाषित किया जा सकता है, विशेष रूप से संगम हाइपरज्यामितीय कार्यों के रूप में
कहाँ Pochhammer प्रतीक है (जो इस स्थितियोंमें बढ़ते फैक्टोरियल का प्रतिनिधित्व करता है)।
हार्डी-हिल फॉर्मूला
सामान्यीकृत लैगुएरे बहुपद हार्डी-हिल सूत्र को संतुष्ट करते हैं[14][15]
जहां बाईं ओर की श्रंखला के लिए अभिसरित होती है और . पहचान का उपयोग करना
(सामान्यीकृत हाइपरजियोमेट्रिक फ़ंक्शन # श्रृंखला 0F1 देखें), इसे इस रूप में भी लिखा जा सकता है
यह सूत्र हर्मिट बहुपदों के लिए मेहलर कर्नेल का एक सामान्यीकरण है, जिसे ऊपर दिए गए लैगुएरे और हर्मिट बहुपदों के बीच संबंधों का उपयोग करके इससे पुनर्प्राप्त किया जा सकता है।
भौतिक विज्ञानी स्केलिंग कन्वेंशन
हाइड्रोजन परमाणु ऑर्बिटल्स के लिए क्वांटम वेवफंक्शन का वर्णन करने के लिए सामान्यीकृत लैगुएरे बहुपदों का उपयोग किया जाता है। इस विषय पर परिचयात्मक साहित्य में,[16][17][18] इस आलेख में प्रस्तुत स्केलिंग की तुलना में सामान्यीकृत लैगुएरे बहुपदों के लिए एक अलग स्केलिंग का उपयोग किया जाता है। यहाँ ली गई परिपाटी में, सामान्यीकृत लैगुएरे बहुपदों को इस रूप में व्यक्त किया जा सकता है [19]
कहाँ मिला हुआ हाइपरज्यामितीय कार्य है।
भौतिक विज्ञानी साहित्य में, जैसे [18] इसके अतिरिक्त सामान्यीकृत लैगुएरे बहुपदों को इस रूप में परिभाषित किया गया है
भौतिक विज्ञानी संस्करण द्वारा मानक संस्करण से संबंधित है
भौतिक विज्ञान के साहित्य में एक और परिपाटी का प्रयोग किया जाता है, चूंकि इसकी आवृत्ति कम होती है। इस परिपाटी के अनुसार लैगुएरे बहुपदों को दिया जाता है [20][21][22]
↑D. Borwein, J. M. Borwein, R. E. Crandall, "Effective Laguerre asymptotics", SIAM J. Numer. Anal., vol. 46 (2008), no. 6, pp. 3285–3312 doi:10.1137/07068031X
↑Ratner, Schatz, Mark A., George C. (2001). रसायन विज्ञान में क्वांटम यांत्रिकी. 0-13-895491-7: Prentice Hall. pp. 90–91.{{cite book}}: CS1 maint: location (link) CS1 maint: multiple names: authors list (link)