अर्ध-जाली (सेमिलेटिस): Difference between revisions
No edit summary |
No edit summary |
||
| Line 3: | Line 3: | ||
गणित में ज्वाइन-सेमिलैटिस (या ऊपरी सेमीलैटिस) आंशिक रूप से ऑर्डर किया गया सेट है जिसमें किसी भी गैर-रिक्त सेट [[परिमित सेट]] [[सबसेट]] के लिए एक ज्वाइन (गणित) (कम से कम ऊपरी बाउंड) होता है। [[द्वैत (आदेश सिद्धांत)]], मीट-सेमिलैटिस (या निचला सेमिलैटिस) आंशिक रूप से ऑर्डर किया गया एक सेट है जिसमें किसी भी गैर-रिक्त परिमित सबसेट के लिए एक मीट (गणित) (या [[सबसे बड़ी निचली सीमा]]) है और इसके विपरीत प्रत्येक ज्वाइन-सेमिलैटिस उल्टे क्रम में मीट-सेमिलैटिस है। | गणित में ज्वाइन-सेमिलैटिस (या ऊपरी सेमीलैटिस) आंशिक रूप से ऑर्डर किया गया सेट है जिसमें किसी भी गैर-रिक्त सेट [[परिमित सेट]] [[सबसेट]] के लिए एक ज्वाइन (गणित) (कम से कम ऊपरी बाउंड) होता है। [[द्वैत (आदेश सिद्धांत)]], मीट-सेमिलैटिस (या निचला सेमिलैटिस) आंशिक रूप से ऑर्डर किया गया एक सेट है जिसमें किसी भी गैर-रिक्त परिमित सबसेट के लिए एक मीट (गणित) (या [[सबसे बड़ी निचली सीमा]]) है और इसके विपरीत प्रत्येक ज्वाइन-सेमिलैटिस उल्टे क्रम में मीट-सेमिलैटिस है। | ||
सेमिलैटिस को [[बीजगणित|बीजगणितीय]] रूप में भी परिभाषित किया जा सकता | सेमिलैटिस को [[बीजगणित|बीजगणितीय]] रूप में भी परिभाषित किया जा सकता है। ज्वाइन और मीट सहयोगीता, [[ क्रमविनिमेयता |क्रमविनिमेयता]] , [[आलस्य|आईडेम्पोटैंट]] [[बाइनरी ऑपरेशन]] हैं और ऐसा कोई भी ऑपरेशन आंशिक क्रम (और संबंधित [[उलटा क्रम]]) को प्रेरित करता है जैसे कि किसी भी दो तत्वों के लिए ऑपरेशन का परिणाम इस आंशिक क्रम के संबंध में तत्वों की (या सबसे बड़ी निचली सीमा) [[कम से कम ऊपरी सीमा]] है। | ||
[[जाली (आदेश)|जाली (ऑर्डर)]] [[आंशिक रूप से आदेशित सेट]] है जो समान आंशिक क्रम के संबंध में ज्वाइन और मीट-अर्ध-जाल दोनों है। बीजगणितीय रूप से एक जाली दो साहचर्य, क्रमविनिमेय आईडेम्पोटैंट द्विआधारी संचालन के साथ एक सेट है जो संबंधित [[अवशोषण कानून|अवशोषण कानूनों]] से संबंधित है। | [[जाली (आदेश)|जाली (ऑर्डर)]] [[आंशिक रूप से आदेशित सेट]] है जो समान आंशिक क्रम के संबंध में ज्वाइन और मीट-अर्ध-जाल दोनों है। बीजगणितीय रूप से एक जाली दो साहचर्य, क्रमविनिमेय आईडेम्पोटैंट द्विआधारी संचालन के साथ एक सेट है जो संबंधित [[अवशोषण कानून|अवशोषण कानूनों]] से संबंधित है। | ||
| Line 25: | Line 25: | ||
== बीजगणितीय परिभाषा == | == बीजगणितीय परिभाषा == | ||
मिल-सेमिलैटिस एक [[बीजगणितीय संरचना]] है <math>\langle S, \land \rangle</math> सेट (गणित) से मिलकर {{math|1=''S''}} बाइनरी ऑपरेशन के साथ {{math|1=∧}} जिसे मीट कहा जाता है | मिल-सेमिलैटिस एक [[बीजगणितीय संरचना]] है <math>\langle S, \land \rangle</math> सेट (गणित) से मिलकर {{math|1=''S''}} बाइनरी ऑपरेशन के साथ {{math|1=∧}} जिसे मीट कहा जाता है जैसे कि सभी सदस्यों के लिए {{math|1=''S''}} का {{math|1=''x'', ''y'',}} और {{math|1=''z''}} निम्नलिखित [[पहचान (गणित)|सम्बन्ध (गणित)]] रखता है: | ||
; साहचर्य: {{math|1=''x'' ∧ (''y'' ∧ ''z'') = (''x'' ∧ ''y'') ∧ ''z''}} | ; साहचर्य: {{math|1=''x'' ∧ (''y'' ∧ ''z'') = (''x'' ∧ ''y'') ∧ ''z''}} | ||
| Line 31: | Line 31: | ||
; अक्षमता: {{math|1=''x'' ∧ ''x'' = ''x''}} | ; अक्षमता: {{math|1=''x'' ∧ ''x'' = ''x''}} | ||
जॉइन-सेमिलैटिस <math>\langle S, \land \rangle</math> अगर बाध्य है तब {{math|1=''S''}} में | जॉइन-सेमिलैटिस <math>\langle S, \land \rangle</math> अगर बाध्य है तब {{math|1=''S''}} में [[पहचान तत्व|सम्बन्ध तत्व]] 1 सम्मिलित है जैसे कि {{math|1=''x'' ∧ 1 {{=}} ''x''}} सभी के लिए {{math|1=''x''}} में {{math|1=''S''}} । | ||
यदि प्रतीक V | यदि प्रतीक V जिसे ज्वाइन कहा जाता है अभी दी गई परिभाषा में {{math|1=∧}} को रिप्लेस करता है तो संरचना को ज्वाइन-सेमिलैटिस कहा जाता है। संचालन के लिए प्रतीक की विशेष पसंद के बारे में कोई भी अस्पष्ट हो सकता है और केवल सेमीलैटिस के बारे में बात कर सकता है। | ||
सेमिलेटिस एक कम्यूटेटिविटी, इडेमपोटेंसी [[ semigroup |माध्यम वर्गी]] है अर्थात एक कम्यूटेटिव [[बैंड (गणित)]]। बंधा हुआ अर्ध-जाल एक आदर्श क्रमविनिमेय [[मोनोइड]] है। | सेमिलेटिस एक कम्यूटेटिविटी, इडेमपोटेंसी [[ semigroup |माध्यम वर्गी]] है अर्थात एक कम्यूटेटिव [[बैंड (गणित)]]। बंधा हुआ अर्ध-जाल एक आदर्श क्रमविनिमेय [[मोनोइड]] है। | ||
| Line 40: | Line 40: | ||
== दो परिभाषाओं के बीच संबंध == | == दो परिभाषाओं के बीच संबंध == | ||
आदेश सैद्धांतिक मीट-सेमिलैटिस {{math|1=⟨''S'', ≤⟩}} बाइनरी ऑपरेशन {{math|1=∧}} को उत्पन्न करता है जो कि {{math|1=⟨''S'', ∧⟩}} एक बीजगणितीय मीट-सेमिलैटिस है। इसके विपरीत मिलो-सेमिलैटिस {{math|1=⟨''S'', ∧⟩}} एक द्विआधारी संबंध | आदेश सैद्धांतिक मीट-सेमिलैटिस {{math|1=⟨''S'', ≤⟩}} बाइनरी ऑपरेशन {{math|1=∧}} को उत्पन्न करता है जो कि {{math|1=⟨''S'', ∧⟩}} एक बीजगणितीय मीट-सेमिलैटिस है। इसके विपरीत मिलो-सेमिलैटिस {{math|1=⟨''S'', ∧⟩}} एक द्विआधारी संबंध {{math|1=≤}} को उत्पन्न करता है जो आंशिक रूप से आदेश देता है {{math|1=''S''}} निम्नलिखित तरीके से सभी तत्वों के लिए {{math|1=''x''}} और {{math|1=''y''}} में {{math|1=''S'', ''x'' ≤ ''y''}}, यदि {{math|1=''x'' = ''x'' ∧ ''y''}} । | ||
इस प्रकार प्रस्तुत किया गया सम्बंध {{math|1=≤}} एक आंशिक क्रम को परिभाषित करता है जिससे बाइनरी ऑपरेशन {{math|1=∧}} होता है, पुनः प्राप्त किया जा सकता है। इसके विपरीत बीजगणितीय रूप से परिभाषित | इस प्रकार प्रस्तुत किया गया सम्बंध {{math|1=≤}} एक आंशिक क्रम को परिभाषित करता है जिससे बाइनरी ऑपरेशन {{math|1=∧}} होता है, पुनः प्राप्त किया जा सकता है। इसके विपरीत बीजगणितीय रूप से परिभाषित सेमिलैटिस द्वारा प्रेरित क्रम {{math|1=⟨''S'', ∧⟩}} द्वारा प्रेरित {{math|1=≤}} के साथ मेल खाता है। | ||
इसलिए दो परिभाषाओं का परस्पर उपयोग किया जा सकता है, इस पर निर्भर करता है कि किसी विशेष उद्देश्य के लिए कौन अधिक सुविधाजनक है। इसी तरह का निष्कर्ष ज्वाइन-सेमिलैटिस और डुअल ऑर्डरिंग ≥ के लिए है। | इसलिए दो परिभाषाओं का परस्पर उपयोग किया जा सकता है, यह इस पर निर्भर करता है कि किसी विशेष उद्देश्य के लिए कौन अधिक सुविधाजनक है। इसी तरह का निष्कर्ष ज्वाइन-सेमिलैटिस और डुअल ऑर्डरिंग ≥ के लिए है। | ||
== उदाहरण == | == उदाहरण == | ||
अन्य ऑर्डर संरचनाओं के निर्माण के लिए या अन्य पूर्णता गुणों के संयोजन के लिए सेमिलैटिस कार्यरत हैं। | अन्य ऑर्डर संरचनाओं के निर्माण के लिए या अन्य पूर्णता गुणों के संयोजन के लिए सेमिलैटिस कार्यरत हैं। | ||
* जाली (आदेश) | * जाली (आदेश), जॉइन और मीट-सेमिलैटिस दोनों है। अवशोषण नियम के माध्यम से इन दो सेमिलैटिस की बातचीत वास्तव में एक लैटिस से एक सेमिलैटिस को अलग करती है। | ||
* बीजगणितीय जाली (क्रम) के [[कॉम्पैक्ट तत्व]] प्रेरित आंशिक क्रम के अंतर्गत बंधी हुई ज्वाइन-सेमिलैटिस बनाते हैं। | * बीजगणितीय जाली (क्रम) के [[कॉम्पैक्ट तत्व]] प्रेरित आंशिक क्रम के अंतर्गत बंधी हुई ज्वाइन-सेमिलैटिस बनाते हैं। | ||
* किसी भी परिमित अर्ध-जाल को प्रेरण द्वारा बाध्य किया जाता है। | * किसी भी परिमित अर्ध-जाल को प्रेरण द्वारा बाध्य किया जाता है। | ||
| Line 57: | Line 57: | ||
* ऊंचाई का कोई भी एकल जड़ वाला [[पेड़ (सेट सिद्धांत)|ट्री (सेट सिद्धांत)]] (कम से कम तत्व के रूप में एकल रुट के साथ)। <math>\leq \omega</math> (सामान्य रूप से अबाधित) मीट-सेमिलैटिस है। उदाहरण के लिए [[उपसर्ग क्रम]] द्वारा आदेशित कुछ वर्णमाला पर परिमित शब्दों के सेट पर विचार करें। इसमें कम से कम तत्व (खाली शब्द) है जो मीट ऑपरेशन का सर्वनाश करने वाला तत्व है लेकिन कोई सबसे बड़ा (पहचान) तत्व नहीं है। | * ऊंचाई का कोई भी एकल जड़ वाला [[पेड़ (सेट सिद्धांत)|ट्री (सेट सिद्धांत)]] (कम से कम तत्व के रूप में एकल रुट के साथ)। <math>\leq \omega</math> (सामान्य रूप से अबाधित) मीट-सेमिलैटिस है। उदाहरण के लिए [[उपसर्ग क्रम]] द्वारा आदेशित कुछ वर्णमाला पर परिमित शब्दों के सेट पर विचार करें। इसमें कम से कम तत्व (खाली शब्द) है जो मीट ऑपरेशन का सर्वनाश करने वाला तत्व है लेकिन कोई सबसे बड़ा (पहचान) तत्व नहीं है। | ||
* [[स्कॉट डोमेन]] एक मीट-सेमिलैटिस है। | * [[स्कॉट डोमेन]] एक मीट-सेमिलैटिस है। | ||
* किसी भी सेट में सदस्यता {{math|1=''L''}} को बेस सेट के साथ | * किसी भी सेट में सदस्यता {{math|1=''L''}} को बेस सेट के साथ सेमिलैटिस के [[मॉडल सिद्धांत]] {{math|1=''L''}} के रूप में लिया जा सकता है क्योंकि सेमिलैटिस सेट [[विस्तार]] के सार को पकड़ लेता है। {{math|1=''a'' ∧ ''b''}} को {{math|1=''a'' ∈ ''L''}} & {{math|1=''b'' ∈ ''L''}} निरूपित किया जा सकता है। दो सेट केवल एक या दोनों में भिन्न होते हैं: | ||
# क्रम जिसमें उनके सदस्य सूचीबद्ध हैं। | # क्रम जिसमें उनके सदस्य सूचीबद्ध हैं। | ||
# एक या अधिक सदस्यों की बहुलता, | # एक या अधिक सदस्यों की बहुलता, | ||
: वास्तव में एक ही सेट हैं जिसकी क्रमविनिमेयता और साहचर्य {{math|1=∧}} आश्वासन (1), [[आलस्य|इडेमपोटेंस]], (2)। यह | : वास्तव में एक ही सेट हैं जिसकी क्रमविनिमेयता और साहचर्य {{math|1=∧}} आश्वासन (1), [[आलस्य|इडेमपोटेंस]], (2)। यह सेमिलैटिस, मुक्त सेमिलैटिस {{math|1=''L''}} है तथा यह {{math|1=''L''}} से घिरा नहीं है क्योंकि समुच्चय स्वयं का सदस्य नहीं होता है। | ||
* क्लासिकल एक्सटेंशनल [[mereology|मेरोलॉजी]] | * क्लासिकल एक्सटेंशनल [[mereology|मेरोलॉजी]], ज्वाइन-सेमिलैटिस को परिभाषित करती है जिसमें ज्वाइन को बाइनरी फ्यूजन के रूप में पढ़ा जाता है। यह अर्धजाल ऊपर से वैयक्तिक विश्व द्वारा घिरा हुआ है। | ||
* सेट {{math|1=''S''}} विभाजन का संग्रह <math> \xi </math>, {{math|1=''S''}} का ज्वाइन-सेमिलैटिस है। वास्तव में आंशिक आदेश किसके द्वारा दिया जाता है <math> \xi \leq \eta </math> यदि <math> \forall Q \in \eta, \exists P \in \xi </math> ऐसा है कि <math> Q \subset P </math> और दो विभाजनों का जोड़ जिसके द्वारा दिया गया है <math> \xi \vee \eta = \{ P \cap Q \mid P \in \xi \ \& \ Q \in \eta \} </math>. यह अर्ध-जाली बंधी हुई है जिसमें सबसे कम तत्व सिंगलटन विभाजन <math> \{ S \} </math> है। | * सेट {{math|1=''S''}} विभाजन का संग्रह <math> \xi </math>, {{math|1=''S''}} का ज्वाइन-सेमिलैटिस है। वास्तव में आंशिक आदेश किसके द्वारा दिया जाता है <math> \xi \leq \eta </math> यदि <math> \forall Q \in \eta, \exists P \in \xi </math> ऐसा है कि <math> Q \subset P </math> और दो विभाजनों का जोड़ जिसके द्वारा दिया गया है <math> \xi \vee \eta = \{ P \cap Q \mid P \in \xi \ \& \ Q \in \eta \} </math>. यह अर्ध-जाली बंधी हुई है जिसमें सबसे कम तत्व सिंगलटन विभाजन <math> \{ S \} </math> है। | ||
| Line 70: | Line 70: | ||
:{{math|1=''f''(''x'' ∨ ''y'') = ''f''(''x'') ∨ ''f''(''y'').}} | :{{math|1=''f''(''x'' ∨ ''y'') = ''f''(''x'') ∨ ''f''(''y'').}} | ||
इस तरह {{math|1=''f''}} प्रत्येक अर्धजाल से जुड़े दो अर्धसमूहों की समरूपता है। यदि {{math|1=''S''}} और {{math|1=''T''}} दोनों में कम से कम तत्व 0 सम्मिलित है फिर {{math|1=''f''}} भी मोनोइड समरूपता होनी चाहिए अर्थात हमें | इस तरह {{math|1=''f''}} प्रत्येक अर्धजाल से जुड़े दो अर्धसमूहों की समरूपता है। यदि {{math|1=''S''}} और {{math|1=''T''}} दोनों में कम से कम तत्व 0 सम्मिलित है फिर {{math|1=''f''}} भी मोनोइड समरूपता होनी चाहिए अर्थात हमें निम्नलिखित की अतिरिक्त आवश्यकता है, | ||
{{math|1=''f''(0) = 0}} | |||
ऑर्डर-थ्योरिटिक फॉर्मूलेशन में ये स्थितियां | ऑर्डर-थ्योरिटिक फॉर्मूलेशन में ये स्थितियां केवल यह बताती हैं कि ज्वाइन-सेमिलैटिस का होमोमोर्फिज्म ऐसा फंक्शन है जो फंक्शन (ऑर्डर थ्योरी) और कम से कम एलिमेंट्स को संरक्षित करता है। स्पष्ट दोहरी-प्रतिस्थापन {{math|1=∧}} साथ {{math|1=∨}} और 0 के साथ 1—जोड़-सेमिलैटिस होमोमोर्फिज्म की इस परिभाषा को इसके मीट-सेमिलैटिस समतुल्य में परिवर्तित कर देता है। | ||
ध्यान दें कि संबंधित ऑर्डरिंग रिलेशन के संबंध में कोई भी सेमीलेटिस होमोमोर्फिज्म अनिवार्य रूप से [[मोनोटोन समारोह|मोनोटोन]] है। स्पष्टीकरण के लिए | ध्यान दें कि संबंधित ऑर्डरिंग रिलेशन के संबंध में कोई भी सेमीलेटिस होमोमोर्फिज्म अनिवार्य रूप से [[मोनोटोन समारोह|मोनोटोन]] है। स्पष्टीकरण के लिए सीमाओं का प्रवेश संरक्षण (ऑर्डर थ्योरी) देखें। | ||
== बीजगणितीय जाली के साथ तुल्यता == | == बीजगणितीय जाली के साथ तुल्यता == | ||
| Line 84: | Line 84: | ||
== वितरण सेमीलेटिस == | == वितरण सेमीलेटिस == | ||
आश्चर्य की बात है कि वितरण की धारणा | आश्चर्य की बात है कि वितरण की धारणा सेमिलैटिस पर लागू होती है भले ही वितरण को पारंपरिक रूप से दो बाइनरी ऑपरेशंस के पारस्परिक व्यवहार की आवश्यकता होती है। इस धारणा के लिए केवल संचालन की आवश्यकता होती है और जाली के लिए वितरण की स्थिति को सामान्य करता है। यदि सभी {{math|1=''a'', ''b'',}} और {{math|1=''x''}} के लिए {{math|1=''x'' ≤ ''a'' ∨ ''b''}} जहाँ {{math|1=''a' '' ≤ ''a''}} और {{math|1=''b' '' ≤ ''b''}} ऐसा है कि {{math|1=''x'' = ''a' '' ∨ ''b' ''}}, तब ज्वाइन-सेमिलैटिस एक वितरण है। वितरक मीट-सेमिलैटिस को दो प्रकार से परिभाषित किया गया है। इन परिभाषाओं को इस तथ्य से उचित ठहराया जाता है कि कोई भी वितरणात्मक जुड़ाव-अर्ध-जाल जिसमें बाइनरी मीट उपस्थित हैं जो एक वितरणात्मक जाली है। प्रवेश [[वितरण (आदेश सिद्धांत)]] देखें। | ||
ज्वाइन-सेमिलैटिस | यदि ज्वाइन-सेमिलैटिस वितरक है और इसके आदर्शों (ऑर्डर थ्योरी), (समावेशन के अंतर्गत) का लैटिस वितरक है। | ||
== पूर्ण सेमीलेटिस == | == पूर्ण सेमीलेटिस == | ||
आजकल शब्द पूर्ण अर्धजाल का सामान्य रूप से कोई स्वीकृत अर्थ नहीं है और विभिन्न परस्पर असंगत परिभाषाएं उपलब्ध हैं। यदि पूर्णता को सभी अनंत जोड़ों के अस्तित्व की आवश्यकता के लिए लिया जाता है या सभी | आजकल शब्द पूर्ण अर्धजाल का सामान्य रूप से कोई स्वीकृत अर्थ नहीं है और विभिन्न परस्पर असंगत परिभाषाएं उपलब्ध हैं। यदि पूर्णता को सभी अनंत जोड़ों के अस्तित्व की आवश्यकता के लिए लिया जाता है या सभी अपरिमित मिलते हैं जो भी स्थिति हो यह साथ ही परिमित भी हो सकता है तब यह तुरंत आंशिक आदेशों की ओर जाता है जो वास्तव में [[पूर्ण जाली|पूर्ण सेमीलेटिस (जाली)]] हैं। क्यों सभी संभावित अनंत जोड़ का अस्तित्व सभी संभावित अनंत मिलों (और इसके विपरीत) के अस्तित्व पर जोर देता है, प्रविष्टि पूर्णता (आदेश सिद्धांत) देखें। | ||
यद्यपि इस अवसर पर साहित्य अभी भी पूरी तरह से जुड़ जाता है- या मिल-सेमिलैटिस को पूर्ण जाली बना देता है। इस संबंध में पूर्णता समरूपता के दायरे पर प्रतिबंध को दर्शाती है। विशेष रूप से एक पूर्ण जॉइन-सेमिलैटिस के लिए आवश्यक है कि होमोमोर्फिज्म सभी जॉइन को संरक्षित करे लेकिन उस स्थिति के विपरीत जो हम पूर्णता गुणों के लिए प्राप्त करते हैं। इसके लिए यह आवश्यक नहीं है कि होमोमोर्फिज्म सभी मीट को संरक्षित करें। दूसरी ओर हम यह निष्कर्ष निकाल सकते हैं कि इस तरह की हर मैपिंग किसी गैलोज़ कनेक्शन का निचला हिस्सा है। तदनुरूपी (अद्वितीय) ऊपरी अनुलग्न पूर्ण मिलन-सेमिलैटिस का समरूपता होगी। यह क्रमशः सभी मिलने या जुड़ने को संरक्षित करने वाले मॉर्फिज्म के साथ सभी पूर्ण अर्ध-जाल की श्रेणियों के बीच कई उपयोगी द्वैत (श्रेणी सिद्धांत) को उत्पन्न करता है। | यद्यपि इस अवसर पर साहित्य अभी भी पूरी तरह से जुड़ जाता है- या मिल-सेमिलैटिस को पूर्ण जाली बना देता है। इस संबंध में पूर्णता समरूपता के दायरे पर प्रतिबंध को दर्शाती है। विशेष रूप से एक पूर्ण जॉइन-सेमिलैटिस के लिए आवश्यक है कि होमोमोर्फिज्म सभी जॉइन को संरक्षित करे लेकिन उस स्थिति के विपरीत जो हम पूर्णता गुणों के लिए प्राप्त करते हैं। इसके लिए यह आवश्यक नहीं है कि होमोमोर्फिज्म सभी मीट को संरक्षित करें। दूसरी ओर हम यह निष्कर्ष निकाल सकते हैं कि इस तरह की हर मैपिंग किसी गैलोज़ कनेक्शन का निचला हिस्सा है। तदनुरूपी (अद्वितीय) ऊपरी अनुलग्न पूर्ण मिलन-सेमिलैटिस का समरूपता होगी। यह क्रमशः सभी मिलने या जुड़ने को संरक्षित करने वाले मॉर्फिज्म के साथ सभी पूर्ण अर्ध-जाल की श्रेणियों के बीच कई उपयोगी द्वैत (श्रेणी सिद्धांत) को उत्पन्न करता है। | ||
पूर्ण मीट-सेमिलैटिस का एक अन्य उपयोग पूर्ण, [[पूर्ण आंशिक आदेश]] को संदर्भित करता है। इस अर्थ में एक पूर्ण मीट-सेमिलैटिस सबसे पूर्ण मीट-सेमिलैटिस है जो आवश्यक नहीं कि एक पूर्ण जाली हो। वास्तव में पूर्ण मीट-सेमिलैटिस में सभी गैर-खाली मिलते हैं (जो पूर्ण रूप से बंधे होने के बराबर है) और सभी [[निर्देशित सेट]] जुड़ते हैं। यदि इस तरह की संरचना में सबसे बड़ा तत्व (खाली सेट का मिलन) भी है तो यह एक पूर्ण जाली भी है। इस प्रकार एक पूर्ण अर्ध-जाली एक पूर्ण जाली बन जाती है जिसमें संभवतः शीर्ष का अभाव होता है। यह परिभाषा विशेष रूप से[[ डोमेन सिद्धांत ]] में रुचि की है | पूर्ण मीट-सेमिलैटिस का एक अन्य उपयोग पूर्ण, [[पूर्ण आंशिक आदेश]] को संदर्भित करता है। इस अर्थ में एक पूर्ण मीट-सेमिलैटिस सबसे पूर्ण मीट-सेमिलैटिस है जो आवश्यक नहीं कि एक पूर्ण जाली हो। वास्तव में पूर्ण मीट-सेमिलैटिस में सभी गैर-खाली मिलते हैं (जो पूर्ण रूप से बंधे होने के बराबर है) और सभी [[निर्देशित सेट]] जुड़ते हैं। यदि इस तरह की संरचना में सबसे बड़ा तत्व (खाली सेट का मिलन) भी है तो यह एक पूर्ण जाली भी है। इस प्रकार एक पूर्ण अर्ध-जाली एक पूर्ण जाली बन जाती है जिसमें संभवतः शीर्ष का अभाव होता है। यह परिभाषा विशेष रूप से[[ डोमेन सिद्धांत ]] में रुचि की है जहां स्कॉट डोमेन के रूप में पूर्ण [[बीजगणितीय पोसेट]] सीपीओ का अध्ययन किया जाता है। इसलिए स्कॉट डोमेन को बीजगणितीय सेमीलैटिस कहा गया है। | ||
अर्धजालकों के लिए पूर्णता की कार्डिनलिटी-प्रतिबंधित धारणाओं को साहित्य में | अर्धजालकों के लिए पूर्णता की कार्डिनलिटी-प्रतिबंधित धारणाओं को साहित्य में संभवतया ही कभी माना जाता है।<ref>E. G. Manes, ''Algebraic theories'', Graduate Texts in Mathematics Volume 26, Springer 1976, p. 57</ref><ref>[http://planetmath.org/completesemilattice complete semilattices] on Planetmath.org</ref> | ||
== फ्री सेमिलैटिस == | == फ्री सेमिलैटिस == | ||
यह खंड श्रेणी सिद्धांत के कुछ ज्ञान को प्रस्तुत करता है। विभिन्न स्थितियों में | यह खंड श्रेणी सिद्धांत के कुछ ज्ञान को प्रस्तुत करता है। विभिन्न स्थितियों में[[ मुक्त वस्तु | मुक्त (फ्री)]] सेमीलैटिस उपस्थित होता हैं। उदाहरण के लिए ज्वाइन-सेमिलैटिस (और उनके होमोमोर्फिज्म) की श्रेणी से सेट (और फ़ंक्शंस) के श्रेणी सिद्धांत के लिए विस्मरणशील फ़ंक्टर एक आसन्न फ़ंक्टर को स्वीकार करता है। इसलिए फ्री जॉइन-सेमिलैटिस {{math|1='''F'''(''S'')}} एक सेट पर {{math|1=''S''}} के सभी गैर-खाली परिमित उपसमूहों का संग्रह करके {{math|1=''S''}} सबसेट समावेशन द्वारा आदेशित बनाया गया है। स्पष्ट रूप से {{math|1=''S''}} को मैपिंग {{math|1=''e''}} द्वारा {{math|1='''F'''(''S'')}} में एम्बेड किया जा सकता है जो {{math|1=''S''}} में किसी भी तत्व को सिंगलटन सेट {{math|1={''s''<nowiki>}</nowiki>}} में ले जाता है। फिर कोई फंक्शन {{math|1=''f''}} एक से {{math|1=''S''}} ज्वाइन-सेमिलैटिस के लिए {{math|1=''T''}} (अधिक औपचारिक रूप से अंतर्निहित सेट {{math|1=''T''}} के लिए) एक अद्वितीय समरूपता {{math|1=''f' ''}} को प्रेरित करता है, ज्वाइन-सेमिलैटिस {{math|1='''F'''(''S'')}} और {{math|1=''T''}} के बीच इस प्रकार है कि {{math|1=''f'' = ''f' '' ○ ''e''}}, स्पष्ट रूप से {{math|1=''f' ''}} द्वारा दिया गया है।<math display="inline">f'(A) = \bigvee\{f(s) | s \in A\}</math> अब की स्पष्ट विशिष्टता {{math|1=''f' ''}}आवश्यक संयोजन प्राप्त करने के लिए पर्याप्त है - आकृतिवाद-फ़ंक्टर का भाग {{math|1='''F'''}} सामान्य विचारों से प्राप्त किया जा सकता है (आसन्न फ़ैक्टर देखें)। ऑर्डरिंग के रूप में विपरीत सबसेट समावेशन का उपयोग करते हुए मुक्त मीट-सेमिलैटिस की दोहरी स्थिति होती है। बॉटम के साथ ज्वाइन-सेमिलैटिस के लिए हम केवल खाली सेट को उपसमुच्चय के उपरोक्त संग्रह में जोड़ते हैं। | ||
इसके | इसके अतिरिक्त सेमीलेटिस अधिकतर अन्य श्रेणियों के भीतर मुक्त वस्तुओं के लिए जनरेटर के रूप में काम करते हैं। विशेष रूप से फ्रेम और फ्रेम-होमोमोर्फिज्म की श्रेणी से और वितरणात्मक लैटिस एवं लैटिस-होमोमोर्फिज्म की श्रेणी से दोनों विस्मरणशील कार्यों में बायां जोड़ होता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Revision as of 22:21, 14 March 2023
| Transitive binary relations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
गणित में ज्वाइन-सेमिलैटिस (या ऊपरी सेमीलैटिस) आंशिक रूप से ऑर्डर किया गया सेट है जिसमें किसी भी गैर-रिक्त सेट परिमित सेट सबसेट के लिए एक ज्वाइन (गणित) (कम से कम ऊपरी बाउंड) होता है। द्वैत (आदेश सिद्धांत), मीट-सेमिलैटिस (या निचला सेमिलैटिस) आंशिक रूप से ऑर्डर किया गया एक सेट है जिसमें किसी भी गैर-रिक्त परिमित सबसेट के लिए एक मीट (गणित) (या सबसे बड़ी निचली सीमा) है और इसके विपरीत प्रत्येक ज्वाइन-सेमिलैटिस उल्टे क्रम में मीट-सेमिलैटिस है।
सेमिलैटिस को बीजगणितीय रूप में भी परिभाषित किया जा सकता है। ज्वाइन और मीट सहयोगीता, क्रमविनिमेयता , आईडेम्पोटैंट बाइनरी ऑपरेशन हैं और ऐसा कोई भी ऑपरेशन आंशिक क्रम (और संबंधित उलटा क्रम) को प्रेरित करता है जैसे कि किसी भी दो तत्वों के लिए ऑपरेशन का परिणाम इस आंशिक क्रम के संबंध में तत्वों की (या सबसे बड़ी निचली सीमा) कम से कम ऊपरी सीमा है।
जाली (ऑर्डर) आंशिक रूप से आदेशित सेट है जो समान आंशिक क्रम के संबंध में ज्वाइन और मीट-अर्ध-जाल दोनों है। बीजगणितीय रूप से एक जाली दो साहचर्य, क्रमविनिमेय आईडेम्पोटैंट द्विआधारी संचालन के साथ एक सेट है जो संबंधित अवशोषण कानूनों से संबंधित है।
| Algebraic structures |
|---|
आदेश-सैद्धांतिक परिभाषा
सेट (गणित) S आंशिक रूप से बाइनरी संबंध द्वारा निर्धारित किया गया ≤ मीट-सेमिलैटिस है यदि
- सभी तत्वों के लिए S के x और y, सेट का इन्फ़ीमम (सबसे बड़ी निचली सीमा) {x, y} होता है।
सेट की सबसे बड़ी निचली सीमा {x, y}, x और y का मीट (गणित) कहलाता है जिसे x ∧ y से निरूपित करते हैं।
उच्चतम परिणाम के साथ सबसे बड़ी निचली सीमा को परिवर्तित करने से ज्वाइन-अर्ध-जाल की दोहरी अवधारणा होती है। सबसे कम ऊपरी सीमा x और y का जोड़ (गणित) {x, y} कहलाता है जिसे x ∨ y से निरूपित किया जाता है। मीट और जॉइन S पर बाइनरी ऑपरेशंस हैं। सरल गणितीय प्रेरण तर्क से ज्ञात होता है कि परिभाषा के अनुसार सभी संभावित जोड़ीदार सुप्रीमा (इन्फिमा) का अस्तित्व, सभी गैर-रिक्त परिमित सुप्रीमा (इन्फिमा) के अस्तित्व का तात्पर्य है।
ज्वाइन-सेमिलैटिस को बाउंड किया जाता है यदि उसमें कम से कम तत्व तथा रिक्त सेट का जॉइन है। द्वैत (आदेश सिद्धांत) एक मीट-सेमिलैटिस को बांधा जाता है यदि इसमें सबसे बड़ा तत्व रिक्त सेट का जॉइन है।
अन्य गुणों को ग्रहण किया जा सकता है, इस विषय पर अधिक चर्चा के लिए पूर्णता (आदेश सिद्धांत) पर आलेख देखें। उस लेख में इस बात पर भी चर्चा की गई है कि संबंधित पोसेट्स के बीच उपयुक्त गाल्वा कनेक्शन के अस्तित्व के संदर्भ में हम उपरोक्त परिभाषा को कैसे बदल सकते हैं - अवधारणा की श्रेणी सिद्धांत जांच के लिए विशेष रुचि का एक दृष्टिकोण।
बीजगणितीय परिभाषा
मिल-सेमिलैटिस एक बीजगणितीय संरचना है सेट (गणित) से मिलकर S बाइनरी ऑपरेशन के साथ ∧ जिसे मीट कहा जाता है जैसे कि सभी सदस्यों के लिए S का x, y, और z निम्नलिखित सम्बन्ध (गणित) रखता है:
- साहचर्य
- x ∧ (y ∧ z) = (x ∧ y) ∧ z
- क्रमविनिमेयता
- x ∧ y = y ∧ x
- अक्षमता
- x ∧ x = x
जॉइन-सेमिलैटिस अगर बाध्य है तब S में सम्बन्ध तत्व 1 सम्मिलित है जैसे कि x ∧ 1 = x सभी के लिए x में S ।
यदि प्रतीक V जिसे ज्वाइन कहा जाता है अभी दी गई परिभाषा में ∧ को रिप्लेस करता है तो संरचना को ज्वाइन-सेमिलैटिस कहा जाता है। संचालन के लिए प्रतीक की विशेष पसंद के बारे में कोई भी अस्पष्ट हो सकता है और केवल सेमीलैटिस के बारे में बात कर सकता है।
सेमिलेटिस एक कम्यूटेटिविटी, इडेमपोटेंसी माध्यम वर्गी है अर्थात एक कम्यूटेटिव बैंड (गणित)। बंधा हुआ अर्ध-जाल एक आदर्श क्रमविनिमेय मोनोइड है।
सेटिंग द्वारा मीट-सेमिलैटिस पर आंशिक आदेश x ≤ y प्रेरित किया जाता है, जब कभी भी x ∧ y = x. ज्वाइन-सेमिलैटिस के लिए ऑर्डर सेटिंग x ≤ y द्वारा प्रेरित होता है, जब कभी भी x ∨ y = y. बाउंड मीट-सेमिलैटिस में पहचान 1 का सबसे बड़ा तत्व S है इसी प्रकार एक ज्वाइन सेमीलैटिस में एक पहचान तत्व सबसे कम तत्व है।
दो परिभाषाओं के बीच संबंध
आदेश सैद्धांतिक मीट-सेमिलैटिस ⟨S, ≤⟩ बाइनरी ऑपरेशन ∧ को उत्पन्न करता है जो कि ⟨S, ∧⟩ एक बीजगणितीय मीट-सेमिलैटिस है। इसके विपरीत मिलो-सेमिलैटिस ⟨S, ∧⟩ एक द्विआधारी संबंध ≤ को उत्पन्न करता है जो आंशिक रूप से आदेश देता है S निम्नलिखित तरीके से सभी तत्वों के लिए x और y में S, x ≤ y, यदि x = x ∧ y ।
इस प्रकार प्रस्तुत किया गया सम्बंध ≤ एक आंशिक क्रम को परिभाषित करता है जिससे बाइनरी ऑपरेशन ∧ होता है, पुनः प्राप्त किया जा सकता है। इसके विपरीत बीजगणितीय रूप से परिभाषित सेमिलैटिस द्वारा प्रेरित क्रम ⟨S, ∧⟩ द्वारा प्रेरित ≤ के साथ मेल खाता है।
इसलिए दो परिभाषाओं का परस्पर उपयोग किया जा सकता है, यह इस पर निर्भर करता है कि किसी विशेष उद्देश्य के लिए कौन अधिक सुविधाजनक है। इसी तरह का निष्कर्ष ज्वाइन-सेमिलैटिस और डुअल ऑर्डरिंग ≥ के लिए है।
उदाहरण
अन्य ऑर्डर संरचनाओं के निर्माण के लिए या अन्य पूर्णता गुणों के संयोजन के लिए सेमिलैटिस कार्यरत हैं।
- जाली (आदेश), जॉइन और मीट-सेमिलैटिस दोनों है। अवशोषण नियम के माध्यम से इन दो सेमिलैटिस की बातचीत वास्तव में एक लैटिस से एक सेमिलैटिस को अलग करती है।
- बीजगणितीय जाली (क्रम) के कॉम्पैक्ट तत्व प्रेरित आंशिक क्रम के अंतर्गत बंधी हुई ज्वाइन-सेमिलैटिस बनाते हैं।
- किसी भी परिमित अर्ध-जाल को प्रेरण द्वारा बाध्य किया जाता है।
- पूरी तरह से आर्डर किया गया सेट वितरण जाली है इसलिए विशेष रूप से मीट-सेमिलैटिस और जॉइन-सेमिलैटिस किसी भी दो अलग-अलग तत्वों में एक बड़ा और छोटा होता है जो उनका मिलना और जुड़ना है।
- एक सुव्यवस्थित सेट आगे बाउंड जॉइन-सेमिलैटिस है क्योंकि सेट के रूप में सेट में कम से कम तत्व होता है इसलिए यह बाउंड होता है।
- प्राकृतिक संख्या#आदेश उनके सामान्य क्रम के साथ ≤ कम से कम तत्व 0 के साथ एक बाउंड जॉइन-सेमिलैटिस हैं, हालांकि उनके पास कोई सबसे बड़ा तत्व नहीं है: वे सबसे छोटे अनंत सुव्यवस्थित सेट हैं।
- एक सुव्यवस्थित सेट आगे बाउंड जॉइन-सेमिलैटिस है क्योंकि सेट के रूप में सेट में कम से कम तत्व होता है इसलिए यह बाउंड होता है।
- ऊंचाई का कोई भी एकल जड़ वाला ट्री (सेट सिद्धांत) (कम से कम तत्व के रूप में एकल रुट के साथ)। (सामान्य रूप से अबाधित) मीट-सेमिलैटिस है। उदाहरण के लिए उपसर्ग क्रम द्वारा आदेशित कुछ वर्णमाला पर परिमित शब्दों के सेट पर विचार करें। इसमें कम से कम तत्व (खाली शब्द) है जो मीट ऑपरेशन का सर्वनाश करने वाला तत्व है लेकिन कोई सबसे बड़ा (पहचान) तत्व नहीं है।
- स्कॉट डोमेन एक मीट-सेमिलैटिस है।
- किसी भी सेट में सदस्यता L को बेस सेट के साथ सेमिलैटिस के मॉडल सिद्धांत L के रूप में लिया जा सकता है क्योंकि सेमिलैटिस सेट विस्तार के सार को पकड़ लेता है। a ∧ b को a ∈ L & b ∈ L निरूपित किया जा सकता है। दो सेट केवल एक या दोनों में भिन्न होते हैं:
- क्रम जिसमें उनके सदस्य सूचीबद्ध हैं।
- एक या अधिक सदस्यों की बहुलता,
- वास्तव में एक ही सेट हैं जिसकी क्रमविनिमेयता और साहचर्य ∧ आश्वासन (1), इडेमपोटेंस, (2)। यह सेमिलैटिस, मुक्त सेमिलैटिस L है तथा यह L से घिरा नहीं है क्योंकि समुच्चय स्वयं का सदस्य नहीं होता है।
- क्लासिकल एक्सटेंशनल मेरोलॉजी, ज्वाइन-सेमिलैटिस को परिभाषित करती है जिसमें ज्वाइन को बाइनरी फ्यूजन के रूप में पढ़ा जाता है। यह अर्धजाल ऊपर से वैयक्तिक विश्व द्वारा घिरा हुआ है।
- सेट S विभाजन का संग्रह , S का ज्वाइन-सेमिलैटिस है। वास्तव में आंशिक आदेश किसके द्वारा दिया जाता है यदि ऐसा है कि और दो विभाजनों का जोड़ जिसके द्वारा दिया गया है . यह अर्ध-जाली बंधी हुई है जिसमें सबसे कम तत्व सिंगलटन विभाजन है।
सेमिलैटिस आकारिता
अर्ध-जाल की उपरोक्त बीजगणितीय परिभाषा दो अर्ध-जाल के बीच रूपवाद की धारणा का सुझाव देती है। दो ज्वाइन-सेमिलैटिस (S, ∨) और (T, ∨) दिए गए हैं, (जॉइन-) सेमीलैटिस का समरूपता एक कार्य है f: S → T ऐसा है कि
- f(x ∨ y) = f(x) ∨ f(y).
इस तरह f प्रत्येक अर्धजाल से जुड़े दो अर्धसमूहों की समरूपता है। यदि S और T दोनों में कम से कम तत्व 0 सम्मिलित है फिर f भी मोनोइड समरूपता होनी चाहिए अर्थात हमें निम्नलिखित की अतिरिक्त आवश्यकता है,
f(0) = 0
ऑर्डर-थ्योरिटिक फॉर्मूलेशन में ये स्थितियां केवल यह बताती हैं कि ज्वाइन-सेमिलैटिस का होमोमोर्फिज्म ऐसा फंक्शन है जो फंक्शन (ऑर्डर थ्योरी) और कम से कम एलिमेंट्स को संरक्षित करता है। स्पष्ट दोहरी-प्रतिस्थापन ∧ साथ ∨ और 0 के साथ 1—जोड़-सेमिलैटिस होमोमोर्फिज्म की इस परिभाषा को इसके मीट-सेमिलैटिस समतुल्य में परिवर्तित कर देता है।
ध्यान दें कि संबंधित ऑर्डरिंग रिलेशन के संबंध में कोई भी सेमीलेटिस होमोमोर्फिज्म अनिवार्य रूप से मोनोटोन है। स्पष्टीकरण के लिए सीमाओं का प्रवेश संरक्षण (ऑर्डर थ्योरी) देखें।
बीजगणितीय जाली के साथ तुल्यता
श्रेणी के बीच श्रेणियों का एक प्रसिद्ध तुल्यता है, ज्वाइन-सेमिलैटिस के साथ शून्य के साथ - समरूपता और श्रेणी कॉम्पैक्ट एलिमेंट-प्रिज़र्विंग पूर्ण जॉइन-होमोमोर्फिज्म के साथ बीजगणितीय लैटिस निम्नानुसार हैं। ज्वाइन-सेमिलैटिस के साथ शून्य के साथ, हम इसकी आदर्श जाली को जोड़ते हैं। के साथ - समरूपता का -सेमिलैटिस, हम मानचित्र को जोड़ते हैं , कि किसी भी आदर्श का के आदर्श द्वारा उत्पन्न .को जोड़ता है, यह एक फँक्टर को परिभाषित करता है। इसके विपरीत प्रत्येक बीजगणितीय जाली के साथ हम संबद्ध करते हैं - सेमी-लेटेक्स के सभी कॉम्पैक्ट तत्वों की और प्रत्येक सघनता-संरक्षण पूर्ण जुड़ाव-समरूपता के साथ बीजगणितीय जाली के बीच हम प्रतिबंध को जोड़ते हैं। यह फँक्टर को परिभाषित करता है। जोड़ी के बीच एक श्रेणी समानता और को परिभाषित करता है।
वितरण सेमीलेटिस
आश्चर्य की बात है कि वितरण की धारणा सेमिलैटिस पर लागू होती है भले ही वितरण को पारंपरिक रूप से दो बाइनरी ऑपरेशंस के पारस्परिक व्यवहार की आवश्यकता होती है। इस धारणा के लिए केवल संचालन की आवश्यकता होती है और जाली के लिए वितरण की स्थिति को सामान्य करता है। यदि सभी a, b, और x के लिए x ≤ a ∨ b जहाँ a' ≤ a और b' ≤ b ऐसा है कि x = a' ∨ b' , तब ज्वाइन-सेमिलैटिस एक वितरण है। वितरक मीट-सेमिलैटिस को दो प्रकार से परिभाषित किया गया है। इन परिभाषाओं को इस तथ्य से उचित ठहराया जाता है कि कोई भी वितरणात्मक जुड़ाव-अर्ध-जाल जिसमें बाइनरी मीट उपस्थित हैं जो एक वितरणात्मक जाली है। प्रवेश वितरण (आदेश सिद्धांत) देखें।
यदि ज्वाइन-सेमिलैटिस वितरक है और इसके आदर्शों (ऑर्डर थ्योरी), (समावेशन के अंतर्गत) का लैटिस वितरक है।
पूर्ण सेमीलेटिस
आजकल शब्द पूर्ण अर्धजाल का सामान्य रूप से कोई स्वीकृत अर्थ नहीं है और विभिन्न परस्पर असंगत परिभाषाएं उपलब्ध हैं। यदि पूर्णता को सभी अनंत जोड़ों के अस्तित्व की आवश्यकता के लिए लिया जाता है या सभी अपरिमित मिलते हैं जो भी स्थिति हो यह साथ ही परिमित भी हो सकता है तब यह तुरंत आंशिक आदेशों की ओर जाता है जो वास्तव में पूर्ण सेमीलेटिस (जाली) हैं। क्यों सभी संभावित अनंत जोड़ का अस्तित्व सभी संभावित अनंत मिलों (और इसके विपरीत) के अस्तित्व पर जोर देता है, प्रविष्टि पूर्णता (आदेश सिद्धांत) देखें।
यद्यपि इस अवसर पर साहित्य अभी भी पूरी तरह से जुड़ जाता है- या मिल-सेमिलैटिस को पूर्ण जाली बना देता है। इस संबंध में पूर्णता समरूपता के दायरे पर प्रतिबंध को दर्शाती है। विशेष रूप से एक पूर्ण जॉइन-सेमिलैटिस के लिए आवश्यक है कि होमोमोर्फिज्म सभी जॉइन को संरक्षित करे लेकिन उस स्थिति के विपरीत जो हम पूर्णता गुणों के लिए प्राप्त करते हैं। इसके लिए यह आवश्यक नहीं है कि होमोमोर्फिज्म सभी मीट को संरक्षित करें। दूसरी ओर हम यह निष्कर्ष निकाल सकते हैं कि इस तरह की हर मैपिंग किसी गैलोज़ कनेक्शन का निचला हिस्सा है। तदनुरूपी (अद्वितीय) ऊपरी अनुलग्न पूर्ण मिलन-सेमिलैटिस का समरूपता होगी। यह क्रमशः सभी मिलने या जुड़ने को संरक्षित करने वाले मॉर्फिज्म के साथ सभी पूर्ण अर्ध-जाल की श्रेणियों के बीच कई उपयोगी द्वैत (श्रेणी सिद्धांत) को उत्पन्न करता है।
पूर्ण मीट-सेमिलैटिस का एक अन्य उपयोग पूर्ण, पूर्ण आंशिक आदेश को संदर्भित करता है। इस अर्थ में एक पूर्ण मीट-सेमिलैटिस सबसे पूर्ण मीट-सेमिलैटिस है जो आवश्यक नहीं कि एक पूर्ण जाली हो। वास्तव में पूर्ण मीट-सेमिलैटिस में सभी गैर-खाली मिलते हैं (जो पूर्ण रूप से बंधे होने के बराबर है) और सभी निर्देशित सेट जुड़ते हैं। यदि इस तरह की संरचना में सबसे बड़ा तत्व (खाली सेट का मिलन) भी है तो यह एक पूर्ण जाली भी है। इस प्रकार एक पूर्ण अर्ध-जाली एक पूर्ण जाली बन जाती है जिसमें संभवतः शीर्ष का अभाव होता है। यह परिभाषा विशेष रूप सेडोमेन सिद्धांत में रुचि की है जहां स्कॉट डोमेन के रूप में पूर्ण बीजगणितीय पोसेट सीपीओ का अध्ययन किया जाता है। इसलिए स्कॉट डोमेन को बीजगणितीय सेमीलैटिस कहा गया है।
अर्धजालकों के लिए पूर्णता की कार्डिनलिटी-प्रतिबंधित धारणाओं को साहित्य में संभवतया ही कभी माना जाता है।[1][2]
फ्री सेमिलैटिस
यह खंड श्रेणी सिद्धांत के कुछ ज्ञान को प्रस्तुत करता है। विभिन्न स्थितियों में मुक्त (फ्री) सेमीलैटिस उपस्थित होता हैं। उदाहरण के लिए ज्वाइन-सेमिलैटिस (और उनके होमोमोर्फिज्म) की श्रेणी से सेट (और फ़ंक्शंस) के श्रेणी सिद्धांत के लिए विस्मरणशील फ़ंक्टर एक आसन्न फ़ंक्टर को स्वीकार करता है। इसलिए फ्री जॉइन-सेमिलैटिस F(S) एक सेट पर S के सभी गैर-खाली परिमित उपसमूहों का संग्रह करके S सबसेट समावेशन द्वारा आदेशित बनाया गया है। स्पष्ट रूप से S को मैपिंग e द्वारा F(S) में एम्बेड किया जा सकता है जो S में किसी भी तत्व को सिंगलटन सेट {s} में ले जाता है। फिर कोई फंक्शन f एक से S ज्वाइन-सेमिलैटिस के लिए T (अधिक औपचारिक रूप से अंतर्निहित सेट T के लिए) एक अद्वितीय समरूपता f' को प्रेरित करता है, ज्वाइन-सेमिलैटिस F(S) और T के बीच इस प्रकार है कि f = f' ○ e, स्पष्ट रूप से f' द्वारा दिया गया है। अब की स्पष्ट विशिष्टता f' आवश्यक संयोजन प्राप्त करने के लिए पर्याप्त है - आकृतिवाद-फ़ंक्टर का भाग F सामान्य विचारों से प्राप्त किया जा सकता है (आसन्न फ़ैक्टर देखें)। ऑर्डरिंग के रूप में विपरीत सबसेट समावेशन का उपयोग करते हुए मुक्त मीट-सेमिलैटिस की दोहरी स्थिति होती है। बॉटम के साथ ज्वाइन-सेमिलैटिस के लिए हम केवल खाली सेट को उपसमुच्चय के उपरोक्त संग्रह में जोड़ते हैं।
इसके अतिरिक्त सेमीलेटिस अधिकतर अन्य श्रेणियों के भीतर मुक्त वस्तुओं के लिए जनरेटर के रूप में काम करते हैं। विशेष रूप से फ्रेम और फ्रेम-होमोमोर्फिज्म की श्रेणी से और वितरणात्मक लैटिस एवं लैटिस-होमोमोर्फिज्म की श्रेणी से दोनों विस्मरणशील कार्यों में बायां जोड़ होता है।
यह भी देखें
- Directed set − ज्वाइनिंग सेमीलैटिस का सामान्यीकरण
- List of order topics
- Semiring
टिप्पणियाँ
- ↑ E. G. Manes, Algebraic theories, Graduate Texts in Mathematics Volume 26, Springer 1976, p. 57
- ↑ complete semilattices on Planetmath.org
संदर्भ
- Davey, B. A.; Priestley, H. A. (2002). Introduction to Lattices and Order (second ed.). Cambridge University Press. ISBN 0-521-78451-4.
- Vickers, Steven (1989). Topology via Logic. Cambridge University Press. ISBN 0-521-36062-5.
It is often the case that standard treatments of lattice theory define a semilattice, if that, and then say no more. See the references in the entries order theory and lattice theory. Moreover, there is no literature on semilattices of comparable magnitude to that on semigroups.
बाहरी संबंध
- Jipsen's algebra structures page: Semilattices.