मुक्त कण: Difference between revisions
(Created page with "{{Short description|Particle that is not bound by an external force}} भौतिकी में, एक मुक्त कण एक ऐसा कण होता है,...") |
(modification) |
||
| Line 1: | Line 1: | ||
{{Short description|Particle that is not bound by an external force}} | {{Short description|Particle that is not bound by an external force}} | ||
भौतिकी में, | भौतिकी में, मुक्त कण एक ऐसा कण होता है, जो किसी अर्थ में, किसी बाहरी बल से बंधा नहीं होता है, या समतुल्य रूप से उस क्षेत्र में नहीं होता है जहां इसकी संभावित ऊर्जा भिन्न होती है। प्राचीन भौतिकी में, इसका अर्थ है कि कण एक क्षेत्र-मुक्त स्थान में मौजूद है। क्वांटम यांत्रिकी में, इसका मतलब है कि कण एकसमान क्षमता के क्षेत्र में है, सामान्यतः रुचि के क्षेत्र में शून्य पर सेट होता है क्योंकि क्षमता को अंतरिक्ष में किसी भी बिंदु पर मनमाने ढंग से शून्य पर सेट किया जा सकता है। | ||
== | == प्राचीन मुक्त कण == | ||
प्राचीन मुक्त कण की विशेषता एक निश्चित[[ वेग | वेग]] v है। संवेग द्वारा दिया जाता है | |||
<math display="block">\mathbf{p}=m\mathbf{v}</math> | <math display="block">\mathbf{p}=m\mathbf{v}</math> | ||
और [[ गतिज ऊर्जा ]] (कुल ऊर्जा के बराबर) द्वारा | और[[ गतिज ऊर्जा | गतिज ऊर्जा]] (कुल ऊर्जा के बराबर) द्वारा | ||
<math display="block">E=\frac{1}{2}mv^2=\frac{p^2}{2m}</math> | <math display="block">E=\frac{1}{2}mv^2=\frac{p^2}{2m}</math> | ||
जहाँ m कण का द्रव्यमान है और 'v' कण का सदिश वेग है। | जहाँ m कण का द्रव्यमान है और 'v' कण का सदिश वेग है। | ||
| Line 18: | Line 18: | ||
द्रव्यमान वाला एक मुक्त कण <math>m</math> गैर-सापेक्षवादी क्वांटम यांत्रिकी में मुक्त श्रोडिंगर समीकरण द्वारा वर्णित है: | द्रव्यमान वाला एक मुक्त कण <math>m</math> गैर-सापेक्षवादी क्वांटम यांत्रिकी में मुक्त श्रोडिंगर समीकरण द्वारा वर्णित है: | ||
<math display="block"> - \frac{\hbar^2}{2m} \nabla^2 \ \psi(\mathbf{r}, t) = i\hbar\frac{\partial}{\partial t} \psi (\mathbf{r}, t) </math> | <math display="block"> - \frac{\hbar^2}{2m} \nabla^2 \ \psi(\mathbf{r}, t) = i\hbar\frac{\partial}{\partial t} \psi (\mathbf{r}, t) </math> | ||
जहाँ ψ स्थिति 'r' और समय t पर कण का तरंग फलन है। [[ कोणीय आवृत्ति ]] ω या ऊर्जा E पर संवेग 'p' या तरंग सदिश 'k' वाले कण का समाधान सम्मिश्र संख्या समतल तरंग द्वारा दिया जाता है: | जहाँ ψ स्थिति 'r' और समय t पर कण का तरंग फलन है।[[ कोणीय आवृत्ति | कोणीय आवृत्ति]] ω या ऊर्जा E पर संवेग 'p' या तरंग सदिश 'k' वाले कण का समाधान सम्मिश्र संख्या समतल तरंग द्वारा दिया जाता है: | ||
<math display="block"> \psi(\mathbf{r}, t) = Ae^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)} = Ae^{i(\mathbf{p}\cdot\mathbf{r} - E t)/\hbar} </math> | <math display="block"> \psi(\mathbf{r}, t) = Ae^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)} = Ae^{i(\mathbf{p}\cdot\mathbf{r} - E t)/\hbar} </math> | ||
[[ आयाम ]] ए के साथ और इसके लिए प्रतिबंधित: | [[ आयाम ]]ए के साथ और इसके लिए प्रतिबंधित: | ||
<ओल शैली = सूची-शैली-प्रकार: निचला-अल्फा; > | <ओल शैली = सूची-शैली-प्रकार: निचला-अल्फा; > | ||
<li> यदि कण में द्रव्यमान है <math>m</math>: <math display="inline">\omega = \frac{\hbar k^2}{2m} </math> (या उसके बराबर <math display="inline">E = \frac{p^2}{2m} </math>). </ली> | <li> यदि कण में द्रव्यमान है <math>m</math>: <math display="inline">\omega = \frac{\hbar k^2}{2m} </math> (या उसके बराबर <math display="inline">E = \frac{p^2}{2m} </math>). </ली> | ||
<li> यदि कण द्रव्यमान रहित कण है: <math>\omega=kc</math> | <li> यदि कण द्रव्यमान रहित कण है: <math>\omega=kc</math> आइगेनवैल्यू स्पेक्ट्रम असीम रूप से पतित होता है क्योंकि प्रत्येक आइगेनवैल्यू E> 0 के लिए अलग-अलग दिशाओं के अनुरूप अनंत संख्या में ईजेनफंक्शन होते हैं। <math>\mathbf{p}</math>.डी ब्रोगली संबंध: <math> \mathbf{p} = \hbar \mathbf{k}</math>, <math> E = \hbar \omega</math> लागू। चूँकि स्थितिज ऊर्जा (कहा गया है) शून्य है, कुल ऊर्जा E गतिज ऊर्जा के बराबर है, जिसका प्राचीन भौतिकी के समान रूप है: | ||
आइगेनवैल्यू स्पेक्ट्रम असीम रूप से पतित होता है क्योंकि प्रत्येक आइगेनवैल्यू E> 0 के लिए अलग-अलग दिशाओं के अनुरूप अनंत संख्या में ईजेनफंक्शन होते हैं। <math>\mathbf{p}</math>. | |||
डी ब्रोगली संबंध: <math> \mathbf{p} = \hbar \mathbf{k}</math>, <math> E = \hbar \omega</math> लागू। चूँकि स्थितिज ऊर्जा (कहा गया है) शून्य है, कुल ऊर्जा E गतिज ऊर्जा के बराबर है, जिसका | |||
<math display="block"> E = T \,\rightarrow \,\frac{\hbar^2 k^2}{2m} =\hbar \omega </math> | <math display="block"> E = T \,\rightarrow \,\frac{\hbar^2 k^2}{2m} =\hbar \omega </math> | ||
मुक्त या बाध्य सभी क्वांटम कणों के लिए, [[ हाइजेनबर्ग अनिश्चितता सिद्धांत ]] <math display="inline"> \Delta p_x \Delta x \geq \frac{\hbar}{2}</math> लागू। यह स्पष्ट है कि चूंकि समतल तरंग का निश्चित संवेग (निश्चित ऊर्जा) होता है, इसलिए पूरे अंतरिक्ष में कण के स्थान को खोजने की संभावना समान और नगण्य होती है। दूसरे शब्दों में, यूक्लिडियन अंतरिक्ष में तरंग कार्य सामान्य नहीं है, ये स्थिर राज्य भौतिक वसूली योग्य राज्यों के अनुरूप नहीं हो सकते हैं।<ref>{{Cite web| title=Lecture 9|url=http://www.physics.udel.edu/~msafrono/424-2011/Lecture%209final.pdf}}</ref> | मुक्त या बाध्य सभी क्वांटम कणों के लिए,[[ हाइजेनबर्ग अनिश्चितता सिद्धांत ]]<math display="inline"> \Delta p_x \Delta x \geq \frac{\hbar}{2}</math> लागू। यह स्पष्ट है कि चूंकि समतल तरंग का निश्चित संवेग (निश्चित ऊर्जा) होता है, इसलिए पूरे अंतरिक्ष में कण के स्थान को खोजने की संभावना समान और नगण्य होती है। दूसरे शब्दों में, यूक्लिडियन अंतरिक्ष में तरंग कार्य सामान्य नहीं है, ये स्थिर राज्य भौतिक वसूली योग्य राज्यों के अनुरूप नहीं हो सकते हैं।<ref>{{Cite web| title=Lecture 9|url=http://www.physics.udel.edu/~msafrono/424-2011/Lecture%209final.pdf}}</ref> | ||
| Line 80: | Line 75: | ||
<math display="block"> v_p=\frac{\omega}{k}=\frac{\hbar k}{2m} = \frac{p}{2m}. </math> | <math display="block"> v_p=\frac{\omega}{k}=\frac{\hbar k}{2m} = \frac{p}{2m}. </math> | ||
ध्यान दें कि <math>\frac{p}{2m}</math> गति के साथ | ध्यान दें कि <math>\frac{p}{2m}</math> गति के साथ प्राचीन कण की गति नहीं है <math>p</math>; बल्कि, यह प्राचीन वेग का आधा है। | ||
इस बीच, मान लीजिए कि प्रारंभिक तरंग कार्य करती है <math>\psi_0</math> एक तरंग पैकेट है जिसका फूरियर रूपांतरित होता है <math>\hat\psi_0</math> एक विशेष तरंग वेक्टर के पास केंद्रित है <math>\mathbf k</math>. तब समतल तरंग के [[ समूह वेग ]] को इस प्रकार परिभाषित किया जाता है | इस बीच, मान लीजिए कि प्रारंभिक तरंग कार्य करती है <math>\psi_0</math> एक तरंग पैकेट है जिसका फूरियर रूपांतरित होता है <math>\hat\psi_0</math> एक विशेष तरंग वेक्टर के पास केंद्रित है <math>\mathbf k</math>. तब समतल तरंग के [[ समूह वेग ]] को इस प्रकार परिभाषित किया जाता है | ||
<math display="block"> v_g= \nabla\omega(\mathbf k)=\frac{\hbar\mathbf k}{m}=\frac{\mathbf p}{m},</math> | <math display="block"> v_g= \nabla\omega(\mathbf k)=\frac{\hbar\mathbf k}{m}=\frac{\mathbf p}{m},</math> | ||
जो कण के | जो कण के प्राचीन वेग के सूत्र से सहमत है। समूह वेग वह (अनुमानित) गति है जिस पर संपूर्ण तरंग पैकेट फैलता है, जबकि चरण वेग वह गति है जिस पर तरंग पैकेट में व्यक्तिगत चोटियाँ चलती हैं।<ref>{{harvnb|Hall|2013}} Sections 4.3 and 4.4</ref> आंकड़ा इस घटना को दिखाता है, लहर पैकेट के भीतर अलग-अलग चोटियों के साथ समग्र पैकेट की आधी गति से फैलता है। | ||
=== तरंग पैकेट का प्रसार === | === तरंग पैकेट का प्रसार === | ||
| Line 101: | Line 96: | ||
== यह भी देखें == | == यह भी देखें == | ||
* वेव पैकेट | * वेव पैकेट | ||
* समूह वेग | * समूह वेग | ||
| Line 109: | Line 103: | ||
==संदर्भ== | ==संदर्भ== | ||
* ''Quantum Mechanics'', E. Abers, Pearson Ed., Addison Wesley, Prentice Hall Inc, 2004, {{ISBN|978-0-13-146100-0}} | * ''Quantum Mechanics'', E. Abers, Pearson Ed., Addison Wesley, Prentice Hall Inc, 2004, {{ISBN|978-0-13-146100-0}} | ||
* ''Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles (2nd Edition)'', R. Eisberg, R. Resnick, John Wiley & Sons, 1985, {{ISBN|978-0-471-87373-0}} | * ''Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles (2nd Edition)'', R. Eisberg, R. Resnick, John Wiley & Sons, 1985, {{ISBN|978-0-471-87373-0}} | ||
| Line 117: | Line 110: | ||
* ''Elementary Quantum Mechanics'', N.F. Mott, Wykeham Science, Wykeham Press (Taylor & Francis Group), 1972, {{ISBN|0-85109-270-5}} | * ''Elementary Quantum Mechanics'', N.F. Mott, Wykeham Science, Wykeham Press (Taylor & Francis Group), 1972, {{ISBN|0-85109-270-5}} | ||
* ''Quantum mechanics'', E. Zaarur, Y. Peleg, R. Pnini, Schaum's Outlines, Mc Graw Hill (USA), 1998, {{ISBN|007-0540187}} | * ''Quantum mechanics'', E. Zaarur, Y. Peleg, R. Pnini, Schaum's Outlines, Mc Graw Hill (USA), 1998, {{ISBN|007-0540187}} | ||
;Specific | ;Specific | ||
<references /> | <references /> | ||
| Line 123: | Line 115: | ||
==आगे की पढाई== | ==आगे की पढाई== | ||
* ''The New Quantum Universe'', T.Hey, P.Walters, Cambridge University Press, 2009, {{ISBN|978-0-521-56457-1}}. | * ''The New Quantum Universe'', T.Hey, P.Walters, Cambridge University Press, 2009, {{ISBN|978-0-521-56457-1}}. | ||
* ''Quantum Field Theory'', D. McMahon, Mc Graw Hill (USA), 2008, {{ISBN|978-0-07-154382-8}} | * ''Quantum Field Theory'', D. McMahon, Mc Graw Hill (USA), 2008, {{ISBN|978-0-07-154382-8}} | ||
Revision as of 17:10, 26 February 2023
भौतिकी में, मुक्त कण एक ऐसा कण होता है, जो किसी अर्थ में, किसी बाहरी बल से बंधा नहीं होता है, या समतुल्य रूप से उस क्षेत्र में नहीं होता है जहां इसकी संभावित ऊर्जा भिन्न होती है। प्राचीन भौतिकी में, इसका अर्थ है कि कण एक क्षेत्र-मुक्त स्थान में मौजूद है। क्वांटम यांत्रिकी में, इसका मतलब है कि कण एकसमान क्षमता के क्षेत्र में है, सामान्यतः रुचि के क्षेत्र में शून्य पर सेट होता है क्योंकि क्षमता को अंतरिक्ष में किसी भी बिंदु पर मनमाने ढंग से शून्य पर सेट किया जा सकता है।
प्राचीन मुक्त कण
प्राचीन मुक्त कण की विशेषता एक निश्चित वेग v है। संवेग द्वारा दिया जाता है
क्वांटम मुक्त कण
गणितीय विवरण
द्रव्यमान वाला एक मुक्त कण गैर-सापेक्षवादी क्वांटम यांत्रिकी में मुक्त श्रोडिंगर समीकरण द्वारा वर्णित है:
माप और गणना
प्रायिकता घनत्व फ़ंक्शन का अभिन्न अंग
फूरियर अपघटन
फ्री पार्टिकल वेव फंक्शन को मोमेंटम ईजेनफंक्शन के सुपरपोजिशन द्वारा दर्शाया जा सकता है, जिसमें शुरुआती वेवफंक्शन के फूरियर रूपांतरण द्वारा दिए गए गुणांक होते हैं:[2]
जटिल समतल तरंग के लिए संवेग p का प्रत्याशित मान है
समूह वेग और चरण वेग
इस बीच, मान लीजिए कि प्रारंभिक तरंग कार्य करती है एक तरंग पैकेट है जिसका फूरियर रूपांतरित होता है एक विशेष तरंग वेक्टर के पास केंद्रित है . तब समतल तरंग के समूह वेग को इस प्रकार परिभाषित किया जाता है
तरंग पैकेट का प्रसार
समूह वेग की धारणा फैलाव संबंध के रैखिक सन्निकटन पर आधारित है के एक विशेष मूल्य के पास .[4] इस सन्निकटन में, तरंग पैकेट का आयाम बिना आकार बदले समूह वेग के बराबर वेग से चलता है। यह परिणाम एक सन्निकटन है जो एक मुक्त क्वांटम कण के विकास के कुछ दिलचस्प पहलुओं को पकड़ने में विफल रहता है। विशेष रूप से, लहर पैकेट की चौड़ाई, जैसा कि स्थिति में अनिश्चितता से मापा जाता है, बड़े समय के लिए रैखिक रूप से बढ़ता है। मुक्त कण के लिए इस घटना को वेव_पैकेट#गाऊसी_वेव_पैकेट_इन_क्वांटम_यांत्रिकी कहा जाता है।
विशेष रूप से, अनिश्चितता के लिए सटीक सूत्र की गणना करना कठिन नहीं है समय के एक कार्य के रूप में, जहाँ स्थिति संचालिका है। सादगी के लिए एक स्थानिक आयाम में कार्य करना, हमारे पास है:[5]
इस प्रकार, बड़े सकारात्मक समय के लिए, में अनिश्चितता के गुणांक के साथ रैखिक रूप से बढ़ता है के बराबर . यदि प्रारंभिक तरंग समारोह की गति अत्यधिक स्थानीयकृत है, तरंग पैकेट धीरे-धीरे फैलेगा और समूह-वेग सन्निकटन लंबे समय तक अच्छा रहेगा। सहजता से, यह परिणाम कहता है कि यदि प्रारंभिक तरंग समारोह में बहुत तेजी से परिभाषित गति होती है, तो कण में तेजी से परिभाषित वेग होता है और इस वेग पर लंबे समय तक (अच्छे सन्निकटन के लिए) प्रचार करेगा।
आपेक्षिकीय क्वांटम मुक्त कण
सापेक्षतावादी कणों का वर्णन करने वाले कई समीकरण हैं: सापेक्षिक तरंग समीकरण देखें।
यह भी देखें
- वेव पैकेट
- समूह वेग
- एक बॉक्स में कण
- परिमित वर्ग अच्छी तरह से
- डेल्टा क्षमता
संदर्भ
- Quantum Mechanics, E. Abers, Pearson Ed., Addison Wesley, Prentice Hall Inc, 2004, ISBN 978-0-13-146100-0
- Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles (2nd Edition), R. Eisberg, R. Resnick, John Wiley & Sons, 1985, ISBN 978-0-471-87373-0
- Stationary States, A. Holden, College Physics Monographs (USA), Oxford University Press, 1971, ISBN 0-19-851121-3
- Hall, Brian C. (2013), Quantum Theory for Mathematicians, Graduate Texts in Mathematics, vol. 267, Springer, ISBN 978-1461471158
- Quantum Mechanics Demystified, D. McMahon, Mc Graw Hill (USA), 2006, ISBN 0-07-145546 9
- Elementary Quantum Mechanics, N.F. Mott, Wykeham Science, Wykeham Press (Taylor & Francis Group), 1972, ISBN 0-85109-270-5
- Quantum mechanics, E. Zaarur, Y. Peleg, R. Pnini, Schaum's Outlines, Mc Graw Hill (USA), 1998, ISBN 007-0540187
- Specific
आगे की पढाई
- The New Quantum Universe, T.Hey, P.Walters, Cambridge University Press, 2009, ISBN 978-0-521-56457-1.
- Quantum Field Theory, D. McMahon, Mc Graw Hill (USA), 2008, ISBN 978-0-07-154382-8
- Quantum mechanics, E. Zaarur, Y. Peleg, R. Pnini, Schaum's Easy Outlines Crash Course, Mc Graw Hill (USA), 2006, ISBN 978-007-145533-6
