गणित: Difference between revisions

From Vigyanwiki
(minor changes)
Line 5: Line 5:
{{Math topics TOC}}
{{Math topics TOC}}
[[File:Euclid.jpg|thumb|350px|तीसरी शताब्दी ईसा पूर्व ग्रीक गणितज्ञ यूक्लिड ने कैलीपर्स को पकड़े हुए, जैसा कि एथेंस के स्कूल से इस विस्तार से राफेल द्वारा कल्पना की गई थी (1509-1511){{efn|No likeness or description of Euclid's physical appearance made during his lifetime survived antiquity. Therefore, Euclid's depiction in works of art depends on the artist's imagination (see Euclid).}}]]
[[File:Euclid.jpg|thumb|350px|तीसरी शताब्दी ईसा पूर्व ग्रीक गणितज्ञ यूक्लिड ने कैलीपर्स को पकड़े हुए, जैसा कि एथेंस के स्कूल से इस विस्तार से राफेल द्वारा कल्पना की गई थी (1509-1511){{efn|No likeness or description of Euclid's physical appearance made during his lifetime survived antiquity. Therefore, Euclid's depiction in works of art depends on the artist's imagination (see Euclid).}}]]
गणित ({{etymology|grc|''{{wikt-lang|grc|μάθημα}}''; {{grc-transl|μάθημα}}:|knowledge, study, learning}}) ज्ञान का एक क्षेत्र है जिसमें संख्याएं (अंकगणित और संख्या सिद्धांत),<ref name="OED">{{cite web |url=http://oed.com/view/Entry/114974 |title=mathematics, ''n.'' |publisher=Oxford University Press |website=Oxford English Dictionary |year=2012 |access-date=June 16, 2012 |quote=The science of space, number, quantity, and arrangement, whose methods involve logical reasoning and usually the use of symbolic notation, and which includes geometry, arithmetic, algebra, and analysis. |archive-url=https://web.archive.org/web/20191116075558/https://www.oed.com/view/Entry/114974 |archive-date=November 16, 2019 |url-status=live }}</ref> सूत्र और संबंधित संरचनाएं (बीजगणित),<ref name="Kneebone">{{cite book |title=Mathematical Logic and the Foundations of Mathematics: An Introductory Survey |publisher=Dover |author=Kneebone, G.T. |year=1963 |page=4 |url=https://books.google.com/books?id=tCXxf4vbXCcC&pg=PA4 |isbn=978-0-486-41712-7 |quote=Mathematics&nbsp;... is simply the study of abstract structures, or formal patterns of connectedness.}}</ref> आकार जैसे विषय शामिल हैं। और वे स्थान जिनमें वे समाहित हैं (ज्यामिति),<ref name=OED/> और मात्राएँ और उनके परिवर्तन (कैलकुलस और विश्लेषण)।<ref name="LaTorre">{{cite book |title=Calculus Concepts: An Informal Approach to the Mathematics of Change |publisher=Cengage Learning |first1=Donald R. |last1=LaTorre |first2=John W. |last2=Kenelly |first3=Sherry S. |last3=Biggers |first4=Laurel R. |last4=Carpenter |first5=Iris B. |last5=Reed |first6=Cynthia R. |last6=Harris |year=2011 |page=2 |url=https://books.google.com/books?id=1Ebu2Tij4QsC&pg=PA2 |isbn=978-1-4390-4957-0 |quote=Calculus is the study of change—how things change, and how quickly they change.}}</ref><ref name="Ramana">{{cite book |title=Applied Mathematics |publisher=Tata McGraw–Hill Education |author=Ramana |year=2007 |page=2.10 |url=https://books.google.com/books?id=XCRC6BeKhIIC&pg=SA2–PA10 |isbn=978-0-07-066753-2 |quote=The mathematical study of change, motion, growth or decay is calculus.}}</ref><ref name="Ziegler">{{cite book |title=An Invitation to Mathematics: From Competitions to Research |publisher=Springer |author=Ziegler, Günter M. |author-link=Günter M. Ziegler |year=2011 |page=vii |chapter-url=https://books.google.com/books?id=9TATfteVeVYC&pg=PR7 |isbn=978-3-642-19532-7 |chapter=What Is Mathematics?}}</ref> अधिकांश गणितीय गतिविधि में अमूर्त वस्तुओं के गुणों को खोजने या साबित करने के लिए शुद्ध कारण का उपयोग शामिल होता है, जिसमें या तो प्रकृति से अमूर्त होते हैं या{{emdash}}आधुनिक गणित में{{emdash}}ऐसी संस्थाएं होती हैं जो कुछ गुणों के साथ निर्धारित होती हैं, जिन्हें स्वयंसिद्ध कहा जाता है। एक गणितीय प्रमाण में पहले से सिद्ध किए गए प्रमेयों, स्वयंसिद्धों और (प्रकृति से अमूर्तता के मामले में) कुछ बुनियादी गुणों सहित पहले से ज्ञात परिणामों के लिए कुछ निगमन नियमों के अनुप्रयोगों का उत्तराधिकार होता है, जिन्हें विचाराधीन सिद्धांत के सही प्रारंभिक बिंदु माना जाता है।  
गणित ({{etymology|grc|''{{wikt-lang|grc|μάθημα}}''; {{grc-transl|μάθημα}}:|knowledge, study, learning}}) ज्ञान का एक क्षेत्र है जिसमें संख्याएं (अंकगणित और संख्या सिद्धांत),<ref name="OED">{{cite web |url=http://oed.com/view/Entry/114974 |title=mathematics, ''n.'' |publisher=Oxford University Press |website=Oxford English Dictionary |year=2012 |access-date=June 16, 2012 |quote=The science of space, number, quantity, and arrangement, whose methods involve logical reasoning and usually the use of symbolic notation, and which includes geometry, arithmetic, algebra, and analysis. |archive-url=https://web.archive.org/web/20191116075558/https://www.oed.com/view/Entry/114974 |archive-date=November 16, 2019 |url-status=live }}</ref> सूत्र और संबंधित संरचनाएं (बीजगणित),<ref name="Kneebone">{{cite book |title=Mathematical Logic and the Foundations of Mathematics: An Introductory Survey |publisher=Dover |author=Kneebone, G.T. |year=1963 |page=4 |url=https://books.google.com/books?id=tCXxf4vbXCcC&pg=PA4 |isbn=978-0-486-41712-7 |quote=Mathematics&nbsp;... is simply the study of abstract structures, or formal patterns of connectedness.}}</ref> आकार जैसे विषय शामिल हैं। और वे स्थान जिनमें वे निहित हैं (ज्यामिति),<ref name=OED/> और राशियाँ और उनके परिवर्तन (कलन और विश्लेषण)।<ref name="LaTorre">{{cite book |title=Calculus Concepts: An Informal Approach to the Mathematics of Change |publisher=Cengage Learning |first1=Donald R. |last1=LaTorre |first2=John W. |last2=Kenelly |first3=Sherry S. |last3=Biggers |first4=Laurel R. |last4=Carpenter |first5=Iris B. |last5=Reed |first6=Cynthia R. |last6=Harris |year=2011 |page=2 |url=https://books.google.com/books?id=1Ebu2Tij4QsC&pg=PA2 |isbn=978-1-4390-4957-0 |quote=Calculus is the study of change—how things change, and how quickly they change.}}</ref><ref name="Ramana">{{cite book |title=Applied Mathematics |publisher=Tata McGraw–Hill Education |author=Ramana |year=2007 |page=2.10 |url=https://books.google.com/books?id=XCRC6BeKhIIC&pg=SA2–PA10 |isbn=978-0-07-066753-2 |quote=The mathematical study of change, motion, growth or decay is calculus.}}</ref><ref name="Ziegler">{{cite book |title=An Invitation to Mathematics: From Competitions to Research |publisher=Springer |author=Ziegler, Günter M. |author-link=Günter M. Ziegler |year=2011 |page=vii |chapter-url=https://books.google.com/books?id=9TATfteVeVYC&pg=PR7 |isbn=978-3-642-19532-7 |chapter=What Is Mathematics?}}</ref> अधिकांश गणितीय गतिविधि में अमूर्त वस्तुओं के गुणों को खोजने या सिद्ध करने के लिए शुद्ध कारण का उपयोग शामिल होता है, जिसमें या तो प्रकृति से अमूर्तताएं होती हैं या{{emdash}}आधुनिक गणित में{{emdash}}ऐसी वास्तविकताएं होती हैं जो कुछ गुणों के साथ निर्धारित होती हैं, जिन्हें स्वयम् सिद्ध वक्तव्य कहा जाता है। एक गणितीय प्रमाण में पहले से सिद्ध किए गए प्रमेयों, स्वयंसिद्धों और (प्रकृति से अमूर्तता की स्थति में) कुछ मूल गुणों सहित पहले से ज्ञात परिणामों के लिए कुछ निगमन नियमों के अनुप्रयोगों का उत्तराधिकार होता है, जिन्हें विचाराधीन सिद्धांत के सही प्रारंभिक बिंदु माना जाता है।  


विज्ञान में गणित का उपयोग मॉडलिंग परिघटनाओं के लिए किया जाता है, जो तब प्रायोगिक नियमों से भविष्यवाणियां करने की अनुमति देता है। किसी भी प्रयोग से गणितीय सत्य की स्वतंत्रता का तात्पर्य है कि ऐसी भविष्यवाणियों की सटीकता केवल मॉडल की पर्याप्तता पर निर्भर करती है। गलत भविष्यवाणियां, गलत गणित के कारण होने के बजाय, इस्तेमाल किए गए गणितीय मॉडल को बदलने की आवश्यकता का संकेत देती हैं। उदाहरण के लिए, बुध के पेरिहेलियन पूर्वसर्ग को आइंस्टीन के सामान्य सापेक्षता के उद्भव के बाद ही समझाया जा सकता है, जिसने न्यूटन के गुरुत्वाकर्षण के नियम को बेहतर गणितीय मॉडल के रूप में बदल दिया।
विज्ञान में गणित का उपयोग मॉडलिंग परिघटनाओं के लिए किया जाता है, जो तब प्रायोगिक नियमों से पूर्वानुमान लगाने की अनुमति देता है। किसी भी प्रयोग से गणितीय सत्य की स्वतंत्रता का तात्पर्य है कि ऐसी भविष्यवाणियों की सटीकता केवल मॉडल की उपयुक्तता पर निर्भर करती है। अयथार्थ भविष्यवाणियां, अनुचित गणित के कारण होने के बजाय, उपयोग किए गए गणितीय मॉडल को बदलने की आवश्यकता को दर्शाती हैं। उदाहरण के लिए, बुध के पेरिहेलियन पूर्वसर्ग को आइंस्टीन के सामान्य सापेक्षता के उद्भव के बाद ही समझाया जा सकता है, जिसने न्यूटन के गुरुत्वाकर्षण के नियम को बेहतर गणितीय मॉडल के रूप में बदल दिया।


गणित विज्ञान, इंजीनियरिंग, चिकित्सा, वित्त, कंप्यूटर विज्ञान और सामाजिक विज्ञान में आवश्यक है। गणित के कुछ क्षेत्रों, जैसे कि सांख्यिकी और खेल सिद्धांत, को उनके अनुप्रयोगों के साथ घनिष्ठ संबंध में विकसित किया गया है और अक्सर उन्हें अनुप्रयुक्त गणित के अंतर्गत समूहीकृत किया जाता है। अन्य गणितीय क्षेत्रों को किसी भी अनुप्रयोग से स्वतंत्र रूप से विकसित किया जाता है (और इसलिए उन्हें शुद्ध गणित कहा जाता है), लेकिन व्यावहारिक अनुप्रयोगों को अक्सर बाद में खोजा जाता है।{{sfn|Peterson|2001|p=12}}<ref name="wigner1960">{{cite journal |last=Wigner |first=Eugene |year=1960 |title=The Unreasonable Effectiveness of Mathematics in the Natural Sciences |url=https://math.dartmouth.edu/~matc/MathDrama/reading/Wigner.html |journal=[[Communications on Pure and Applied Mathematics]] |volume=13 |issue=1 |pages=1–14 |doi=10.1002/cpa.3160130102 |bibcode=1960CPAM...13....1W |url-status=live |archive-url=https://web.archive.org/web/20110228152633/http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html |archive-date=February 28, 2011 |df=mdy-all }}</ref> एक उपयुक्त उदाहरण पूर्णांक गुणनखंडन की समस्या है, जो यूक्लिड में वापस जाता है, लेकिन जिसका RSA क्रिप्टोसिस्टम (कंप्यूटर नेटवर्क की सुरक्षा के लिए) में उपयोग करने से पहले कोई व्यावहारिक अनुप्रयोग नहीं था।
गणित विज्ञान, अभियांत्रिकी, चिकित्सा, वित्त, कंप्यूटर विज्ञान और सामाजिक विज्ञान में आवश्यक है। गणित के कुछ क्षेत्रों, जैसे कि सांख्यिकी और खेल सिद्धांत, को उनके अनुप्रयोगों के साथ घनिष्ठ पारस्परिक सम्बन्ध में विकसित किया गया है और अक्सर उन्हें अनुप्रयुक्त गणित के अंतर्गत समूहीकृत किया जाता है। अन्य गणितीय क्षेत्रों को किसी भी अनुप्रयोग से स्वतंत्र रूप से विकसित किया जाता है (और इसलिए उन्हें शुद्ध गणित कहा जाता है), लेकिन प्रायोगिक अनुप्रयोगों को अक्सर बाद में खोजा जाता है।{{sfn|Peterson|2001|p=12}}<ref name="wigner1960">{{cite journal |last=Wigner |first=Eugene |year=1960 |title=The Unreasonable Effectiveness of Mathematics in the Natural Sciences |url=https://math.dartmouth.edu/~matc/MathDrama/reading/Wigner.html |journal=[[Communications on Pure and Applied Mathematics]] |volume=13 |issue=1 |pages=1–14 |doi=10.1002/cpa.3160130102 |bibcode=1960CPAM...13....1W |url-status=live |archive-url=https://web.archive.org/web/20110228152633/http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html |archive-date=February 28, 2011 |df=mdy-all }}</ref> एक उपयुक्त उदाहरण पूर्णांक गुणनखंडन की समस्या है, जो यूक्लिड में वापस जाता है, लेकिन जिसका RSA क्रिप्टोसिस्टम (कंप्यूटर नेटवर्क की सुरक्षा के लिए) में उपयोग करने से पहले कोई प्रायोगिक अनुप्रयोग नहीं था।


ऐतिहासिक रूप से, प्रमाण की अवधारणा और उससे जुड़ी गणितीय कठोरता सबसे पहले ग्रीक गणित में दिखाई दी, विशेष रूप से यूक्लिड के तत्वों में।<ref>{{Cite web|url=http://jwilson.coe.uga.edu/EMT668/EMAT6680.F99/Wise/essay7/essay7.htm|title=Eudoxus' Influence on Euclid's Elements with a close look at The Method of Exhaustion|last=Wise|first=David|website=jwilson.coe.uga.edu|url-status=live|archive-url=https://web.archive.org/web/20190601004355/http://jwilson.coe.uga.edu/emt668/EMAT6680.F99/Wise/essay7/essay7.htm|archive-date=June 1, 2019|access-date=2019-10-26}}</ref> इसकी शुरुआत के बाद से, गणित को अनिवार्य रूप से ज्यामिति, और अंकगणित (प्राकृतिक संख्याओं और अंशों का हेरफेर) में विभाजित किया गया था, जब तक कि 16वीं और 17वीं शताब्दी तक, जब बीजगणित और इनफिनिट्सिमल कैलकुलस को विषय के नए क्षेत्रों के रूप में पेश किया गया था। तब से, गणितीय नवाचारों और वैज्ञानिक खोजों के बीच पारस्परिक क्रिया ने गणित के विकास में तेजी से वृद्धि की है। उन्नीसवीं सदी के अंत में, गणित के मूलभूत संकट ने स्वयंसिद्ध पद्धति के व्यवस्थितकरण को जन्म दिया। इससे गणित के क्षेत्रों की संख्या और उनके अनुप्रयोगों के क्षेत्रों में नाटकीय वृद्धि हुई। इसका एक उदाहरण गणित विषय वर्गीकरण है, जिसमें गणित के 60 से अधिक प्रथम-स्तर के क्षेत्रों की सूची है।
ऐतिहासिक रूप से, प्रमाण की अवधारणा और उससे जुड़ी गणितीय कठिनाई सबसे पहले ग्रीक गणित में दिखाई दी, विशेष रूप से यूक्लिड के तत्वों में।<ref>{{Cite web|url=http://jwilson.coe.uga.edu/EMT668/EMAT6680.F99/Wise/essay7/essay7.htm|title=Eudoxus' Influence on Euclid's Elements with a close look at The Method of Exhaustion|last=Wise|first=David|website=jwilson.coe.uga.edu|url-status=live|archive-url=https://web.archive.org/web/20190601004355/http://jwilson.coe.uga.edu/emt668/EMAT6680.F99/Wise/essay7/essay7.htm|archive-date=June 1, 2019|access-date=2019-10-26}}</ref> इसकी शुरुआत के बाद से, गणित को अनिवार्य रूप से ज्यामिति, और अंकगणित (प्राकृतिक संख्याओं और अंशों का हेरफेर) में विभाजित किया गया, जब तक कि 16वीं और 17वीं शताब्दी तक, जब बीजगणित और अतिसूक्ष्म कलन को विषय के नए क्षेत्रों के रूप में प्रस्तावित किया गया। तब से, गणितीय नवाचारों और वैज्ञानिक खोजों के बीच पारस्परिक क्रिया ने गणित के विकास में तेजी से वृद्धि की है। उन्नीसवीं सदी के अंत में, गणित के मूलभूत संकट ने स्वयंसिद्ध पद्धति के व्यवस्थितकरण को जन्म दिया। इससे गणित के क्षेत्रों की संख्या और उनके अनुप्रयोगों के क्षेत्रों में नाटकीय वृद्धि हुई। इसका एक उदाहरण गणित विषय वर्गीकरण है, जिसमें गणित के 60 से अधिक प्रथम-स्तर के क्षेत्रों की सूची है।




Line 31: Line 31:
पुनर्जागरण से पहले, गणित को दो मुख्य क्षेत्रों में विभाजित किया गया था: अंकगणित {{emdash}} संख्याओं के हेरफेर के बारे में, और ज्यामिति {{emdash}} आकृतियों के अध्ययन के बारे में। कुछ प्रकार के छद्म विज्ञान, जैसे अंकशास्त्र और ज्योतिष, तब स्पष्ट रूप से गणित से अलग नहीं थे।
पुनर्जागरण से पहले, गणित को दो मुख्य क्षेत्रों में विभाजित किया गया था: अंकगणित {{emdash}} संख्याओं के हेरफेर के बारे में, और ज्यामिति {{emdash}} आकृतियों के अध्ययन के बारे में। कुछ प्रकार के छद्म विज्ञान, जैसे अंकशास्त्र और ज्योतिष, तब स्पष्ट रूप से गणित से अलग नहीं थे।


पुनर्जागरण के दौरान दो और क्षेत्र सामने आए। गणितीय संकेतन ने बीजगणित की ओर अग्रसर किया, जो मोटे तौर पर, अध्ययन और सूत्रों के हेरफेर से बना है। कैलकुलस, दो उपक्षेत्रों इनफिनिटसिमल कैलकुलस और इंटीग्रल कैलकुलस से मिलकर बना है, निरंतर कार्यों का अध्ययन है, जो अलग-अलग मात्राओं (चर) के बीच आम तौर पर गैर-रेखीय संबंधों को मॉडल करता है। चार मुख्य क्षेत्रों में यह विभाजन {{emdash}} अंकगणित, ज्यामिति, बीजगणित, कलन{{Verification needed|date=April 2022|reason=is this the right set of 4 subfields?}} {{emdash}} 19वीं शताब्दी के अंत तक बना रहा। आकाशीय यांत्रिकी और ठोस यांत्रिकी जैसे क्षेत्रों को अक्सर गणित का हिस्सा माना जाता था, लेकिन अब उन्हें भौतिकी से संबंधित माना जाता है। इस अवधि के दौरान विकसित कुछ विषय गणित से पहले के हैं और ऐसे क्षेत्रों में विभाजित हैं जैसे कि संभाव्यता सिद्धांत और संयोजन, जो बाद में स्वायत्त क्षेत्रों के रूप में माना जाने लगा।  
पुनर्जागरण के दौरान दो और क्षेत्र सामने आए। गणितीय संकेतन ने बीजगणित की ओर अग्रसर किया, जो मोटे तौर पर, अध्ययन और सूत्रों के हेरफेर से बना है। कलन, दो उपक्षेत्रों इनफिनिटसिमल कलन और इंटीग्रल कलन से मिलकर बना है, निरंतर कार्यों का अध्ययन है, जो अलग-अलग मात्राओं (चर) के बीच आम तौर पर गैर-रेखीय संबंधों को मॉडल करता है। चार मुख्य क्षेत्रों में यह विभाजन {{emdash}} अंकगणित, ज्यामिति, बीजगणित, कलन{{Verification needed|date=April 2022|reason=is this the right set of 4 subfields?}} {{emdash}} 19वीं शताब्दी के अंत तक बना रहा। आकाशीय यांत्रिकी और ठोस यांत्रिकी जैसे क्षेत्रों को अक्सर गणित का हिस्सा माना जाता था, लेकिन अब उन्हें भौतिकी से संबंधित माना जाता है। इस अवधि के दौरान विकसित कुछ विषय गणित से पहले के हैं और ऐसे क्षेत्रों में विभाजित हैं जैसे कि संभाव्यता सिद्धांत और संयोजन, जो बाद में स्वायत्त क्षेत्रों के रूप में माना जाने लगा।  


19वीं शताब्दी के अंत में, गणित में मूलभूत संकट और परिणामी स्वयंसिद्ध पद्धति के व्यवस्थितकरण ने गणित के नए क्षेत्रों का विस्फोट किया। आज, गणित विषय वर्गीकरण में चौंसठ प्रथम-स्तरीय क्षेत्रों से कम नहीं है। इनमें से कुछ क्षेत्र पुराने विभाजन से मेल खाते हैं, जैसा कि संख्या सिद्धांत (उच्च अंकगणित के लिए आधुनिक नाम) और ज्यामिति के बारे में सच है। (हालांकि, कई अन्य प्रथम-स्तरीय क्षेत्रों में उनके नाम में "ज्यामिति" है या अन्यथा सामान्यतः ज्यामिति का हिस्सा माना जाता है।) बीजगणित और कलन प्रथम-स्तर के क्षेत्रों के रूप में प्रकट नहीं होते हैं, लेकिन क्रमशः कई प्रथम-स्तर के क्षेत्रों में विभाजित होते हैं। 20वीं शताब्दी के दौरान अन्य प्रथम-स्तरीय क्षेत्र उभरे (उदाहरण के लिए श्रेणी सिद्धांत; होमोलॉजिकल बीजगणित, और कंप्यूटर विज्ञान) या पहले गणित के रूप में नहीं माना गया था, जैसे गणितीय तर्क और नींव (मॉडल सिद्धांत, संगणनीयता सिद्धांत, सेट सिद्धांत, प्रमाण सिद्धांत और बीजगणितीय तर्क सहित)।
19वीं शताब्दी के अंत में, गणित में मूलभूत संकट और परिणामी स्वयंसिद्ध पद्धति के व्यवस्थितकरण ने गणित के नए क्षेत्रों का विस्फोट किया। आज, गणित विषय वर्गीकरण में चौंसठ प्रथम-स्तरीय क्षेत्रों से कम नहीं है। इनमें से कुछ क्षेत्र पुराने विभाजन से मेल खाते हैं, जैसा कि संख्या सिद्धांत (उच्च अंकगणित के लिए आधुनिक नाम) और ज्यामिति के बारे में सच है। (हालांकि, कई अन्य प्रथम-स्तरीय क्षेत्रों में उनके नाम में "ज्यामिति" है या अन्यथा सामान्यतः ज्यामिति का हिस्सा माना जाता है।) बीजगणित और कलन प्रथम-स्तर के क्षेत्रों के रूप में प्रकट नहीं होते हैं, लेकिन क्रमशः कई प्रथम-स्तर के क्षेत्रों में विभाजित होते हैं। 20वीं शताब्दी के दौरान अन्य प्रथम-स्तरीय क्षेत्र उभरे (उदाहरण के लिए श्रेणी सिद्धांत; होमोलॉजिकल बीजगणित, और कंप्यूटर विज्ञान) या पहले गणित के रूप में नहीं माना गया था, जैसे गणितीय तर्क और नींव (मॉडल सिद्धांत, संगणनीयता सिद्धांत, सेट सिद्धांत, प्रमाण सिद्धांत और बीजगणितीय तर्क सहित)।
Line 52: Line 52:
परिणामी यूक्लिडियन ज्यामिति, यूक्लिडियन तल (प्लेन ज्योमेट्री) और (त्रि-आयामी) यूक्लिडियन स्पेस में रेखाओं, विमानों और वृत्तों से निर्मित आकृतियों और उनकी व्यवस्थाओं का अध्ययन है।{{efn|This includes [[conic section]]s, which are intersections of [[circular cylinder]]s and planes.}}  
परिणामी यूक्लिडियन ज्यामिति, यूक्लिडियन तल (प्लेन ज्योमेट्री) और (त्रि-आयामी) यूक्लिडियन स्पेस में रेखाओं, विमानों और वृत्तों से निर्मित आकृतियों और उनकी व्यवस्थाओं का अध्ययन है।{{efn|This includes [[conic section]]s, which are intersections of [[circular cylinder]]s and planes.}}  


17 वीं शताब्दी तक यूक्लिडियन ज्यामिति विधियों या दायरे में बदलाव के बिना विकसित की गई थी, जब रेने डेसकार्टेस ने पेश किया जिसे अब कार्टेशियन निर्देशांक कहा जाता है। यह प्रतिमान का एक बड़ा परिवर्तन था, क्योंकि वास्तविक संख्याओं को रेखा खंडों की लंबाई के रूप में परिभाषित करने के बजाय (संख्या रेखा देखें), इसने उनके निर्देशांक (जो संख्याएं हैं) का उपयोग करके बिंदुओं के प्रतिनिधित्व की अनुमति दी। यह किसी को ज्यामितीय समस्याओं को हल करने के लिए बीजगणित (और बाद में, कैलकुलस) का उपयोग करने की अनुमति देता है। इसने ज्यामिति को दो नए उपक्षेत्रों में विभाजित किया: सिंथेटिक ज्यामिति, जो विशुद्ध रूप से ज्यामितीय विधियों का उपयोग करती है, और विश्लेषणात्मक ज्यामिति, जो व्यवस्थित रूप से निर्देशांक का उपयोग करती है।
17 वीं शताब्दी तक यूक्लिडियन ज्यामिति विधियों या दायरे में बदलाव के बिना विकसित की गई थी, जब रेने डेसकार्टेस ने पेश किया जिसे अब कार्टेशियन निर्देशांक कहा जाता है। यह प्रतिमान का एक बड़ा परिवर्तन था, क्योंकि वास्तविक संख्याओं को रेखा खंडों की लंबाई के रूप में परिभाषित करने के बजाय (संख्या रेखा देखें), इसने उनके निर्देशांक (जो संख्याएं हैं) का उपयोग करके बिंदुओं के प्रतिनिधित्व की अनुमति दी। यह किसी को ज्यामितीय समस्याओं को हल करने के लिए बीजगणित (और बाद में, कलन) का उपयोग करने की अनुमति देता है। इसने ज्यामिति को दो नए उपक्षेत्रों में विभाजित किया: सिंथेटिक ज्यामिति, जो विशुद्ध रूप से ज्यामितीय विधियों का उपयोग करती है, और विश्लेषणात्मक ज्यामिति, जो व्यवस्थित रूप से निर्देशांक का उपयोग करती है।


विश्लेषणात्मक ज्यामिति उन वक्रों के अध्ययन की अनुमति देती है जो वृत्त और रेखाओं से संबंधित नहीं हैं। इस तरह के वक्रों को कार्यों के ग्राफ के रूप में परिभाषित किया जा सकता है (जिसके अध्ययन से अंतर ज्यामिति का नेतृत्व किया गया)। उन्हें निहित समीकरणों के रूप में भी परिभाषित किया जा सकता है, अक्सर बहुपद समीकरण (जो बीजगणितीय ज्यामिति उत्पन्न करते हैं)। विश्लेषणात्मक ज्यामिति भी तीन आयामों से अधिक के रिक्त स्थान पर विचार करना संभव बनाता है।
विश्लेषणात्मक ज्यामिति उन वक्रों के अध्ययन की अनुमति देती है जो वृत्त और रेखाओं से संबंधित नहीं हैं। इस तरह के वक्रों को कार्यों के ग्राफ के रूप में परिभाषित किया जा सकता है (जिसके अध्ययन से अंतर ज्यामिति का नेतृत्व किया गया)। उन्हें निहित समीकरणों के रूप में भी परिभाषित किया जा सकता है, अक्सर बहुपद समीकरण (जो बीजगणितीय ज्यामिति उत्पन्न करते हैं)। विश्लेषणात्मक ज्यामिति भी तीन आयामों से अधिक के रिक्त स्थान पर विचार करना संभव बनाता है।
Line 116: Line 116:
=== कलन और विश्लेषण ===
=== कलन और विश्लेषण ===
{{Main|Calculus|Mathematical analysis}}
{{Main|Calculus|Mathematical analysis}}
कैलकुलस, जिसे पहले इनफिनिट्सिमल कैलकुलस कहा जाता था, को स्वतंत्र रूप से और साथ ही साथ 17 वीं शताब्दी के गणितज्ञ न्यूटन और लाइबनिज़ द्वारा पेश किया गया था। यह मूल रूप से एक दूसरे पर निर्भर चरों के संबंध का अध्ययन है। कैलकुलस का विस्तार 18वीं शताब्दी में यूलर द्वारा एक फलन की अवधारणा और कई अन्य परिणामों के साथ किया गया था। वर्तमान में, "कैलकुलस" मुख्य रूप से इस सिद्धांत के प्रारंभिक भाग को संदर्भित करता है, और "विश्लेषण" का उपयोग आमतौर पर उन्नत भागों के लिए किया जाता है।
कलन, जिसे पहले इनफिनिट्सिमल कलन कहा जाता था, को स्वतंत्र रूप से और साथ ही साथ 17 वीं शताब्दी के गणितज्ञ न्यूटन और लाइबनिज़ द्वारा पेश किया गया था। यह मूल रूप से एक दूसरे पर निर्भर चरों के संबंध का अध्ययन है। कलन का विस्तार 18वीं शताब्दी में यूलर द्वारा एक फलन की अवधारणा और कई अन्य परिणामों के साथ किया गया था। वर्तमान में, " कलन" मुख्य रूप से इस सिद्धांत के प्रारंभिक भाग को संदर्भित करता है, और "विश्लेषण" का उपयोग आमतौर पर उन्नत भागों के लिए किया जाता है।


विश्लेषण को वास्तविक विश्लेषण में और उप-विभाजित किया जाता है, जहां चर वास्तविक संख्याओं का प्रतिनिधित्व करते हैं, और जटिल विश्लेषण, जहां चर जटिल संख्याओं का प्रतिनिधित्व करते हैं। विश्लेषण में गणित के अन्य क्षेत्रों द्वारा साझा किए गए कई उपक्षेत्र शामिल हैं जिनमें निम्न शामिल हैं:
विश्लेषण को वास्तविक विश्लेषण में और उप-विभाजित किया जाता है, जहां चर वास्तविक संख्याओं का प्रतिनिधित्व करते हैं, और जटिल विश्लेषण, जहां चर जटिल संख्याओं का प्रतिनिधित्व करते हैं। विश्लेषण में गणित के अन्य क्षेत्रों द्वारा साझा किए गए कई उपक्षेत्र शामिल हैं जिनमें निम्न शामिल हैं:
Line 128: Line 128:
=== विविक्त गणित ===
=== विविक्त गणित ===
{{main|Discrete mathematics}}
{{main|Discrete mathematics}}
असतत गणित, मोटे तौर पर, परिमित गणितीय वस्तुओं का अध्ययन है। क्योंकि यहां अध्ययन की वस्तुएं असतत हैं, कैलकुलस और गणितीय विश्लेषण के तरीके सीधे लागू नहीं होते हैं।{{efn|However, some advanced methods of analysis are sometimes used; for example, methods of [[complex analysis]] applied to [[generating series]].}} एल्गोरिदम - विशेष रूप से उनके कार्यान्वयन और कम्प्यूटेशनल जटिलता - असतत गणित में एक प्रमुख भूमिका निभाते हैं।
असतत गणित, मोटे तौर पर, परिमित गणितीय वस्तुओं का अध्ययन है। क्योंकि यहां अध्ययन की वस्तुएं असतत हैं, कलन और गणितीय विश्लेषण के तरीके सीधे लागू नहीं होते हैं।{{efn|However, some advanced methods of analysis are sometimes used; for example, methods of [[complex analysis]] applied to [[generating series]].}} एल्गोरिदम - विशेष रूप से उनके कार्यान्वयन और कम्प्यूटेशनल जटिलता - असतत गणित में एक प्रमुख भूमिका निभाते हैं।


असतत गणित में शामिल हैं:
असतत गणित में शामिल हैं:
Line 185: Line 185:
=== अनुप्रयुक्त गणित ===
=== अनुप्रयुक्त गणित ===
{{Main|Applied mathematics}}{{Expand section|the connections between mathematics proper and the other sciences (enough for an entire first-level section)|date=June 2022}}
{{Main|Applied mathematics}}{{Expand section|the connections between mathematics proper and the other sciences (enough for an entire first-level section)|date=June 2022}}
अनुप्रयुक्त गणित विज्ञान, इंजीनियरिंग, व्यवसाय और उद्योग में उपयोग किए जाने वाले गणितीय तरीकों का अध्ययन है। इस प्रकार, "अनुप्रयुक्त गणित" विशिष्ट ज्ञान वाला गणितीय विज्ञान है। व्यावहारिक गणित शब्द उस पेशेवर विशेषता का भी वर्णन करता है जिसमें गणितज्ञ व्यावहारिक समस्याओं पर कार्य करते हैं; व्यावहारिक समस्याओं पर केंद्रित एक पेशे के रूप में, अनुप्रयुक्त गणित "गणितीय मॉडल के निर्माण, अध्ययन और उपयोग" पर केंद्रित है।{{Cn|date=May 2022}}
अनुप्रयुक्त गणित विज्ञान, अभियांत्रिकी, व्यवसाय और उद्योग में उपयोग किए जाने वाले गणितीय तरीकों का अध्ययन है। इस प्रकार, "अनुप्रयुक्त गणित" विशिष्ट ज्ञान वाला गणितीय विज्ञान है। व्यावहारिक गणित शब्द उस पेशेवर विशेषता का भी वर्णन करता है जिसमें गणितज्ञ व्यावहारिक समस्याओं पर कार्य करते हैं; व्यावहारिक समस्याओं पर केंद्रित एक पेशे के रूप में, अनुप्रयुक्त गणित "गणितीय मॉडल के निर्माण, अध्ययन और उपयोग" पर केंद्रित है।{{Cn|date=May 2022}}


अतीत में, व्यावहारिक अनुप्रयोगों ने गणितीय सिद्धांतों के विकास को प्रेरित किया है, जो तब शुद्ध गणित में अध्ययन का विषय बन गया, जहां गणित को मुख्य रूप से अपने लिए विकसित किया गया है। इस प्रकार, अनुप्रयुक्त गणित की गतिविधि विशुद्ध रूप से शुद्ध गणित में अनुसंधान के साथ जुड़ी हुई है।{{Example needed|s|date=June 2022}}
अतीत में, व्यावहारिक अनुप्रयोगों ने गणितीय सिद्धांतों के विकास को प्रेरित किया है, जो तब शुद्ध गणित में अध्ययन का विषय बन गया, जहां गणित को मुख्य रूप से अपने लिए विकसित किया गया है। इस प्रकार, अनुप्रयुक्त गणित की गतिविधि विशुद्ध रूप से शुद्ध गणित में अनुसंधान के साथ जुड़ी हुई है।{{Example needed|s|date=June 2022}}

Revision as of 17:24, 9 September 2022

File:Euclid.jpg
तीसरी शताब्दी ईसा पूर्व ग्रीक गणितज्ञ यूक्लिड ने कैलीपर्स को पकड़े हुए, जैसा कि एथेंस के स्कूल से इस विस्तार से राफेल द्वारा कल्पना की गई थी (1509-1511)[lower-alpha 1]

गणित (from Ancient Greek μάθημα; máthēma: 'knowledge, study, learning') ज्ञान का एक क्षेत्र है जिसमें संख्याएं (अंकगणित और संख्या सिद्धांत),[1] सूत्र और संबंधित संरचनाएं (बीजगणित),[2] आकार जैसे विषय शामिल हैं। और वे स्थान जिनमें वे निहित हैं (ज्यामिति),[1] और राशियाँ और उनके परिवर्तन (कलन और विश्लेषण)।[3][4][5] अधिकांश गणितीय गतिविधि में अमूर्त वस्तुओं के गुणों को खोजने या सिद्ध करने के लिए शुद्ध कारण का उपयोग शामिल होता है, जिसमें या तो प्रकृति से अमूर्तताएं होती हैं या—आधुनिक गणित में—ऐसी वास्तविकताएं होती हैं जो कुछ गुणों के साथ निर्धारित होती हैं, जिन्हें स्वयम् सिद्ध वक्तव्य कहा जाता है। एक गणितीय प्रमाण में पहले से सिद्ध किए गए प्रमेयों, स्वयंसिद्धों और (प्रकृति से अमूर्तता की स्थति में) कुछ मूल गुणों सहित पहले से ज्ञात परिणामों के लिए कुछ निगमन नियमों के अनुप्रयोगों का उत्तराधिकार होता है, जिन्हें विचाराधीन सिद्धांत के सही प्रारंभिक बिंदु माना जाता है।

विज्ञान में गणित का उपयोग मॉडलिंग परिघटनाओं के लिए किया जाता है, जो तब प्रायोगिक नियमों से पूर्वानुमान लगाने की अनुमति देता है। किसी भी प्रयोग से गणितीय सत्य की स्वतंत्रता का तात्पर्य है कि ऐसी भविष्यवाणियों की सटीकता केवल मॉडल की उपयुक्तता पर निर्भर करती है। अयथार्थ भविष्यवाणियां, अनुचित गणित के कारण होने के बजाय, उपयोग किए गए गणितीय मॉडल को बदलने की आवश्यकता को दर्शाती हैं। उदाहरण के लिए, बुध के पेरिहेलियन पूर्वसर्ग को आइंस्टीन के सामान्य सापेक्षता के उद्भव के बाद ही समझाया जा सकता है, जिसने न्यूटन के गुरुत्वाकर्षण के नियम को बेहतर गणितीय मॉडल के रूप में बदल दिया।

गणित विज्ञान, अभियांत्रिकी, चिकित्सा, वित्त, कंप्यूटर विज्ञान और सामाजिक विज्ञान में आवश्यक है। गणित के कुछ क्षेत्रों, जैसे कि सांख्यिकी और खेल सिद्धांत, को उनके अनुप्रयोगों के साथ घनिष्ठ पारस्परिक सम्बन्ध में विकसित किया गया है और अक्सर उन्हें अनुप्रयुक्त गणित के अंतर्गत समूहीकृत किया जाता है। अन्य गणितीय क्षेत्रों को किसी भी अनुप्रयोग से स्वतंत्र रूप से विकसित किया जाता है (और इसलिए उन्हें शुद्ध गणित कहा जाता है), लेकिन प्रायोगिक अनुप्रयोगों को अक्सर बाद में खोजा जाता है।[6][7] एक उपयुक्त उदाहरण पूर्णांक गुणनखंडन की समस्या है, जो यूक्लिड में वापस जाता है, लेकिन जिसका RSA क्रिप्टोसिस्टम (कंप्यूटर नेटवर्क की सुरक्षा के लिए) में उपयोग करने से पहले कोई प्रायोगिक अनुप्रयोग नहीं था।

ऐतिहासिक रूप से, प्रमाण की अवधारणा और उससे जुड़ी गणितीय कठिनाई सबसे पहले ग्रीक गणित में दिखाई दी, विशेष रूप से यूक्लिड के तत्वों में।[8] इसकी शुरुआत के बाद से, गणित को अनिवार्य रूप से ज्यामिति, और अंकगणित (प्राकृतिक संख्याओं और अंशों का हेरफेर) में विभाजित किया गया, जब तक कि 16वीं और 17वीं शताब्दी तक, जब बीजगणित और अतिसूक्ष्म कलन को विषय के नए क्षेत्रों के रूप में प्रस्तावित किया गया। तब से, गणितीय नवाचारों और वैज्ञानिक खोजों के बीच पारस्परिक क्रिया ने गणित के विकास में तेजी से वृद्धि की है। उन्नीसवीं सदी के अंत में, गणित के मूलभूत संकट ने स्वयंसिद्ध पद्धति के व्यवस्थितकरण को जन्म दिया। इससे गणित के क्षेत्रों की संख्या और उनके अनुप्रयोगों के क्षेत्रों में नाटकीय वृद्धि हुई। इसका एक उदाहरण गणित विषय वर्गीकरण है, जिसमें गणित के 60 से अधिक प्रथम-स्तर के क्षेत्रों की सूची है।




शब्द व्युत्पत्ति

गणित शब्द की उत्पत्ति प्राचीन यूनानी गणित (μάθημα) से हुई है, जिसका अर्थ है "जो सीखा जाता है,"[9] "जो कुछ भी पता चलता है," इसलिए "अध्ययन" और "विज्ञान" भी। शास्त्रीय काल में भी "गणित" शब्द का संक्षिप्त और अधिक तकनीकी अर्थ "गणितीय अध्ययन" आया।[10] इसका विशेषण Mathēmatikós (μαθηματικός) है, जिसका अर्थ है "सीखने से संबंधित" या "अध्ययनशील", जिसका अर्थ "गणितीय" भी है। विशेष रूप से, mathēmatikḗ tékhnē (μαθηματικὴ ; लैटिन: ars mathematica) का अर्थ "गणितीय कला" है।

इसी तरह, पाइथागोरसवाद में विचार के दो मुख्य विद्यालयों में से एक को गणितज्ञ (μαθηματικοί ) के रूप में जाना जाता था - जो उस समय आधुनिक अर्थों में "गणितज्ञ" के बजाय "शिक्षार्थी" था।

लैटिन में, और अंग्रेजी में लगभग 1700 तक, गणित शब्द का अर्थ "गणित" के बजाय "ज्योतिष" (या कभी-कभी "खगोल विज्ञान") से अधिक होता था; अर्थ धीरे-धीरे लगभग 1500 से 1800 तक अपने वर्तमान में बदल गया। इसके परिणामस्वरूप कई गलत अनुवाद हुए हैं। उदाहरण के लिए, सेंट ऑगस्टाइन की चेतावनी कि ईसाइयों को गणितज्ञ से सावधान रहना चाहिए, जिसका अर्थ है ज्योतिषी, कभी-कभी गणितज्ञों की निंदा के रूप में गलत अनुवाद किया जाता है।[11]

अंग्रेजी में स्पष्ट बहुवचन रूप लैटिन नपुंसक बहुवचन गणित (सिसरो) में वापस चला जाता है, जो ग्रीक बहुवचन ता गणितिका (τὰ μαθηματικά) पर आधारित है, जिसका उपयोग अरस्तू (384-322 ईसा पूर्व) द्वारा किया गया था, और इसका अर्थ मोटे तौर पर "सभी चीजें गणितीय" हैं, हालांकि यह प्रशंसनीय है कि अंग्रेजी ने केवल विशेषण गणित (अल) को उधार लिया और भौतिकी और तत्वमीमांसा के पैटर्न के बाद संज्ञा गणित का गठन किया, जो ग्रीक से विरासत में मिला था।[12] इसे अक्सर गणित या, उत्तरी अमेरिका में, गणित के रूप में संक्षिप्त किया जाता है।[13]

गणित के क्षेत्र

पुनर्जागरण से पहले, गणित को दो मुख्य क्षेत्रों में विभाजित किया गया था: अंकगणित — संख्याओं के हेरफेर के बारे में, और ज्यामिति — आकृतियों के अध्ययन के बारे में। कुछ प्रकार के छद्म विज्ञान, जैसे अंकशास्त्र और ज्योतिष, तब स्पष्ट रूप से गणित से अलग नहीं थे।

पुनर्जागरण के दौरान दो और क्षेत्र सामने आए। गणितीय संकेतन ने बीजगणित की ओर अग्रसर किया, जो मोटे तौर पर, अध्ययन और सूत्रों के हेरफेर से बना है। कलन, दो उपक्षेत्रों इनफिनिटसिमल कलन और इंटीग्रल कलन से मिलकर बना है, निरंतर कार्यों का अध्ययन है, जो अलग-अलग मात्राओं (चर) के बीच आम तौर पर गैर-रेखीय संबंधों को मॉडल करता है। चार मुख्य क्षेत्रों में यह विभाजन — अंकगणित, ज्यामिति, बीजगणित, कलनLua error: not enough memory.[<span title="Lua error: not enough memory.">verification needed] — 19वीं शताब्दी के अंत तक बना रहा। आकाशीय यांत्रिकी और ठोस यांत्रिकी जैसे क्षेत्रों को अक्सर गणित का हिस्सा माना जाता था, लेकिन अब उन्हें भौतिकी से संबंधित माना जाता है। इस अवधि के दौरान विकसित कुछ विषय गणित से पहले के हैं और ऐसे क्षेत्रों में विभाजित हैं जैसे कि संभाव्यता सिद्धांत और संयोजन, जो बाद में स्वायत्त क्षेत्रों के रूप में माना जाने लगा।

19वीं शताब्दी के अंत में, गणित में मूलभूत संकट और परिणामी स्वयंसिद्ध पद्धति के व्यवस्थितकरण ने गणित के नए क्षेत्रों का विस्फोट किया। आज, गणित विषय वर्गीकरण में चौंसठ प्रथम-स्तरीय क्षेत्रों से कम नहीं है। इनमें से कुछ क्षेत्र पुराने विभाजन से मेल खाते हैं, जैसा कि संख्या सिद्धांत (उच्च अंकगणित के लिए आधुनिक नाम) और ज्यामिति के बारे में सच है। (हालांकि, कई अन्य प्रथम-स्तरीय क्षेत्रों में उनके नाम में "ज्यामिति" है या अन्यथा सामान्यतः ज्यामिति का हिस्सा माना जाता है।) बीजगणित और कलन प्रथम-स्तर के क्षेत्रों के रूप में प्रकट नहीं होते हैं, लेकिन क्रमशः कई प्रथम-स्तर के क्षेत्रों में विभाजित होते हैं। 20वीं शताब्दी के दौरान अन्य प्रथम-स्तरीय क्षेत्र उभरे (उदाहरण के लिए श्रेणी सिद्धांत; होमोलॉजिकल बीजगणित, और कंप्यूटर विज्ञान) या पहले गणित के रूप में नहीं माना गया था, जैसे गणितीय तर्क और नींव (मॉडल सिद्धांत, संगणनीयता सिद्धांत, सेट सिद्धांत, प्रमाण सिद्धांत और बीजगणितीय तर्क सहित)।

संख्या सिद्धांत

Lua error: Internal error: The interpreter exited with status 1.

File:Spirale Ulam 150.jpg
यह उलम सर्पिल है, जो प्रमुख संख्याओं के वितरण को दर्शाता है।सर्पिल संकेत में अंधेरे विकर्ण रेखाएं प्राइम होने और एक द्विघात बहुपद का मूल्य होने के बीच अनुमानित स्वतंत्रता पर परिकल्पना की गई, एक अनुमान जिसे अब उलम सर्पिल#हार्डी और लिटिलवुड के अनुमान के रूप में जाना जाता है। हार्डी और लिटिलवुड के अनुमान एफ।

संख्या सिद्धांत संख्याओं के हेरफेर के साथ शुरू हुआ, अर्थात, प्राकृतिक संख्याएं और बाद में पूर्णांक और परिमेय संख्या तक विस्तारित हुईं। पहले संख्या सिद्धांत को अंकगणित कहा जाता था, लेकिन आजकल इस शब्द का प्रयोग संख्यात्मक गणना के लिए किया जाता है।

कई आसानी से बताई गई संख्या की समस्याओं के समाधान होते हैं जिनके लिए गणित से परिष्कृत विधियों की आवश्यकता होती है। एक प्रमुख उदाहरण फ़र्मेट का अंतिम प्रमेय है। यह अनुमान 1637 में पियरे डी फ़र्मेट द्वारा कहा गया था, लेकिन यह केवल 1994 में एंड्रयू विल्स द्वारा साबित हुआ था, जिन्होंने बीजगणितीय ज्यामिति, श्रेणी सिद्धांत और समरूप बीजगणित से योजना सिद्धांत सहित उपकरणों का उपयोग किया था। एक अन्य उदाहरण गोल्डबैक का अनुमान है, जिसमें दावा किया गया है कि 2 से बड़ा प्रत्येक सम पूर्णांक दो अभाज्य संख्याओं का योग होता है। 1742 में क्रिश्चियन गोल्डबैक द्वारा कहा गया, यह काफी प्रयास के बावजूद आज तक अप्रमाणित है।

संख्या सिद्धांत में विश्लेषणात्मक संख्या सिद्धांत, बीजगणितीय संख्या सिद्धांत, संख्याओं की ज्यामिति (विधि उन्मुख), डायोफैंटाइन समीकरण और पारगमन सिद्धांत (समस्या उन्मुख) सहित कई उपक्षेत्र शामिल हैं।

ज्यामिति

Lua error: Internal error: The interpreter exited with status 1. ज्यामिति गणित की प्राचीनतम शाखाओं में से एक है। यह आकृतियों से संबंधित अनुभवजन्य व्यंजनों के साथ शुरू हुआ, जैसे कि रेखाएं, कोण और मंडल, जिन्हें मुख्य रूप से सर्वेक्षण और वास्तुकला की जरूरतों के लिए विकसित किया गया था, लेकिन तब से कई अन्य उपक्षेत्रों में खिल गए हैं।

एक मौलिक नवाचार प्राचीन यूनानियों द्वारा सबूतों की अवधारणा की शुरूआत थी, इस आवश्यकता के साथ कि हर दावे को साबित किया जाना चाहिए। उदाहरण के लिए, माप द्वारा सत्यापित करना पर्याप्त नहीं है कि, मान लीजिए, दो लंबाइयाँ समान हैं; उनकी समानता को पहले स्वीकृत परिणामों (प्रमेय) और कुछ बुनियादी कथनों के तर्क के माध्यम से सिद्ध किया जाना चाहिए। मूल कथन प्रमाण के अधीन नहीं हैं क्योंकि वे स्व-स्पष्ट (अनुमानित) हैं, या वे अध्ययन के विषय (स्वयंसिद्ध) की परिभाषा का हिस्सा हैं। यह सिद्धांत, जो सभी गणित के लिए आधारभूत है, पहले ज्यामिति के लिए विस्तृत किया गया था, और यूक्लिड द्वारा अपनी पुस्तक एलिमेंट्स में लगभग 300 ई.पू. में व्यवस्थित किया गया था।

परिणामी यूक्लिडियन ज्यामिति, यूक्लिडियन तल (प्लेन ज्योमेट्री) और (त्रि-आयामी) यूक्लिडियन स्पेस में रेखाओं, विमानों और वृत्तों से निर्मित आकृतियों और उनकी व्यवस्थाओं का अध्ययन है।[lower-alpha 2]

17 वीं शताब्दी तक यूक्लिडियन ज्यामिति विधियों या दायरे में बदलाव के बिना विकसित की गई थी, जब रेने डेसकार्टेस ने पेश किया जिसे अब कार्टेशियन निर्देशांक कहा जाता है। यह प्रतिमान का एक बड़ा परिवर्तन था, क्योंकि वास्तविक संख्याओं को रेखा खंडों की लंबाई के रूप में परिभाषित करने के बजाय (संख्या रेखा देखें), इसने उनके निर्देशांक (जो संख्याएं हैं) का उपयोग करके बिंदुओं के प्रतिनिधित्व की अनुमति दी। यह किसी को ज्यामितीय समस्याओं को हल करने के लिए बीजगणित (और बाद में, कलन) का उपयोग करने की अनुमति देता है। इसने ज्यामिति को दो नए उपक्षेत्रों में विभाजित किया: सिंथेटिक ज्यामिति, जो विशुद्ध रूप से ज्यामितीय विधियों का उपयोग करती है, और विश्लेषणात्मक ज्यामिति, जो व्यवस्थित रूप से निर्देशांक का उपयोग करती है।

विश्लेषणात्मक ज्यामिति उन वक्रों के अध्ययन की अनुमति देती है जो वृत्त और रेखाओं से संबंधित नहीं हैं। इस तरह के वक्रों को कार्यों के ग्राफ के रूप में परिभाषित किया जा सकता है (जिसके अध्ययन से अंतर ज्यामिति का नेतृत्व किया गया)। उन्हें निहित समीकरणों के रूप में भी परिभाषित किया जा सकता है, अक्सर बहुपद समीकरण (जो बीजगणितीय ज्यामिति उत्पन्न करते हैं)। विश्लेषणात्मक ज्यामिति भी तीन आयामों से अधिक के रिक्त स्थान पर विचार करना संभव बनाता है।

19वीं सदी में, गणितज्ञों ने गैर-यूक्लिडियन ज्यामिति की खोज की, जो समानांतर अभिधारणा का पालन नहीं करते हैं। उस अभिधारणा की सत्यता पर प्रश्नचिह्न लगाकर, यह खोज रसेल के विरोधाभास में गणित के मूलभूत संकट को प्रकट करने के रूप में शामिल हो जाती है। संकट के इस पहलू को स्वयंसिद्ध पद्धति को व्यवस्थित करके हल किया गया था, और यह स्वीकार कर लिया गया था कि चुने हुए स्वयंसिद्धों की सच्चाई गणितीय समस्या नहीं है। बदले में, स्वयंसिद्ध विधि या तो स्वयंसिद्धों को बदलकर या अंतरिक्ष के विशिष्ट परिवर्तनों के तहत अपरिवर्तनीय गुणों पर विचार करके प्राप्त विभिन्न ज्यामिति के अध्ययन की अनुमति देती है।

आजकल, ज्यामिति के उपक्षेत्रों में निम्न शामिल हैं:

  • 16 वीं शताब्दी में गिरार्ड डेसर्गेस द्वारा पेश की गई प्रोजेक्टिव ज्यामिति, अनंत पर बिंदुओं को जोड़कर यूक्लिडियन ज्यामिति का विस्तार करती है जिस पर समानांतर रेखाएं एक दूसरे को काटती हैं। यह प्रतिच्छेदन और समानांतर रेखाओं के लिए उपचारों को एकीकृत करके शास्त्रीय ज्यामिति के कई पहलुओं को सरल करता है।
  • एफाइन ज्योमेट्री, समानांतरवाद के सापेक्ष गुणों का अध्ययन और लंबाई की अवधारणा से स्वतंत्र।
  • डिफरेंशियल ज्योमेट्री, वक्रों, सतहों और उनके सामान्यीकरणों का अध्ययन, जिन्हें भिन्न कार्यों का उपयोग करके परिभाषित किया गया है
  • मैनिफोल्ड सिद्धांत, आकृतियों का अध्ययन जो जरूरी नहीं कि एक बड़े स्थान में अंतर्निहित हों
  • रीमैनियन ज्यामिति, घुमावदार स्थानों में दूरी गुणों का अध्ययन
  • बीजीय ज्यामिति, वक्रों, सतहों और उनके सामान्यीकरणों का अध्ययन, जिन्हें बहुपदों का उपयोग करके परिभाषित किया जाता है
  • टोपोलॉजी, उन गुणों का अध्ययन जिन्हें निरंतर विकृतियों के तहत रखा जाता है
    • बीजगणितीय टोपोलॉजी, बीजीय विधियों की टोपोलॉजी में उपयोग, मुख्यतः समरूप बीजगणित
  • असतत ज्यामिति, ज्यामिति में परिमित विन्यासों का अध्ययन
  • उत्तल ज्यामिति, उत्तल समुच्चयों का अध्ययन, जो अनुकूलन में अपने अनुप्रयोगों से इसका महत्व लेता है
  • जटिल ज्यामिति, वास्तविक संख्याओं को सम्मिश्र संख्याओं से प्रतिस्थापित करके प्राप्त ज्यामिति

Lua error: Internal error: The interpreter exited with status 1.

बीजगणित

Lua error: Internal error: The interpreter exited with status 1. बीजगणित समीकरणों और सूत्रों में हेरफेर की कला है। डायोफैंटस (तीसरी शताब्दी) और अल-ख्वारिज्मी (9वीं शताब्दी) बीजगणित के दो प्रमुख अग्रदूत थे। पहले व्यक्ति ने कुछ समीकरणों को हल किया जिसमें अज्ञात प्राकृतिक संख्याएं शामिल थीं, जब तक कि वह समाधान प्राप्त नहीं कर लेता। दूसरे ने समीकरणों को बदलने के लिए व्यवस्थित तरीकों की शुरुआत की (जैसे कि एक समीकरण के एक तरफ से दूसरी तरफ एक शब्द को स्थानांतरित करना)। बीजगणित शब्द अरबी शब्द अल-जबर से लिया गया है जिसका अर्थ है "टूटे हुए हिस्सों के लिए पुनर्मिलन" जिसका उपयोग उन्होंने अपने मुख्य ग्रंथ के शीर्षक में इन विधियों में से एक के नामकरण के लिए किया था।

File:Quadratic formula.svg
द्विघात सूत्र, जो सभी द्विघात समीकरणों के समाधानों को व्यक्त करता है

बीजगणित केवल फ्रांकोइस विएते (1540-1603) के साथ अपने आप में एक क्षेत्र बन गया, जिन्होंने अज्ञात या अनिर्दिष्ट संख्याओं का प्रतिनिधित्व करने के लिए अक्षरों (चर) का उपयोग शुरू किया। यह गणितज्ञों को उन संक्रियाओं का वर्णन करने की अनुमति देता है जो गणितीय सूत्रों का उपयोग करके प्रदर्शित संख्याओं पर की जानी हैं।

19वीं शताब्दी तक, बीजगणित में मुख्य रूप से रैखिक समीकरणों (वर्तमान में रैखिक बीजगणित), और एक अज्ञात में बहुपद समीकरणों का अध्ययन शामिल था, जिसे बीजीय समीकरण (एक शब्द जो अभी भी उपयोग में है, हालांकि यह अस्पष्ट हो सकता है) कहा जाता था। 19वीं शताब्दी के दौरान, गणितज्ञों ने संख्याओं के अलावा अन्य चीजों का प्रतिनिधित्व करने के लिए चर का उपयोग करना शुरू किया (जैसे कि मैट्रिक्स, मॉड्यूलर पूर्णांक और ज्यामितीय परिवर्तन), जिस पर अंकगणितीय संचालन के सामान्यीकरण अक्सर मान्य होते हैं। बीजगणितीय संरचना की अवधारणा इसे संबोधित करती है, जिसमें एक सेट होता है, जिसके तत्व अनिर्दिष्ट होते हैं, सेट के तत्वों पर कार्य करने वाले संचालन, और नियम जिनका इन संचालनों का पालन करना चाहिए। इस परिवर्तन के कारण, बीजगणितीय संरचनाओं के अध्ययन को शामिल करने के लिए बीजगणित के क्षेत्र में वृद्धि हुई। बीजगणित की इस वस्तु को आधुनिक बीजगणित या अमूर्त बीजगणित कहा गया। (उत्तरार्द्ध शब्द मुख्य रूप से एक शैक्षिक संदर्भ में प्रकट होता है, प्राथमिक बीजगणित के विरोध में, जो सूत्रों में हेरफेर करने के पुराने तरीके से संबंधित है।)

File:Rubik's cube.svg
रुबिक क्यूब: द स्टडी ऑफ इट्स टाइटल मूव्स ग्रुप थ्योरी का एक ठोस अनुप्रयोग है

गणित के कई क्षेत्रों में कुछ प्रकार की बीजीय संरचनाओं में उपयोगी और अक्सर मूलभूत गुण होते हैं। उनका अध्ययन बीजगणित के स्वायत्त हिस्से बन गए, और इसमें शामिल हैं:

  • समूह सिद्धांत;
  • क्षेत्र सिद्धांत;
  • सदिश समष्टि, जिसका अध्ययन अनिवार्य रूप से रैखिक बीजगणित के समान है;
  • वलय सिद्धांत;
  • कम्यूटेटिव बीजगणित, जो कम्यूटेटिव रिंगों का अध्ययन है, इसमें बहुपदों का अध्ययन शामिल है, और यह बीजीय ज्यामिति का एक आधारभूत हिस्सा है;
  • समजातीय बीजगणित
  • झूठ बीजगणित और झूठ समूह सिद्धांत;
  • बूलियन बीजगणित, जो कंप्यूटर की तार्किक संरचना के अध्ययन के लिए व्यापक रूप से उपयोग किया जाता है।

गणितीय वस्तुओं के रूप में बीजगणितीय संरचनाओं के प्रकार का अध्ययन सार्वभौमिक बीजगणित और श्रेणी सिद्धांत का उद्देश्य है। उत्तरार्द्ध प्रत्येक गणितीय संरचना पर लागू होता है (न केवल बीजीय वाले)। इसके मूल में, गैर-बीजीय वस्तुओं जैसे टोपोलॉजिकल रिक्त स्थान के बीजगणितीय अध्ययन की अनुमति देने के लिए, समरूप बीजगणित के साथ इसे पेश किया गया था; अनुप्रयोग के इस विशेष क्षेत्र को बीजगणितीय टोपोलॉजी कहा जाता है।

कलन और विश्लेषण

Lua error: Internal error: The interpreter exited with status 1. कलन, जिसे पहले इनफिनिट्सिमल कलन कहा जाता था, को स्वतंत्र रूप से और साथ ही साथ 17 वीं शताब्दी के गणितज्ञ न्यूटन और लाइबनिज़ द्वारा पेश किया गया था। यह मूल रूप से एक दूसरे पर निर्भर चरों के संबंध का अध्ययन है। कलन का विस्तार 18वीं शताब्दी में यूलर द्वारा एक फलन की अवधारणा और कई अन्य परिणामों के साथ किया गया था। वर्तमान में, " कलन" मुख्य रूप से इस सिद्धांत के प्रारंभिक भाग को संदर्भित करता है, और "विश्लेषण" का उपयोग आमतौर पर उन्नत भागों के लिए किया जाता है।

विश्लेषण को वास्तविक विश्लेषण में और उप-विभाजित किया जाता है, जहां चर वास्तविक संख्याओं का प्रतिनिधित्व करते हैं, और जटिल विश्लेषण, जहां चर जटिल संख्याओं का प्रतिनिधित्व करते हैं। विश्लेषण में गणित के अन्य क्षेत्रों द्वारा साझा किए गए कई उपक्षेत्र शामिल हैं जिनमें निम्न शामिल हैं:

  • बहुचर कलन
  • कार्यात्मक विश्लेषण, जहां चर भिन्न-भिन्न कार्यों का प्रतिनिधित्व करते हैं;
  • एकीकरण, माप सिद्धांत और संभावित सिद्धांत, सभी संभाव्यता सिद्धांत से दृढ़ता से संबंधित हैं;
  • सामान्य अवकल समीकरण;
  • आंशिक अंतर समीकरण;
  • संख्यात्मक विश्लेषण, मुख्य रूप से कई अनुप्रयोगों में उत्पन्न होने वाले सामान्य और आंशिक अंतर समीकरणों के समाधान के कंप्यूटर पर गणना के लिए समर्पित है।

विविक्त गणित

Lua error: Internal error: The interpreter exited with status 1. असतत गणित, मोटे तौर पर, परिमित गणितीय वस्तुओं का अध्ययन है। क्योंकि यहां अध्ययन की वस्तुएं असतत हैं, कलन और गणितीय विश्लेषण के तरीके सीधे लागू नहीं होते हैं।[lower-alpha 3] एल्गोरिदम - विशेष रूप से उनके कार्यान्वयन और कम्प्यूटेशनल जटिलता - असतत गणित में एक प्रमुख भूमिका निभाते हैं।

असतत गणित में शामिल हैं:

  • कॉम्बिनेटरिक्स, गणितीय वस्तुओं की गणना करने की कला जो कुछ दी गई बाधाओं को संतुष्ट करती है। मूल रूप से, ये ऑब्जेक्ट दिए गए सेट के तत्व या सबसेट थे; इसे विभिन्न वस्तुओं तक बढ़ा दिया गया है, जो संयोजन और असतत गणित के अन्य भागों के बीच एक मजबूत संबंध स्थापित करता है। उदाहरण के लिए, असतत ज्यामिति में ज्यामितीय आकृतियों की गिनती विन्यास शामिल हैं
  • ग्राफ सिद्धांत और हाइपरग्राफ
  • कोडिंग सिद्धांत, जिसमें त्रुटि सुधार कोड और क्रिप्टोग्राफी का एक भाग शामिल है
  • मैट्रॉइड सिद्धांत
  • असतत ज्यामिति
  • असतत प्रायिकता बंटन
  • गेम थ्योरी (हालांकि निरंतर खेलों का भी अध्ययन किया जाता है, शतरंज और पोकर जैसे अधिकांश सामान्य खेल असतत होते हैं)
  • असतत अनुकूलन, जिसमें संयोजन अनुकूलन, पूर्णांक प्रोग्रामिंग, बाधा प्रोग्रामिंग शामिल हैं

चार रंग प्रमेय और इष्टतम क्षेत्र पैकिंग 20 वीं शताब्दी के उत्तरार्ध में असतत गणित की दो प्रमुख समस्याएं हल की गईं। P बनाम NP समस्या, जो आज भी खुली है, असतत गणित के लिए भी महत्वपूर्ण है, क्योंकि इसका समाधान इसे बहुत प्रभावित करेगा।Lua error: Internal error: The interpreter exited with status 1.


गणितीय तर्क और सेट सिद्धांत

Lua error: Internal error: The interpreter exited with status 1. गणितीय तर्क और सेट सिद्धांत के दो विषय दोनों 19 वीं शताब्दी के अंत से गणित से संबंधित हैं। इस अवधि से पहले, सेटों को गणितीय वस्तुएं नहीं माना जाता था, और तर्क, हालांकि गणितीय प्रमाणों के लिए उपयोग किया जाता था, दर्शन से संबंधित था, और विशेष रूप से गणितज्ञों द्वारा अध्ययन नहीं किया गया था।

कैंटर के अनंत समुच्चयों के अध्ययन से पहले, गणितज्ञ वास्तव में अनंत संग्रहों पर विचार करने के लिए अनिच्छुक थे, और अनंत को अनंत गणना का परिणाम मानते थे। कैंटर के काम ने कई गणितज्ञों को न केवल वास्तव में अनंत सेटों पर विचार करके, बल्कि यह दिखाते हुए कि यह अनंत के विभिन्न आकारों (कैंटोर के विकर्ण तर्क को देखें) और गणितीय वस्तुओं के अस्तित्व को दर्शाता है, जिनकी गणना नहीं की जा सकती है, या यहां तक ​​कि स्पष्ट रूप से वर्णित नहीं किया जा सकता है (उदाहरण के लिए, हेमल बेस परिमेय संख्याओं की तुलना में वास्तविक संख्याओं का) इससे कैंटर के सेट थ्योरी को लेकर विवाद पैदा हो गया।

इसी अवधि में, गणित के विभिन्न क्षेत्रों ने निष्कर्ष निकाला कि मूल गणितीय वस्तुओं की पूर्व सहज परिभाषाएं गणितीय कठोरता सुनिश्चित करने के लिए अपर्याप्त थीं। ऐसी सहज परिभाषाओं के उदाहरण हैं "एक सेट वस्तुओं का एक संग्रह है", "प्राकृतिक संख्या वह है जो गिनती के लिए उपयोग की जाती है", "एक बिंदु हर दिशा में शून्य लंबाई वाला एक आकार है", "एक वक्र एक निशान है एक गतिमान बिंदु", आदि।

यह गणित का आधारभूत संकट बन गया।[14] औपचारिक रूप से सेट सिद्धांत के अंदर स्वयंसिद्ध पद्धति को व्यवस्थित करके इसे अंततः मुख्यधारा के गणित में हल किया गया। मोटे तौर पर, प्रत्येक गणितीय वस्तु को सभी समान वस्तुओं के समुच्चय और इन वस्तुओं के गुणों के द्वारा परिभाषित किया जाता है। उदाहरण के लिए, पीनो अंकगणित में, प्राकृतिक संख्याओं को "शून्य एक संख्या है", "प्रत्येक संख्या को एक अद्वितीय उत्तराधिकारी के रूप में", "प्रत्येक संख्या लेकिन शून्य में एक अद्वितीय पूर्ववर्ती है", और तर्क के कुछ नियम हैं। इस तरह से परिभाषित वस्तुओं की "प्रकृति" एक दार्शनिक समस्या है जिसे गणितज्ञ दार्शनिकों के पास छोड़ देते हैं, भले ही कई गणितज्ञों की इस प्रकृति पर राय हो, और अपनी राय का उपयोग करें - कभी-कभी "अंतर्ज्ञान" कहा जाता है - अपने अध्ययन और प्रमाणों का मार्गदर्शन करने के लिए।

यह दृष्टिकोण गणितीय वस्तुओं के रूप में "लॉजिक्स" (अर्थात अनुमत कटौती नियमों के सेट), प्रमेयों, प्रमाणों आदि पर विचार करने और उनके बारे में प्रमेयों को सिद्ध करने की अनुमति देता है। उदाहरण के लिए, गोडेल की अपूर्णता प्रमेय जोर देते हैं, मोटे तौर पर बोलते हुए, हर सिद्धांत में प्राकृतिक संख्याएं होती हैं, ऐसे प्रमेय होते हैं जो सत्य होते हैं (जो कि एक बड़े सिद्धांत में सिद्ध होता है), लेकिन सिद्धांत के अंदर सिद्ध नहीं होता है।

गणित की नींव के इस दृष्टिकोण को 20 वीं शताब्दी के पूर्वार्द्ध के दौरान ब्रौवर के नेतृत्व में गणितज्ञों द्वारा चुनौती दी गई थी, जिन्होंने अंतर्ज्ञानवादी तर्क को बढ़ावा दिया था, जिसमें स्पष्ट रूप से बहिष्कृत मध्य के कानून का अभाव था।

इन समस्याओं और बहसों ने गणितीय तर्क का व्यापक विस्तार किया, जैसे मॉडल सिद्धांत (अन्य सिद्धांतों के अंदर कुछ तार्किक सिद्धांतों का मॉडलिंग), सबूत सिद्धांत, प्रकार सिद्धांत, संगणना सिद्धांत और कम्प्यूटेशनल जटिलता सिद्धांत जैसे उपक्षेत्रों के साथ। हालांकि गणितीय तर्क के इन पहलुओं को कंप्यूटर के उदय से पहले पेश किया गया था, लेकिन संकलक डिजाइन, प्रोग्राम प्रमाणन, प्रूफ सहायक और कंप्यूटर विज्ञान के अन्य पहलुओं में उनके उपयोग ने इन तार्किक सिद्धांतों के विस्तार में योगदान दिया।[15]

अनुप्रयुक्त गणित

Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1. अनुप्रयुक्त गणित विज्ञान, अभियांत्रिकी, व्यवसाय और उद्योग में उपयोग किए जाने वाले गणितीय तरीकों का अध्ययन है। इस प्रकार, "अनुप्रयुक्त गणित" विशिष्ट ज्ञान वाला गणितीय विज्ञान है। व्यावहारिक गणित शब्द उस पेशेवर विशेषता का भी वर्णन करता है जिसमें गणितज्ञ व्यावहारिक समस्याओं पर कार्य करते हैं; व्यावहारिक समस्याओं पर केंद्रित एक पेशे के रूप में, अनुप्रयुक्त गणित "गणितीय मॉडल के निर्माण, अध्ययन और उपयोग" पर केंद्रित है।Lua error: Internal error: The interpreter exited with status 1.

अतीत में, व्यावहारिक अनुप्रयोगों ने गणितीय सिद्धांतों के विकास को प्रेरित किया है, जो तब शुद्ध गणित में अध्ययन का विषय बन गया, जहां गणित को मुख्य रूप से अपने लिए विकसित किया गया है। इस प्रकार, अनुप्रयुक्त गणित की गतिविधि विशुद्ध रूप से शुद्ध गणित में अनुसंधान के साथ जुड़ी हुई है।Lua error: Internal error: The interpreter exited with status 1.

सांख्यिकी और अन्य निर्णय विज्ञान

Lua error: Internal error: The interpreter exited with status 1. व्यावहारिक गणित में सांख्यिकी के अनुशासन के साथ महत्वपूर्ण ओवरलैप है, जिसका सिद्धांत गणितीय रूप से तैयार किया गया है, विशेष रूप से संभाव्यता सिद्धांत।Lua error: Internal error: The interpreter exited with status 1. सांख्यिकीविद (एक शोध परियोजना के हिस्से के रूप में काम कर रहे हैं) यादृच्छिक नमूने और यादृच्छिक प्रयोगों के साथ "डेटा बनाएं जो समझ में आता है";[16] सांख्यिकीय नमूने या प्रयोग का डिजाइन डेटा के विश्लेषण को निर्दिष्ट करता है (डेटा उपलब्ध होने से पहले)। प्रयोगों और नमूनों से डेटा पर पुनर्विचार करते समय या अवलोकन संबंधी अध्ययनों से डेटा का विश्लेषण करते समय, सांख्यिकीविद मॉडलिंग की कला और अनुमान के सिद्धांत का उपयोग करके मॉडल चयन और अनुमान के साथ "डेटा का अर्थ बनाते हैं"; नए डेटा पर अनुमानित मॉडल और परिणामी भविष्यवाणियों का परीक्षण किया जाना चाहिए।Lua error: Internal error: The interpreter exited with status 1.[lower-alpha 4]

सांख्यिकीय सिद्धांत निर्णय की समस्याओं का अध्ययन करता है जैसे कि सांख्यिकीय कार्रवाई के जोखिम (अपेक्षित नुकसान) को कम करना, जैसे कि एक प्रक्रिया का उपयोग करना, उदाहरण के लिए, पैरामीटर अनुमान, परिकल्पना परीक्षण, और सर्वोत्तम का चयन करना। गणितीय आँकड़ों के इन पारंपरिक क्षेत्रों में, विशिष्ट बाधाओं के तहत, अपेक्षित हानि या लागत जैसे एक उद्देश्य समारोह को कम करके एक सांख्यिकीय-निर्णय समस्या तैयार की जाती है: उदाहरण के लिए, एक सर्वेक्षण को डिजाइन करने में अक्सर किसी दिए गए जनसंख्या माध्य का अनुमान लगाने की लागत को कम करना शामिल होता है आत्मविश्वास का स्तर।[17] इसके अनुकूलन के उपयोग के कारण, सांख्यिकी का गणितीय सिद्धांत अन्य निर्णय विज्ञानों, जैसे संचालन अनुसंधान, नियंत्रण सिद्धांत और गणितीय अर्थशास्त्र के साथ अतिव्याप्त है।[18]

अभिकलन गणित

Lua error: Internal error: The interpreter exited with status 1. कम्प्यूटेशनल गणित गणितीय समस्याओं का अध्ययन है जो आम तौर पर मानव, संख्यात्मक क्षमता के लिए बहुत बड़ी होती है। कार्यात्मक विश्लेषण और सन्निकटन सिद्धांत का उपयोग करके विश्लेषण में समस्याओं के लिए संख्यात्मक विश्लेषण अध्ययन विधियों; संख्यात्मक विश्लेषण में मोटे तौर पर सन्निकटन और विवेकीकरण का अध्ययन शामिल है, जिसमें गोल करने वाली त्रुटियों पर विशेष ध्यान दिया जाता है। संख्यात्मक विश्लेषण और, अधिक व्यापक रूप से, वैज्ञानिक कंप्यूटिंग गणितीय विज्ञान के गैर-विश्लेषणात्मक विषयों, विशेष रूप से एल्गोरिथम-मैट्रिक्स-एंड-ग्राफ सिद्धांत का भी अध्ययन करती है। कम्प्यूटेशनल गणित के अन्य क्षेत्रों में कंप्यूटर बीजगणित और प्रतीकात्मक संगणना शामिल है।

इतिहास

Lua error: Internal error: The interpreter exited with status 1.

प्राचीन

गणित का इतिहास अमूर्तन की एक निरंतर बढ़ती श्रृंखला है। विकास की दृष्टि से, अब तक खोजा जाने वाला पहला अमूर्तन, कई जानवरों द्वारा साझा किया गया,[19] शायद संख्याओं का था: यह अहसास कि, उदाहरण के लिए, दो सेबों का एक संग्रह और दो संतरे का संग्रह (जैसे) में कुछ है सामान्य, अर्थात् उनमें से दो हैं। जैसा कि हड्डी पर पाए जाने वाले टांगों से प्रमाणित होता है, भौतिक वस्तुओं की गणना करने के तरीके को पहचानने के अलावा, प्रागैतिहासिक लोगों को यह भी पता हो सकता है कि समय-दिन, मौसम या वर्षों जैसी अमूर्त मात्राओं की गणना कैसे की जाती है।[20][21]

Error creating thumbnail:
बेबीलोनियन गणितीय टैबलेट प्लिम्पटन 322, दिनांकित 1800 & nbsp; bc

अधिक जटिल गणित के प्रमाण लगभग 3000 ईसा पूर्व तक प्रकट नहीं होते, जब बेबीलोनियों और मिस्रवासियों ने कराधान और अन्य वित्तीय गणनाओं के लिए, भवन और निर्माण और खगोल विज्ञान के लिए अंकगणित, बीजगणित और ज्यामिति का उपयोग करना शुरू किया।Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1. मेसोपोटामिया और मिस्र के सबसे पुराने गणितीय ग्रंथ 2000 से 1800 ई.पू. के हैं। कई प्रारंभिक ग्रंथों में पाइथागोरस त्रिगुणों का उल्लेख है और इसलिए, अनुमान से, पाइथागोरस प्रमेय बुनियादी अंकगणित और ज्यामिति के बाद सबसे प्राचीन और व्यापक गणितीय अवधारणा प्रतीत होती है। यह बेबीलोन के गणित में है कि प्रारंभिक अंकगणित (जोड़, घटाव, गुणा और भाग) पहले पुरातात्विक रिकॉर्ड में दिखाई देते हैं। बेबीलोनियाई लोगों के पास एक स्थान-मूल्य प्रणाली भी थी और उन्होंने एक सेक्सेजिमल अंक प्रणाली का उपयोग किया था जो आज भी कोण और समय को मापने के लिए उपयोग में है।Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1.

File:Archimedes pi.svg
आर्किमिडीज ने थकावट की विधि का उपयोग किया, यहां चित्रित, पीआई के मूल्य को अनुमानित करने के लिए।

छठी शताब्दी ईसा पूर्व में, ग्रीक गणित एक विशिष्ट विषय के रूप में उभरने लगा और कुछ प्राचीन यूनानियों जैसे पाइथागोरस ने इसे अपने आप में एक विषय माना।[22] लगभग 300 ईसा पूर्व, यूक्लिड ने अभिधारणाओं और पहले सिद्धांतों के माध्यम से गणितीय ज्ञान को व्यवस्थित किया, जो कि स्वयंसिद्ध पद्धति में विकसित हुआ, जिसका उपयोग आज गणित में किया जाता है, जिसमें परिभाषा, अभिगृहीत, प्रमेय और प्रमाण शामिल हैं।Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1. उनकी पुस्तक, एलिमेंट्स, व्यापक रूप से अब तक की सबसे सफल और प्रभावशाली पाठ्यपुस्तक मानी जाती है। [27] पुरातनता के महानतम गणितज्ञ को अक्सर सिरैक्यूज़ का आर्किमिडीज़ (सी. 287-212 ईसा पूर्व) माना जाता है।Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1. उन्होंने सतह क्षेत्र और क्रांति के ठोसों की मात्रा की गणना के लिए सूत्र विकसित किए और एक अनंत श्रृंखला के योग के साथ एक परवलय के चाप के नीचे के क्षेत्र की गणना करने के लिए थकावट की विधि का इस्तेमाल किया, जो आधुनिक कलन से बहुत भिन्न नहीं है।Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1. ग्रीक गणित की अन्य उल्लेखनीय उपलब्धियां हैं शंकु वर्ग (पेर्गा का अपोलोनियस, तीसरी शताब्दी ईसा पूर्व),Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1. त्रिकोणमिति (निकेआ का हिप्पार्कस, दूसरी शताब्दी ईसा पूर्व),Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1. और बीजगणित की शुरुआत (डायोफैंटस, तीसरी शताब्दी ई।)Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1.

2 वीं शताब्दी ईसा पूर्व और दूसरी शताब्दी ईस्वी के बीच दिनांकित बखमली पांडुलिपि में इस्तेमाल किए गए अंक,

हिंदू-अरबी अंक प्रणाली और इसके संचालन के उपयोग के नियम, आज दुनिया भर में उपयोग में हैं, भारत में पहली सहस्राब्दी ईस्वी के दौरान विकसित हुए और इस्लामी गणित के माध्यम से पश्चिमी दुनिया में प्रसारित किए गए। भारतीय गणित के अन्य उल्लेखनीय विकासों में साइन और कोसाइन की आधुनिक परिभाषा और सन्निकटन, और अनंत श्रृंखला का प्रारंभिक रूप शामिल है।

अल-ख्वारिज़मी के बीजगणित का एक पृष्ठ
File:Fibonacci.jpg
लियोनार्डो फाइबोनैचि, इतालवी गणितज्ञ, जिन्होंने हिंदू -अरबिक अंक प्रणाली की शुरुआत की, जो कि 1 और 4 वें & nbsp के बीच भारतीय गणितज्ञों द्वारा, पश्चिमी दुनिया के लिए आविष्कार किया गया था।

इस्लाम के स्वर्ण युग के दौरान, विशेष रूप से 9वीं और 10वीं शताब्दी के दौरान, गणित ने यूनानी गणित पर कई महत्वपूर्ण नवाचारों का निर्माण देखा। इस्लामिक गणित की सबसे उल्लेखनीय उपलब्धि बीजगणित का विकास था। इस्लामी काल की अन्य उपलब्धियों में गोलाकार त्रिकोणमिति में प्रगति और अरबी अंक प्रणाली में दशमलव बिंदु का जोड़ शामिल है।[23] इस काल के कई उल्लेखनीय गणितज्ञ फारसी थे, जैसे अल-ख्वारिस्मी, उमर खय्याम और शराफ अल-दीन अल-इस्सी।

प्रारंभिक आधुनिक काल के दौरान, पश्चिमी यूरोप में गणित का तेजी से विकास होना शुरू हुआ। 17वीं सदी में आइजैक न्यूटन और गॉटफ्रीड लाइबनिज द्वारा कलन के विकास ने गणित में क्रांति ला दी। लियोनहार्ड यूलर 18वीं सदी के सबसे उल्लेखनीय गणितज्ञ थे, जिन्होंने कई प्रमेयों और खोजों का योगदान दिया। शायद 19वीं सदी के सबसे अग्रणी गणितज्ञ जर्मन गणितज्ञ कार्ल गॉस थे, जिन्होंने बीजगणित, विश्लेषण, अंतर ज्यामिति, मैट्रिक्स सिद्धांत, संख्या सिद्धांत और सांख्यिकी जैसे क्षेत्रों में कई योगदान दिए। 20वीं शताब्दी की शुरुआत में, कर्ट गोडेल ने अपने अपूर्णता प्रमेयों को प्रकाशित करके गणित को बदल दिया, जो इस बात को दर्शाता है कि किसी भी सुसंगत स्वयंसिद्ध प्रणाली-यदि अंकगणित का वर्णन करने के लिए पर्याप्त शक्तिशाली है- में सच्चे प्रस्ताव होंगे जिन्हें साबित नहीं किया जा सकता है।

तब से गणित का बहुत विस्तार हुआ है, और गणित और विज्ञान के बीच एक उपयोगी अंतःक्रिया हुई है, जिससे दोनों को लाभ हुआ है। आज भी गणितीय खोजें जारी हैं। अमेरिकी गणितीय सोसायटी के बुलेटिन के जनवरी 2006 के अंक में मिखाइल बी. सेवरीुक के अनुसार, "1940 (एमआर के संचालन का पहला वर्ष) से गणितीय समीक्षा डेटाबेस में शामिल पत्रों और पुस्तकों की संख्या अब 1.9 से अधिक है मिलियन, और प्रत्येक वर्ष डेटाबेस में 75 हजार से अधिक आइटम जोड़े जाते हैं। इस महासागर में अधिकांश कार्यों में नए गणितीय प्रमेय और उनके प्रमाण शामिल हैं।"Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1.

प्रस्तावित परिभाषाएँ

Lua error: Internal error: The interpreter exited with status 1. गणित की सटीक परिभाषा या ज्ञान-मीमांसा संबंधी स्थिति के बारे में कोई आम सहमति नहीं है।[24][25] बहुत से पेशेवर गणितज्ञ गणित की परिभाषा में कोई दिलचस्पी नहीं लेते, या इसे अपरिभाषित मानते हैं।[24] गणित एक कला है या विज्ञान, इस पर भी आम सहमति नहीं है।[25] कुछ लोग कहते हैं, "गणित वही है जो गणितज्ञ करते हैं।"[24]

अरस्तू ने गणित को "मात्रा का विज्ञान" के रूप में परिभाषित किया और यह परिभाषा 18 वीं शताब्दी तक प्रचलित थी। हालांकि, अरस्तू ने यह भी नोट किया कि केवल मात्रा पर ध्यान केंद्रित करने से भौतिकी जैसे विज्ञान से गणित को अलग नहीं किया जा सकता है; उनके विचार में, वास्तविक उदाहरणों से "विचार में अलग करने योग्य" संपत्ति के रूप में अमूर्तता और मात्रा का अध्ययन गणित को अलग करता है।[26]

19वीं शताब्दी में, जब गणित का अध्ययन कठोरता में बढ़ा और समूह सिद्धांत और प्रक्षेपी ज्यामिति जैसे अमूर्त विषयों को संबोधित करना शुरू किया, जिनका मात्रा और माप से कोई स्पष्ट संबंध नहीं है, गणितज्ञों और दार्शनिकों ने विभिन्न प्रकार की नई परिभाषाओं का प्रस्ताव करना शुरू किया।[27] आज भी, दार्शनिक गणित के दर्शन में प्रश्नों से निपटना जारी रखते हैं, जैसे कि गणितीय प्रमाण की प्रकृति।[28]

तार्किक विवेचन

Lua error: Internal error: The interpreter exited with status 1. गणितज्ञ गलत "प्रमेयों" से बचने के लिए व्यवस्थित तर्क के साथ अपने परिणामों को विकसित करने का प्रयास करते हैं। ये झूठे प्रमाण अक्सर गलत धारणाओं से उत्पन्न होते हैं और गणित के इतिहास में आम हैं। निगमनात्मक तर्क की अनुमति देने के लिए, कुछ बुनियादी मान्यताओं को स्पष्ट रूप से स्वयंसिद्धों के रूप में स्वीकार करने की आवश्यकता है। परंपरागत रूप से, इन स्वयंसिद्धों को सामान्य ज्ञान के आधार पर चुना गया था, लेकिन आधुनिक स्वयंसिद्ध आमतौर पर आदिम धारणाओं के लिए औपचारिक गारंटी व्यक्त करते हैं, जैसे कि साधारण वस्तुएं और संबंध।

गणितीय प्रमाण की वैधता मूल रूप से कठोरता का विषय है, और गलतफहमी की कठोरता गणित के बारे में कुछ सामान्य गलत धारणाओं का एक उल्लेखनीय कारण है। गणितीय भाषा साधारण शब्दों की तुलना में या केवल और केवल सामान्य शब्दों की तुलना में अधिक सटीकता दे सकती है। विशिष्ट गणितीय अवधारणाओं के लिए खुले और क्षेत्र जैसे अन्य शब्दों को नए अर्थ दिए गए हैं। कभी-कभी, गणितज्ञ पूरी तरह से नए शब्द भी गढ़ते हैं (उदाहरण के लिए होमोमोर्फिज्म)। यह तकनीकी शब्दावली सटीक और सघन दोनों है, जिससे जटिल विचारों को मानसिक रूप से संसाधित करना संभव हो जाता है। गणितज्ञ भाषा और तर्क की इस सटीकता को "कठोरता" के रूप में संदर्भित करते हैं।

गणित में अपेक्षित कठोरता समय के साथ बदलती रही है: प्राचीन यूनानियों को विस्तृत तर्कों की उम्मीद थी, लेकिन आइजैक न्यूटन के समय में, नियोजित तरीके कम कठोर थे (गणित की एक अलग अवधारणा के कारण नहीं, बल्कि गणितीय विधियों की कमी के कारण जो कि हैं कठोरता तक पहुँचने के लिए आवश्यक है)। न्यूटन के दृष्टिकोण में निहित समस्याओं को केवल 19वीं शताब्दी के उत्तरार्ध में ही हल किया गया था, वास्तविक संख्याओं, सीमाओं और अभिन्न की औपचारिक परिभाषा के साथ। बाद में 20वीं शताब्दी की शुरुआत में, बर्ट्रेंड रसेल और अल्फ्रेड नॉर्थ व्हाइटहेड ने अपने प्रिंसिपिया मैथमैटिका को प्रकाशित किया, यह दिखाने का प्रयास कि सभी गणितीय अवधारणाओं और बयानों को परिभाषित किया जा सकता है, फिर प्रतीकात्मक तर्क के माध्यम से पूरी तरह से सिद्ध किया जा सकता है। यह एक व्यापक दार्शनिक कार्यक्रम का हिस्सा था जिसे तर्कवाद के रूप में जाना जाता है, जो गणित को मुख्य रूप से तर्क का विस्तार मानता है।

गणित की समझ के बावजूद, कई प्रमाणों को व्यक्त करने के लिए सैकड़ों पृष्ठों की आवश्यकता होती है। कंप्यूटर-समर्थित प्रमाणों के उद्भव ने प्रूफ की लंबाई को और अधिक विस्तारित करने की अनुमति दी है। यदि प्रमाणित सॉफ़्टवेयर में खामियां हैं और यदि वे लंबे हैं, तो जांचना मुश्किल है, तो सहायक प्रमाण गलत हो सकते हैं।[lower-alpha 5][29] दूसरी ओर, प्रूफ असिस्टेंट उन विवरणों के सत्यापन की अनुमति देते हैं जो हस्तलिखित प्रमाण में नहीं दिए जा सकते हैं, और 255-पृष्ठ फीट-थॉम्पसन प्रमेय जैसे लंबे सबूतों की शुद्धता की निश्चितता प्रदान करते हैं।[lower-alpha 6]

प्रतीकात्मक संकेतन

Lua error: Internal error: The interpreter exited with status 1.

File:Leonhard Euler 2.jpg
लियोनहार्ड यूलर ने आज इस्तेमाल किए गए गणितीय संकेतन का बहुत कुछ बनाया और लोकप्रिय बनाया।

विशेष भाषा के अतिरिक्त, समकालीन गणित विशेष अंकन का अत्यधिक उपयोग करता है। ये प्रतीक गणितीय विचारों की अभिव्यक्ति को सरल बनाने और नियमित नियमों का पालन करने वाले नियमित संचालन की अनुमति देकर, कठोरता में भी योगदान देते हैं। आधुनिक अंकन गणित को निपुण के लिए अधिक कुशल बनाता है, हालांकि शुरुआती इसे कठिन पा सकते हैं।

आज उपयोग में आने वाले अधिकांश गणितीय संकेतन का आविष्कार 15वीं शताब्दी के बाद किया गया था, जिसमें विशेष रूप से लियोनहार्ड यूलर (1707-1783) के कई योगदान शामिल हैं।[30]Lua error: Internal error: The interpreter exited with status 1. इससे पहले, गणितीय तर्कों को आमतौर पर शब्दों में लिखा जाता था, गणितीय खोज को सीमित करते हुए।Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1.

19वीं शताब्दी की शुरुआत में, औपचारिकता के रूप में जानी जाने वाली विचारधारा का विकास हुआ। एक औपचारिकतावादी के लिए, गणित प्राथमिक रूप से प्रतीकों की औपचारिक प्रणालियों और उन्हें संयोजित करने के नियमों के बारे में है। इस दृष्टिकोण से, स्वयंसिद्ध भी एक स्वयंसिद्ध प्रणाली में केवल विशेषाधिकार प्राप्त सूत्र हैं, जो प्रणाली के अन्य तत्वों से प्रक्रियात्मक रूप से प्राप्त किए बिना दिए गए हैं। औपचारिकता का एक अधिकतम उदाहरण 20 वीं शताब्दी की शुरुआत में डेविड हिल्बर्ट का आह्वान था, जिसे अक्सर हिल्बर्ट का कार्यक्रम कहा जाता है, इस तरह से सभी गणित को एन्कोड करने के लिए।

कर्ट गोडेल ने साबित किया कि यह लक्ष्य अपने अपूर्णता प्रमेयों के साथ मौलिक रूप से असंभव था, जिसने दिखाया कि कोई भी औपचारिक प्रणाली इतनी समृद्ध है कि सरल अंकगणित भी अपनी पूर्णता या स्थिरता की गारंटी नहीं दे सकती है। बहरहाल, औपचारिकतावादी अवधारणाएं गणित को बहुत प्रभावित करती हैं, इस बिंदु तक कि डिफ़ॉल्ट रूप से सेट-सैद्धांतिक सूत्रों में व्यक्त होने की उम्मीद है। केवल बहुत ही असाधारण परिणाम स्वीकार किए जाते हैं क्योंकि यह एक स्वयंसिद्ध प्रणाली या दूसरे में फिट नहीं होते हैं।[31]

विज्ञान के साथ संबंध

Lua error: Internal error: The interpreter exited with status 1.

गणित एक विज्ञान है या नहीं, इस पर अभी भी दार्शनिक बहस चल रही है। हालांकि, व्यवहार में, गणितज्ञों को आम तौर पर वैज्ञानिकों के साथ समूहीकृत किया जाता है, और गणित भौतिक विज्ञानों के साथ बहुत समान है। उनकी तरह, यह मिथ्या है, जिसका अर्थ है कि गणित में, यदि कोई परिणाम या सिद्धांत गलत है, तो इसे एक प्रति-उदाहरण प्रदान करके साबित किया जा सकता है। इसी तरह विज्ञान में भी सिद्धांत और परिणाम (प्रमेय) अक्सर प्रयोग से प्राप्त होते हैं।[32] गणित में, प्रयोग में चयनित उदाहरणों पर गणना या आंकड़ों के अध्ययन या गणितीय वस्तुओं के अन्य प्रतिनिधित्व शामिल हो सकते हैं (अक्सर भौतिक समर्थन के बिना दिमाग का प्रतिनिधित्व)। उदाहरण के लिए, जब उनसे पूछा गया कि वह अपने प्रमेयों के बारे में कैसे आए, तो गॉस (19वीं शताब्दी के महानतम गणितज्ञों में से एक) ने एक बार "डर्च प्लानमासिगेस टैटोनिएरेन" (व्यवस्थित प्रयोग के माध्यम से) का उत्तर दिया।[lower-alpha 7] हालांकि, कुछ लेखक इस बात पर जोर देते हैं कि अनुभवजन्य साक्ष्यों पर भरोसा न करके गणित विज्ञान की आधुनिक धारणा से अलग है।[33][34][35][36]

यह गणित और अन्य विज्ञानों के बीच संबंधों का एक पहलू मात्र है। सभी विज्ञान गणितज्ञों द्वारा अध्ययन की जाने वाली समस्याओं को प्रस्तुत करते हैं, और इसके विपरीत, गणित के परिणाम अक्सर विज्ञान में नए प्रश्नों और बोध को जन्म देते हैं। उदाहरण के लिए, भौतिक विज्ञानी रिचर्ड फेनमैन ने क्वांटम यांत्रिकी के पथ अभिन्न सूत्रीकरण का आविष्कार करने के लिए गणितीय तर्क और भौतिक अंतर्दृष्टि को संयुक्त किया। दूसरी ओर, स्ट्रिंग सिद्धांत, आधुनिक भौतिकी के एकीकरण के लिए एक प्रस्तावित ढांचा है जिसने गणित में नई तकनीकों और परिणामों को प्रेरित किया है।[37]

कार्ल फ्रेडरिक गॉस, जिसे गणितज्ञों के राजकुमार के रूप में जाना जाता है

जर्मन गणितज्ञ कार्ल फ्रेडरिक गॉस ने गणित को "विज्ञान की रानी" कहा,Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1. और हाल ही में, मार्कस डु सौतोय ने गणित को "वैज्ञानिक खोज के पीछे मुख्य प्रेरक शक्ति" के रूप में वर्णित किया है।[38]

वैज्ञानिक क्रांति के बाद से गणितीय ज्ञान का विस्तार हुआ है, और अध्ययन के अन्य क्षेत्रों की तरह, इसने विशेषज्ञता को प्रेरित किया है। 2010 तक, अमेरिकन मैथमैटिकल सोसाइटी का नवीनतम गणित विषय वर्गीकरण सैकड़ों उपक्षेत्रों को मान्यता देता है, जिसमें पूर्ण वर्गीकरण 46 पृष्ठों तक पहुंच गया है।[39]

हालांकि गणित विकसित होने की एक उल्लेखनीय प्रवृत्ति दिखाता है, और समय के साथ, गणितज्ञ अक्सर आश्चर्यजनक अनुप्रयोगों या अवधारणाओं के बीच संबंधों की खोज करते हैं। इसका एक बहुत ही प्रभावशाली उदाहरण फेलिक्स क्लेन का एर्लांगेन कार्यक्रम था, जिसने ज्यामिति और बीजगणित के बीच अभिनव और गहन संबंध स्थापित किए। इसने बदले में दोनों क्षेत्रों को अधिक से अधिक अमूर्तता के लिए खोल दिया और पूरी तरह से नए उपक्षेत्रों का निर्माण किया।

पूरी तरह से अमूर्त प्रश्नों और अवधारणाओं की ओर उन्मुख अनुप्रयुक्त गणित और गणित के बीच अक्सर अंतर किया जाता है, जिसे शुद्ध गणित कहा जाता है। हालांकि गणित के अन्य विभागों की तरह, सीमा तरल है। विचार जो शुरू में एक विशिष्ट अनुप्रयोग को ध्यान में रखते हुए विकसित होते हैं, अक्सर बाद में सामान्यीकृत होते हैं, फिर गणितीय अवधारणाओं के सामान्य भंडार में शामिल हो जाते हैं। अनुप्रयुक्त गणित के कई क्षेत्रों को व्यावहारिक क्षेत्रों के साथ विलय कर दिया गया है ताकि वे अपने आप में विषय बन सकें, जैसे कि सांख्यिकी, संचालन अनुसंधान और कंप्यूटर विज्ञान।

शायद इससे भी अधिक आश्चर्य की बात यह है कि जब विचार दूसरी दिशा में प्रवाहित होते हैं, और यहां तक कि "शुद्धतम" गणित भी अप्रत्याशित भविष्यवाणियों या अनुप्रयोगों की ओर ले जाता है। उदाहरण के लिए, आधुनिक क्रिप्टोग्राफी में संख्या सिद्धांत एक केंद्रीय स्थान रखता है, और भौतिकी में, मैक्सवेल के समीकरणों से व्युत्पत्तियों ने रेडियो तरंगों के प्रायोगिक साक्ष्य और प्रकाश की गति की स्थिरता को छोड़ दिया। भौतिक विज्ञानी यूजीन विग्नर ने इस घटना को "गणित की अनुचित प्रभावशीलता" का नाम दिया है।[7]

अमूर्त गणित और भौतिक वास्तविकता के बीच अलौकिक संबंध ने कम से कम पाइथागोरस के समय से दार्शनिक बहस का नेतृत्व किया है। प्राचीन दार्शनिक प्लेटो ने तर्क दिया कि यह संभव था क्योंकि भौतिक वास्तविकता उन अमूर्त वस्तुओं को दर्शाती है जो समय के बाहर मौजूद हैं। परिणामस्वरूप, यह विचार कि गणितीय वस्तुएँ किसी न किसी रूप में अमूर्तता में अपने आप मौजूद हैं, को अक्सर प्लेटोनिज़्म के रूप में जाना जाता है। जबकि अधिकांश गणितज्ञ आमतौर पर प्लेटोनिज़्म द्वारा उठाए गए प्रश्नों से स्वयं को सरोकार नहीं रखते, कुछ और दार्शनिक विचारधारा वाले लोग समकालीन समय में भी प्लेटोनिस्ट के रूप में पहचान रखते हैं।[40]

रचनात्मकता और अंतर्ज्ञान

Lua error: Internal error: The interpreter exited with status 1.

File:Wikidata-wikiproject-mathematics.png
यूलर की पहचान, जिसे रिचर्ड फेनमैन ने एक बार गणित में सबसे उल्लेखनीय सूत्र कहा था [41]

शुद्धता और कठोरता की आवश्यकता का मतलब यह नहीं है कि गणित में रचनात्मकता के लिए कोई जगह नहीं है। इसके विपरीत, रटने की गणना से परे अधिकांश गणितीय कार्यों के लिए चतुर समस्या-समाधान की आवश्यकता होती है और सहज रूप से उपन्यास के दृष्टिकोण की खोज की जाती है।

गणितीय रूप से झुकाव वाले लोग अक्सर न केवल गणित में रचनात्मकता देखते हैं, बल्कि एक सौंदर्य मूल्य भी देखते हैं, जिसे आमतौर पर लालित्य के रूप में वर्णित किया जाता है। सरलता, समरूपता, पूर्णता और व्यापकता जैसे गुण विशेष रूप से प्रमाणों और तकनीकों में मूल्यवान हैं। ए मैथमेटिशियन्स एपोलॉजी में जी.एच. हार्डी ने यह विश्वास व्यक्त किया कि ये सौंदर्य संबंधी विचार, शुद्ध गणित के अध्ययन को सही ठहराने के लिए अपने आप में पर्याप्त हैं। उन्होंने महत्व, अप्रत्याशितता और अनिवार्यता जैसे अन्य मानदंडों की भी पहचान की, जो गणितीय सौंदर्यशास्त्र में योगदान करते हैं।[42]

पॉल एर्डोस ने इस भावना को और अधिक विडंबनापूर्ण रूप से "द बुक" की बात करते हुए व्यक्त किया, जो सबसे सुंदर प्रमाणों का एक दिव्य संग्रह है। एर्डोस से प्रेरित 1998 की पुस्तक प्रूफ़्स फ्रॉम द बुक, विशेष रूप से संक्षिप्त और रहस्योद्घाटन गणितीय तर्कों का एक संग्रह है। विशेष रूप से सुरुचिपूर्ण परिणामों के कुछ उदाहरण शामिल हैं यूक्लिड का प्रमाण है कि हार्मोनिक विश्लेषण के लिए असीम रूप से कई अभाज्य संख्याएँ और तेज़ फूरियर रूपांतरण हैं।

कुछ लोगों का मानना है कि गणित को एक विज्ञान मानना सात पारंपरिक उदार कलाओं में अपनी कलात्मकता और इतिहास को कमतर आंकना है।[43] एक तरह से इस दृष्टिकोण का अंतर दार्शनिक बहस में है कि क्या गणितीय परिणाम बनाए गए हैं (कला के रूप में) या खोजे गए हैं (जैसा कि विज्ञान में है)।[44] मनोरंजक गणित की लोकप्रियता उस खुशी का एक और संकेत है जो बहुत से लोग गणितीय प्रश्नों को हल करने में पाते हैं।

20वीं शताब्दी में, गणितज्ञ एल.ई.जे. ब्रौवर ने एक दार्शनिक परिप्रेक्ष्य की भी शुरुआत की जिसे अंतर्ज्ञानवाद के रूप में जाना जाता है, जो मुख्य रूप से दिमाग में कुछ रचनात्मक प्रक्रियाओं के साथ गणित की पहचान करता है।[45] अंतर्ज्ञानवाद बदले में रचनावाद के रूप में जाना जाने वाला रुख का एक स्वाद है, जो केवल गणितीय वस्तु को मान्य मानता है यदि इसे सीधे बनाया जा सकता है, न कि केवल अप्रत्यक्ष रूप से तर्क द्वारा गारंटी दी जाती है। यह प्रतिबद्ध रचनावादियों को कुछ परिणामों को अस्वीकार करने के लिए प्रेरित करता है, विशेष रूप से बहिष्कृत मध्य के कानून के आधार पर अस्तित्व के प्रमाण जैसे तर्क।[46]

अंत में, न तो रचनावाद और न ही अंतर्ज्ञानवाद ने शास्त्रीय गणित को विस्थापित किया और न ही मुख्यधारा की स्वीकृति प्राप्त की। हालांकि, इन कार्यक्रमों ने विशिष्ट विकासों को प्रेरित किया है, जैसे कि अंतर्ज्ञानवादी तर्क और अन्य मूलभूत अंतर्दृष्टि, जिन्हें अपने आप में सराहा जाता है।[46]

समाज में

Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1. गणित में सांस्कृतिक सीमाओं और समय अवधि को पार करने की उल्लेखनीय क्षमता है। एक मानवीय गतिविधि के रूप में, गणित के अभ्यास का एक सामाजिक पक्ष होता है, जिसमें शिक्षा, करियर, मान्यता, लोकप्रियता, और इसी तरह शामिल हैं। शिक्षा के क्षेत्र में गणित पाठ्यक्रम का एक प्रमुख अंग है। जबकि पाठ्यक्रमों की सामग्री अलग-अलग होती है, दुनिया के कई देश छात्रों को काफी समय तक गणित पढ़ाते हैं।

पुरस्कार और पुरस्कार की समस्याएं

Lua error: Internal error: The interpreter exited with status 1.

फील्ड्स मेडल के सामने की ओर

गणित में सबसे प्रतिष्ठित पुरस्कार फील्ड्स मेडल है,Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1. जिसकी स्थापना 1936 में हुई थी और हर चार साल में (द्वितीय विश्व युद्ध को छोड़कर) अधिकतम चार व्यक्तियों को प्रदान किया जाता था।[47][48] इसे नोबेल पुरस्कार के गणितीय समकक्ष माना जाता है।[48]

अन्य प्रतिष्ठित गणित पुरस्कार शामिल हैं:

  • एबेल पुरस्कार, 2002 में स्थापित किया गया[49] और पहली बार 2003 में दिया गया[50]
  • लाइफटाइम अचीवमेंट के लिए चेर्न मेडल, 2009 में शुरू किया गया[51] और पहली बार 2010 में प्रदान किया गया[52]
  • गणित में वुल्फ पुरस्कार, लाइफटाइम अचीवमेंट के लिए भी,[53] 1978 में स्थापित किया गया[54]

23 खुली समस्याओं की एक प्रसिद्ध सूची, जिसे "हिल्बर्ट की समस्याएं" कहा जाता है, को 1900 में जर्मन गणितज्ञ डेविड हिल्बर्ट द्वारा संकलित किया गया था। <रेफ नाम =: 0>Lua error: Internal error: The interpreter exited with status 1.</ref> इस सूची ने गणितज्ञों<ref>Lua error: Internal error: The interpreter exited with status 1.</ref>Lua error: Internal error: The interpreter exited with status 1. के बीच महान हस्ती हासिल की है, और, 2022 तक, कम से कम तेरह समस्याओं (कुछ की व्याख्या के आधार पर) को हल कर लिया गया है। <रेफ नाम =: 0>Lua error: Internal error: The interpreter exited with status 1.</ref>

सात महत्वपूर्ण समस्याओं की एक नई सूची, जिसका शीर्षक "मिलेनियम प्राइज प्रॉब्लम्स" है, 2000 में प्रकाशित हुई थी। उनमें से केवल एक, रीमैन परिकल्पना, हिल्बर्ट की समस्याओं में से एक की नकल करती है। इनमें से किसी भी समस्या के समाधान के लिए 10 लाख डॉलर का इनाम दिया जाता है।[55] आज तक, इन समस्याओं में से केवल एक, पोंकारे अनुमान का समाधान किया गया है।[56]


यह भी देखें

Lua error: Internal error: The interpreter exited with status 1.

Lua error: Internal error: The interpreter exited with status 1.
  • गणित की रूपरेखा
  • गणित के विषयों की सूची
  • गणितीय शब्दजाल की सूची
  • गणित का दर्शन
  • गणित और भौतिकी के बीच संबंध
  • गणितीय विज्ञान
  • गणित और कला
  • गणित शिक्षा
  • विज्ञान, प्रौद्योगिकी, इंजीनियरिंग और गणित
  • गणितज्ञों की सूची


टिप्पणियाँ

  1. No likeness or description of Euclid's physical appearance made during his lifetime survived antiquity. Therefore, Euclid's depiction in works of art depends on the artist's imagination (see Euclid).
  2. This includes conic sections, which are intersections of circular cylinders and planes.
  3. However, some advanced methods of analysis are sometimes used; for example, methods of complex analysis applied to generating series.
  4. Like other mathematical sciences such as physics and computer science, statistics is an autonomous discipline rather than a branch of applied mathematics. Like research physicists and computer scientists, research statisticians are mathematical scientists. Many statisticians have a degree in mathematics, and some statisticians are also mathematicians.
  5. For considering as reliable a large computation occurring in a proof, one generally requires two computations using independent software
  6. The book containing the complete proof has more than 1,000 pages.
  7. A. L. Mackay Dictionary of Scientific Quotations (London 1991) p.100 (This contribution stems from Wikipedia's Scientific method#Relationship with mathematics)

Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1.


संदर्भ

  1. 1.0 1.1 Lua error: Internal error: The interpreter exited with status 1.
  2. Lua error: Internal error: The interpreter exited with status 1.
  3. Lua error: Internal error: The interpreter exited with status 1.
  4. Lua error: Internal error: The interpreter exited with status 1.
  5. Lua error: Internal error: The interpreter exited with status 1.
  6. Peterson 2001, p. 12.
  7. 7.0 7.1 Lua error: Internal error: The interpreter exited with status 1.
  8. Lua error: Internal error: The interpreter exited with status 1.
  9. Lua error: Internal error: The interpreter exited with status 1.
  10. Both meanings can be found in Plato, the narrower in Republic 510c Lua error: Internal error: The interpreter exited with status 1., but Plato did not use a math- word; Aristotle did, commenting on it. Lua error: Internal error: The interpreter exited with status 1.. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the Perseus Project. OED Online, "Mathematics".
  11. Lua error: Internal error: The interpreter exited with status 1.
  12. The Oxford Dictionary of English Etymology, Oxford English Dictionary, sub "mathematics", "mathematic", "mathematics"
  13. "maths, n." and "math, n.3" Lua error: Internal error: The interpreter exited with status 1.. Oxford English Dictionary, on-line version (2012).
  14. Luke Howard Hodgkin & Luke Hodgkin, A History of Mathematics, Oxford University Press, 2005.
  15. Lua error: Internal error: The interpreter exited with status 1.
  16. Rao, C.R. (1997) Statistics and Truth: Putting Chance to Work, World Scientific. Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1.
  17. Lua error: Internal error: The interpreter exited with status 1.
  18. Lua error: Internal error: The interpreter exited with status 1.: Lua error: Internal error: The interpreter exited with status 1.
  19. Lua error: Internal error: The interpreter exited with status 1.
  20. See, for example, Raymond L. Wilder, Evolution of Mathematical Concepts; an Elementary Study, passim
  21. Lua error: Internal error: The interpreter exited with status 1.
  22. Lua error: Internal error: The interpreter exited with status 1.
  23. Lua error: Internal error: The interpreter exited with status 1.
  24. 24.0 24.1 24.2 Lua error: Internal error: The interpreter exited with status 1.
  25. 25.0 25.1 Lua error: Internal error: The interpreter exited with status 1.
  26. Lua error: Internal error: The interpreter exited with status 1.
  27. Lua error: Internal error: The interpreter exited with status 1.
  28. Lua error: Internal error: The interpreter exited with status 1.
  29. Ivars Peterson, The Mathematical Tourist, Freeman, 1988, Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1.. p. 4 "A few complain that the computer program can't be verified properly", (in reference to the Haken–Apple proof of the Four Color Theorem).
  30. Lua error: Internal error: The interpreter exited with status 1.
  31. Patrick Suppes, Axiomatic Set Theory, Dover, 1972, Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1.. p. 1, "Among the many branches of modern mathematics set theory occupies a unique place: with a few rare exceptions the entities which are studied and analyzed in mathematics may be regarded as certain particular sets or classes of objects."
  32. Lua error: Internal error: The interpreter exited with status 1.
  33. Lua error: Internal error: The interpreter exited with status 1.
  34. Lua error: Internal error: The interpreter exited with status 1.
  35. Lua error: Internal error: The interpreter exited with status 1.
  36. Lua error: Internal error: The interpreter exited with status 1.
  37. Lua error: Internal error: The interpreter exited with status 1.
  38. Lua error: Internal error: The interpreter exited with status 1.
  39. Lua error: Internal error: The interpreter exited with status 1.
  40. Lua error: Internal error: The interpreter exited with status 1.
  41. Lua error: Internal error: The interpreter exited with status 1. — Actually, Feynman referred to the more general formula , known as Euler's formula.
  42. Lua error: Internal error: The interpreter exited with status 1.
  43. See, for example Bertrand Russell's statement "Mathematics, rightly viewed, possesses not only truth, but supreme beauty ..." in his History of Western Philosophy
  44. Lua error: Internal error: The interpreter exited with status 1.
  45. Lua error: Internal error: The interpreter exited with status 1.
  46. 46.0 46.1 Lua error: Internal error: The interpreter exited with status 1.
  47. Lua error: Internal error: The interpreter exited with status 1.
  48. 48.0 48.1 Lua error: Internal error: The interpreter exited with status 1.
  49. Lua error: Internal error: The interpreter exited with status 1.
  50. Lua error: Internal error: The interpreter exited with status 1.
  51. Lua error: Internal error: The interpreter exited with status 1.
  52. Lua error: Internal error: The interpreter exited with status 1.
  53. Lua error: Internal error: The interpreter exited with status 1.
  54. Lua error: Internal error: The interpreter exited with status 1.
  55. Lua error: Internal error: The interpreter exited with status 1.
  56. Lua error: Internal error: The interpreter exited with status 1.

Lua error: Internal error: The interpreter exited with status 1.


ग्रन्थसूची

  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1..
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.


अग्रिम पठन

Lua error: Internal error: The interpreter exited with status 1.Lua error: Internal error: The interpreter exited with status 1. Lua error: Internal error: The interpreter exited with status 1. Lua error: Internal error: The interpreter exited with status 1.

  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1. – A translated and expanded version of a Soviet mathematics encyclopedia, in ten volumes. Also in paperback and on CD-ROM, and online Lua error: Internal error: The interpreter exited with status 1..
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.
  • Lua error: Internal error: The interpreter exited with status 1.

{{Navbox

| name =गणित के क्षेत्र

|state = autocollapse


| title =अंक शास्त्र | bodyclass = hlist

|above =


| group1 = नींव | list1 =* श्रेणी सिद्धांत

| group2 =बीजगणित | list2 =* सार

| group3 = विश्लेषण | list3 =* पथरी

| group4 = असतत | list4 =* कॉम्बीनेटरिक्स

| group5 =ज्यामिति | list5 =* बीजगणितीय

| group6 =संख्या सिद्धांत | list6 =* अंकगणित

| group7 =टोपोलॉजी | list7 =* सामान्य

| group8 = लागू | list8 =* इंजीनियरिंग गणित

| group9 = कम्प्यूटेशनल | list9 =* कंप्यूटर विज्ञान

| group10 = संबंधित विषय | list10 =* अनौपचारिक गणित

| below =* 'Lua error: Internal error: The interpreter exited with status 1. '

  • Lua error: Internal error: The interpreter exited with status 1. ' श्रेणी' '
  • Lua error: Internal error: The interpreter exited with status 1. ' कॉमन्स'
  • Lua error: Internal error: The interpreter exited with status 1. [[gikewikipedia: wikiproject matics | wikiproject]

}}

Lua error: Internal error: The interpreter exited with status 1.