असंयुक्त संघ: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 3: Line 3:
{{distinguish|विच्छेदनात्मक यूनियन}}
{{distinguish|विच्छेदनात्मक यूनियन}}
{{Infobox mathematical statement
{{Infobox mathematical statement
| name = Disjoint union
| name = असंयुक्त यूनियन
| image = PolygonsSetDisjointUnion.svg
| image = PolygonsSetDisjointUnion.svg
| caption =
| caption =
| type = [[Set (mathematics)#Basic operations|Set operation]]
| type = [[समुच्चय (गणित)#मूलभूत संचालन|समुच्चय संचालन]]
| field = [[Set (mathematics)|Set theory]]
| field = [[समुच्चय (गणित)|समुच्चय सिद्धांत]]
| statement = The disjoint union <math>A \sqcup B</math> of the sets {{math|''A''}} and {{math|''B''}} is the set formed from the elements of {{math|''A''}} and {{math|''B''}} labelled (indexed) with the name of the set from which they come. So, an element belonging to both {{math|''A''}} and {{math|''B''}} appears twice in the disjoint union, with two different labels.  
| statement = असंयुक्त यूनियन <math>A \sqcup B</math> समुच्चय का {{math|''A''}} और {{math|''B''}} के तत्वों से निर्मित समुच्चय है {{math|''A''}} और {{math|''B''}} जिस समुच्चय से वे आते हैं उसके नाम के साथ लेबल (अनुक्रमित) किया जाता है। तो, दोनों से संबंधित एक तत्व {{math|''A''}} और {{math|''B''}} असंयुक्त संघ में दो अलग-अलग लेबलों के साथ दो बार प्रकट होता है.  
| symbolic statement = <math display=block>\bigsqcup_{i \in I} A_i = \bigcup_{i \in I} \left\{(x, i) : x \in A_i\right\}</math>  
| symbolic statement = <math display=block>\bigsqcup_{i \in I} A_i = \bigcup_{i \in I} \left\{(x, i) : x \in A_i\right\}</math>  
}}
}}

Revision as of 11:03, 15 July 2023

असंयुक्त यूनियन
PolygonsSetDisjointUnion.svg
Typeसमुच्चय संचालन
Fieldसमुच्चय सिद्धांत
Statementअसंयुक्त यूनियन समुच्चय का A और B के तत्वों से निर्मित समुच्चय है A और B जिस समुच्चय से वे आते हैं उसके नाम के साथ लेबल (अनुक्रमित) किया जाता है। तो, दोनों से संबंधित एक तत्व A और B असंयुक्त संघ में दो अलग-अलग लेबलों के साथ दो बार प्रकट होता है.
Symbolic statement

गणित में समुच्चयों के एक समूह का एक असंयुक्त यूनियन (या विभेदित यूनियन) एक समुच्चय है जिसे अधिकांशतः द्वारा दर्शाया जाता है प्रत्येक के में एक इंजेक्शन के साथ, जैसे कि इन इंजेक्शनों की छवियां का एक विभाजन (समुच्चय सिद्धांत) बनाती हैं इस प्रकार (अर्थात् का प्रत्येक तत्व इन छवियों में से पुर्णतः एक से संबंधित है)। इस प्रकार जोड़ीवार असंयुक्त समुच्चयों के समूह का असंयुक्त यूनियन ही उनका यूनियन है।

श्रेणी सिद्धांत में, असंयुक्त यूनियन समुच्चयों की श्रेणी का सहउत्पाद है, और इस प्रकार आक्षेप तक परिभाषित किया गया है। इस संदर्भ में, संकेतन अधिकांशतः प्रयोग किया जाता है.

दो समुच्चयों का असंयुक्त यूनियन और इन्फिक्स संकेतन के साथ लिखा गया है कुछ लेखक वैकल्पिक संकेतन का उपयोग करते हैं इस प्रकार या (संबंधित के साथ या ) का उपयोग किया जाता है

असंबद्ध यूनियन के निर्माण का मानक विधि परिभाषित करना है क्रमित युग्म के समुच्चय के रूप में ऐसा है कि और इंजेक्शन है जैसा है

उदाहरण

समुच्चय और पर विचार करें संबंधित समुच्चय बनाकर समुच्चय तत्वों को समुच्चय मूल के अनुसार अनुक्रमित करना संभव है जहां प्रत्येक जोड़ी में दूसरा तत्व मूल समुच्चय की सबस्क्रिप्ट से मेल खाता है (उदाहरण के लिए,)। इस प्रकार में में सबस्क्रिप्ट से मेल खाता है जिससे असंयुक्त यूनियन फिर इसकी गणना इस प्रकार की जा सकती है:

सिद्धांत की परिभाषा निर्धारित करें

औपचारिक रूप से, माना द्वारा अनुक्रमित समुच्चयों का समूह बनते है इस समूह का विघटित यूनियन ही समुच्चय है

असंयुक्त यूनियन के तत्वों को क्रमित जोड़े कहा जाता है इस प्रकार यहाँ सहायक सूचकांक के रूप में कार्य करता है जो इंगित करता है कि कौन तत्व है।

प्रत्येक समुच्चय समुच्चय के लिए विहित रूप से समरूपी है

इस समरूपता के माध्यम से, कोई इस पर विचार कर सकता है विहित यूनियन में विहित रूप से अंतर्निहित है। इस प्रकार के लिए समुच्चय और समुच्चय तथापि असंयुक्त हों और नहीं हैं।

चरम स्थिति में जहां प्रत्येक कुछ निश्चित समुच्चय के बराबर है प्रत्येक के लिए असंयुक्त यूनियन कार्तीय गुणनफल और है:

कभी-कभी, संकेतन
समुच्चयों के समूह के असंयुक्त यूनियन या संकेतन के लिए उपयोग किया जाता है दो समुच्चयों के असंयुक्त यूनियन के लिए. यह संकेतन इस तथ्य का सूचक है कि असंयुक्त यूनियन की प्रमुखता समूह में नियमो की प्रमुखताओं का योग है। इसकी तुलना समुच्चयों के समूह के कार्टेशियन उत्पाद के संकेतन से करते है।

श्रेणी सिद्धांत की भाषा में, असंयुक्त यूनियन समुच्चयों की श्रेणी में सहउत्पाद है। इसलिए यह संबंधित सार्वभौमिक संपत्ति को संतुष्ट करता है। इसका यह भी अर्थ है कि असंयुक्त यूनियन कार्टेशियन उत्पाद निर्माण का स्पष्ट द्वैत है। अधिक विवरण के लिए सह-उत्पाद देखें।

कई उद्देश्यों के लिए, सहायक सूचकांक की विशेष पसंद महत्वहीन है, और अंकन के सरलीकृत दुरुपयोग में, अनुक्रमित समूह को केवल समुच्चयों के संग्रह के रूप में माना जा सकता है। इस स्थिति में a के रूप में जाना जाता है इस प्रकार कॉपी का और संकेतन कभी-कभी प्रयोग किया जाता है।

श्रेणी सिद्धांत दृष्टिकोण

श्रेणी सिद्धांत में असंयुक्त यूनियन को समुच्चय की श्रेणी में सहउत्पाद के रूप में परिभाषित किया गया है।

इस प्रकार, असंयुक्त यूनियन को समरूपता तक परिभाषित किया गया है, और उपरोक्त परिभाषा दूसरों के बीच सह-उत्पाद की सिर्फ प्राप्ति है। इस प्रकार जब समुच्चय जोड़ीदार रूप से असंयुक्त होते हैं, जिससे सामान्य यूनियन सह-उत्पाद का और एहसास होता है। यह लीड में दूसरी परिभाषा को सही स्थिर करता है।

असंयुक्त संघ का यह स्पष्ट कथन बताता है कि सहउत्पाद को दर्शाने के लिए के अतिरिक्त का अधिकांशतः उपयोग क्यों किया जाता है।

यह भी देखें

संदर्भ

  • Lang, Serge (2004), Algebra, Graduate Texts in Mathematics, vol. 211 (Corrected fourth printing, revised third ed.), New York: Springer-Verlag, p. 60, ISBN 978-0-387-95385-4
  • Weisstein, Eric W. "Disjoint Union". MathWorld.