परिमाप: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 4: Line 4:
[[File:Perimiters.svg|thumb|250px|परिधि दो आयामी आकार के चारों ओर की दूरी है, किसी चीज़ के चारों ओर की दूरी का माप; सीमा की लंबाई।]][[परिधि]] एक बंद [[पथ (ज्यामिति)]] है जो [[दो आयामी]] [[आकार]] या एक [[एक आयामी|आयामी]] [[लंबाई (गणित)]] को घेरता है, या रेखांकित करता है। किसी वृत्त या दीर्घवृत्त की परिधि को उसकी परिधि कहते हैं।
[[File:Perimiters.svg|thumb|250px|परिधि दो आयामी आकार के चारों ओर की दूरी है, किसी चीज़ के चारों ओर की दूरी का माप; सीमा की लंबाई।]][[परिधि]] एक बंद [[पथ (ज्यामिति)]] है जो [[दो आयामी]] [[आकार]] या एक [[एक आयामी|आयामी]] [[लंबाई (गणित)]] को घेरता है, या रेखांकित करता है। किसी वृत्त या दीर्घवृत्त की परिधि को उसकी परिधि कहते हैं।


परिधि की गणना के कई व्यावहारिक अनुप्रयोग हैं। गणना परिधि एक यार्ड या बगीचे को घेरने के लिए आवश्यक बाड़ की लंबाई है। चक्र (इसकी परिधि) की परिधि बताती है कि यह एक चक्कर (ज्यामिति) में कितनी दूर तक लुढ़केगा। इसी तरह, एक स्पूल के चारों ओर लपेटी गई स्ट्रिंग की मात्रा स्पूल की परिधि से संबंधित होती है; यदि स्ट्रिंग की लंबाई सटीक होती, तो यह परिमाप के बराबर जाती है।
परिधि की गणना के कई व्यावहारिक अनुप्रयोग हैं। गणना परिधि एक यार्ड या बगीचे को घेरने के लिए आवश्यक बाड़ की लंबाई है। चक्र (इसकी परिधि) की परिधि बताती है कि यह एक चक्कर (ज्यामिति) में कितनी दूर तक लुढ़केगा। इसी तरह, एक स्पूल के चारों ओर लपेटी गई स्ट्रिंग की मात्रा स्पूल की परिधि से संबंधित होती है; यदि स्ट्रिंग की लंबाई स्पष्ट होती, तो यह परिमाप के बराबर जाती है।


== सूत्र ==
== सूत्र ==
Line 32: Line 32:
:<math> \gamma(t)=\begin{pmatrix}x(t)\\y(t)\end{pmatrix}</math> फिर इसकी लंबाई <math>L</math> निम्नानुसार गणना की जा सकती है:
:<math> \gamma(t)=\begin{pmatrix}x(t)\\y(t)\end{pmatrix}</math> फिर इसकी लंबाई <math>L</math> निम्नानुसार गणना की जा सकती है:
: <math>L = \int_a^b \sqrt{x'(t)^2+y'(t)^2}\,\mathrm dt</math>
: <math>L = \int_a^b \sqrt{x'(t)^2+y'(t)^2}\,\mathrm dt</math>
परिधि की  सामान्यीकृत धारणा, जिसमें [[ऊनविम पृष्ठ]] बाउंडिंग वॉल्यूम शामिल हैं <math>n</math>-[[आयाम (गणित)]] [[यूक्लिडियन अंतरिक्ष]] स्थान, कैसीओपोली सेट के सिद्धांत द्वारा वर्णित है।
परिधि की  सामान्यीकृत धारणा, जिसमें [[ऊनविम पृष्ठ]] बाउंडिंग वॉल्यूम सम्मिलित <math>n</math>-[[आयाम (गणित)]] [[यूक्लिडियन अंतरिक्ष]] स्थान, कैसीओपोली समुच्चय के सिद्धांत द्वारा वर्णित है।


== बहुभुज ==
== बहुभुज ==
[[File:PerimeterRectangle.svg|thumb|एक आयत की परिधि।]][[बहुभुज]] परिधि के निर्धारण के लिए मौलिक हैं, न केवल इसलिए कि वे सबसे सरल आकार हैं बल्कि इसलिए भी कि कई आकृतियों के परिधि की गणना अनुमान गणित द्वारा की जाती है, जिसमें इन आकृतियों के बहुभुजों के [[अनुक्रम की सीमा]] होती है। इस तरह के तर्क का उप[[योग]] करने वाले पहले गणितज्ञ [[आर्किमिडीज]] हैं, जिन्होंने [[नियमित बहुभुज]] के साथ एक वृत्त की परिधि का अनुमान लगाया।
[[File:PerimeterRectangle.svg|thumb|एक आयत की परिधि।]][[बहुभुज]] परिधि के निर्धारण के लिए मौलिक हैं, न केवल इसलिए कि वे सबसे सरल आकार हैं किंतु इसलिए भी कि कई आकृतियों के परिधि की गणना अनुमान गणित द्वारा की जाती है, जिसमें इन आकृतियों के बहुभुजों के [[अनुक्रम की सीमा]] होती है। इस तरह के तर्क का उप[[योग]] करने वाले पहले गणितज्ञ [[आर्किमिडीज]] हैं, जिन्होंने [[नियमित बहुभुज]] के साथ एक वृत्त की परिधि का अनुमान लगाया था।


एक बहुभुज का परिमाप उसके किनारे (ज्यामिति) भुजाओं (किनारों) की लंबाई के योग के बराबर होता है। विशेष रूप से, चौड़ाई <math>w</math> और लंबाई <math>\ell</math> के [[आयत]] की परिमाप <math>2w + 2\ell.</math>के बराबर होता है |  
एक बहुभुज का परिमाप उसके किनारे (ज्यामिति) भुजाओं (किनारों) की लंबाई के योग के बराबर होता है। विशेष रूप से, चौड़ाई <math>w</math> और लंबाई <math>\ell</math> के [[आयत]] की परिमाप <math>2w + 2\ell.</math>के बराबर होता है |  
Line 52: Line 52:
[[File:Pi-unrolled-720.gif|right|300px|thumb|यदि किसी वृत्त का व्यास 1 है, तो उसकी परिधि बराबर है {{pi}}.]]
[[File:Pi-unrolled-720.gif|right|300px|thumb|यदि किसी वृत्त का व्यास 1 है, तो उसकी परिधि बराबर है {{pi}}.]]
{{Main|परिधि}}
{{Main|परिधि}}
एक वृत्त की परिधि, जिसे अक्सर परिधि कहा जाता है, उसके [[व्यास]] और उसकी त्रिज्या के समानुपाती होती है। कहने का मतलब यह है कि एक स्थिर संख्या पाई  {{pi}} (परिधि के लिए प्राचीन ग्रीक पी)  मौजूद है,, जैसे कि यदि {{math|''P''}} वृत्त की परिधि है और {{math|''D''}} इसका व्यास तब,
एक वृत्त की परिधि, जिसे अक्सर परिधि कहा जाता है, उसके [[व्यास]] और उसकी त्रिज्या के समानुपाती होती है। कहने का कारण यह है कि एक स्थिर संख्या पाई  {{pi}} (परिधि के लिए प्राचीन ग्रीक पी)  उपस्थित है, जैसे कि यदि {{math|''P''}} वृत्त की परिधि है और {{math|''D''}} इसका व्यास तब,
:<math>P = \pi\cdot{D}.\!</math>
:<math>P = \pi\cdot{D}.\!</math>
त्रिज्या के संदर्भ में {{math|''r''}} वृत्त का, यह सूत्र बन जाता है,
त्रिज्या के संदर्भ में {{math|''r''}} वृत्त का, यह सूत्र बन जाता है,


:<math>P=2\pi\cdot r.</math>
:<math>P=2\pi\cdot r.</math>
वृत्त की परिधि की गणना करने के लिए, इसकी त्रिज्या या व्यास और संख्या {{pi}} का अध्यन  पर्याप्त है। समस्या यह है कि {{pi}} [[परिमेय संख्या]] नहीं है (इसे दो [[पूर्णांक]] के भागफल के रूप में व्यक्त नहीं किया जा सकता है), न ही यह [[बीजगणितीय संख्या]] है (यह परिमेय गुणांक वाले बहुपद समीकरण का मूल नहीं है)। तो,{{pi}} का सटीक अनुमान प्राप्त करना  गणना में महत्वपूर्ण है।{{pi}} के अंकों की गणना  [[गणितीय विश्लेषण]], [[एल्गोरिथम]] और [[कंप्यूटर विज्ञान]] जैसे कई क्षेत्रों के लिए प्रासंगिक है।
वृत्त की परिधि की गणना करने के लिए, इसकी त्रिज्या या व्यास और संख्या {{pi}} का अध्यन  पर्याप्त है। समस्या यह है कि {{pi}} [[परिमेय संख्या]] नहीं है (इसे दो [[पूर्णांक]] के भागफल के रूप में व्यक्त नहीं किया जा सकता है), न ही यह [[बीजगणितीय संख्या]] है (यह परिमेय गुणांक वाले बहुपद समीकरण का मूल नहीं है)। तो,{{pi}} का स्पष्ट अनुमान प्राप्त करना  गणना में महत्वपूर्ण है।{{pi}} के अंकों की गणना  [[गणितीय विश्लेषण]], [[एल्गोरिथम]] और [[कंप्यूटर विज्ञान]] जैसे कई क्षेत्रों के लिए प्रासंगिक है।


== परिमाप का बोध ==
== परिमाप की धारणा ==
[[File:Hexaflake.gif|thumb|left|upright=0.6|इस आकृति को जितना अधिक काटा जाएगा, क्षेत्रफल उतना ही कम होगा और परिमाप भी उतना ही अधिक होगा। उत्तल हल वही रहता है।]]
[[File:Hexaflake.gif|thumb|left|upright=0.6|इस आकृति को जितना अधिक काटा जाएगा, क्षेत्रफल उतना ही कम होगा और परिमाप भी उतना ही अधिक होगा। उत्तल हल वही रहता है।]]
[[File:Neuf Brisach.jpg|thumb|[[Neuf-Brisach|नेफ-ब्रिसाच]] किलेबंदी परिधि जटिल है। इसके चारों ओर का सबसे छोटा रास्ता इसके उत्तल पतवार के साथ है।]]
[[File:Neuf Brisach.jpg|thumb|[[Neuf-Brisach|नेफ-ब्रिसाच]] किलेबंदी परिधि जटिल है। इसके चारों ओर का सबसे छोटा रास्ता इसके उत्तल पतवार के साथ है।]]
Line 65: Line 65:
परिधि और [[क्षेत्र (ज्यामिति)]] ज्यामितीय आकृतियों के दो मुख्य उपाय हैं। उन्हें भ्रमित करना  सामान्य त्रुटि है, साथ ही यह विश्वास करना कि उनमें से एक जितना बड़ा है, उतना ही बड़ा दूसरा होना चाहिए। वास्तव में, एक सामान्य अवलोकन यह है कि किसी आकृति का विस्तार (या कमी) उसके क्षेत्रफल के साथ-साथ उसकी परिधि को भी बढ़ाता है (या घटाता है)। उदाहरण के लिए, यदि कोई फ़ील्ड 1/{{formatnum:10000}} स्केल मैप, वास्तविक क्षेत्र परिधि की गणना ड्राइंग परिधि को गुणा करके की जा सकती है {{formatnum:10000}}. वास्तविक क्षेत्र है {{formatnum:10000}}{{sup|2}} मानचित्र पर आकृति के क्षेत्रफल का गुणा। फिर भी, एक साधारण आकृति के क्षेत्रफल और परिमाप के बीच कोई संबंध नहीं है। उदाहरण के लिए, चौड़ाई 0.001 और लंबाई 1000 के आयत का परिमाप 2000 से थोड़ा ऊपर है, जबकि चौड़ाई 0.5 और लंबाई 2 के आयत का परिमाप 5 है। दोनों क्षेत्रफल 1 के बराबर हैं।
परिधि और [[क्षेत्र (ज्यामिति)]] ज्यामितीय आकृतियों के दो मुख्य उपाय हैं। उन्हें भ्रमित करना  सामान्य त्रुटि है, साथ ही यह विश्वास करना कि उनमें से एक जितना बड़ा है, उतना ही बड़ा दूसरा होना चाहिए। वास्तव में, एक सामान्य अवलोकन यह है कि किसी आकृति का विस्तार (या कमी) उसके क्षेत्रफल के साथ-साथ उसकी परिधि को भी बढ़ाता है (या घटाता है)। उदाहरण के लिए, यदि कोई फ़ील्ड 1/{{formatnum:10000}} स्केल मैप, वास्तविक क्षेत्र परिधि की गणना ड्राइंग परिधि को गुणा करके की जा सकती है {{formatnum:10000}}. वास्तविक क्षेत्र है {{formatnum:10000}}{{sup|2}} मानचित्र पर आकृति के क्षेत्रफल का गुणा। फिर भी, एक साधारण आकृति के क्षेत्रफल और परिमाप के बीच कोई संबंध नहीं है। उदाहरण के लिए, चौड़ाई 0.001 और लंबाई 1000 के आयत का परिमाप 2000 से थोड़ा ऊपर है, जबकि चौड़ाई 0.5 और लंबाई 2 के आयत का परिमाप 5 है। दोनों क्षेत्रफल 1 के बराबर हैं।


[[बंद किया हुआ|प्रोक्लस]] (5वीं शताब्दी) ने बताया कि ग्रीक किसानों ने अपने परिधि पर निर्भर खेतों को काफी अलग किया। <ref>{{cite book|first1=T.|last1=Heath|title=ग्रीक गणित का इतिहास|volume=2|publisher=[[Dover Publications]]|year= 1981|page= 206|isbn=0-486-24074-6}}</ref> हालाँकि,  खेत का उत्पादन उसके क्षेत्रफल के अनुपात में होता है, उसकी परिधि के अनुसार नहीं, इसलिए कई भोले-भाले किसानों को लंबी परिधि वाले लेकिन छोटे क्षेत्र (इस प्रकार, कुछ फसलें) वाले खेत मिल सकते हैं।
[[बंद किया हुआ|प्रोक्लस]] (5वीं शताब्दी) ने बताया कि ग्रीक किसानों ने अपने परिधि पर निर्भर खेतों को अधिक अलग किया। <ref>{{cite book|first1=T.|last1=Heath|title=ग्रीक गणित का इतिहास|volume=2|publisher=[[Dover Publications]]|year= 1981|page= 206|isbn=0-486-24074-6}}</ref> चूंकि,  खेत का उत्पादन उसके क्षेत्रफल के अनुपात में होता है, उसकी परिधि के अनुसार नहीं, इसलिए कई भोले-भाले किसानों को लंबी परिधि वाले किन्तु छोटे क्षेत्र (इस प्रकार, कुछ फसलें) वाले खेत मिल सकते हैं।


यदि किसी आकृति में से एक टुकड़ा हटा दिया जाए, तो उसका क्षेत्रफल घट जाता है, लेकिन उसकी परिधि नहीं। बहुत अनियमित आकृतियों के मामले में परिधि और उत्तल पतवार के बीच भ्रम पैदा हो सकता है।  आकृति के उत्तल पतवार को उसके चारों ओर फैले रबर बैंड द्वारा बनाई गई आकृति के रूप में देखा जा सकता है। बाईं ओर के एनिमेटेड चित्र में, सभी आकृतियों बड़ा, पहला [[षट्भुज]] में समान उत्तल पतवार है;  
यदि किसी आकृति में से एक टुकड़ा हटा दिया जाए, तो उसका क्षेत्रफल घट जाता है, किन्तु उसकी परिधि नहीं घटती है । अधिक अनियमित आकृतियों के स्थितियों में परिधि और उत्तल पतवार के बीच भ्रम पैदा हो सकता है।  आकृति के उत्तल पतवार को उसके चारों ओर फैले रबर बैंड द्वारा बनाई गई आकृति के रूप में देखा जा सकता है। बाईं ओर के एनिमेटेड चित्र में, सभी आकृतियों बड़ा, पहला [[षट्भुज]] में समान उत्तल पतवार है;  


== आइसोपेरिमेट्री ==
== आइसोपेरिमेट्री ==
{{Further|समपरिमितीय असमानता}}
{{Further|आइसोपेरिमेट्री असमानता}}
आइसोपेरिमेट्रिक समस्या एक दी गई परिधि वाले लोगों के बीच सबसे बड़े क्षेत्र के साथ  आंकड़ा निर्धारित करना है। समाधान सहज है; यह चक्र है। विशेष रूप से, यह समझाने के लिए इस्तेमाल किया जा सकता है कि [[शोरबा]] की सतह पर वसा की बूंदें गोलाकार क्यों होती हैं।


यह समस्या सरल लग सकती है, लेकिन इसके गणितीय प्रमाण के लिए कुछ परिष्कृत प्रमेयों की आवश्यकता है। उपयोग किए जाने वाले आंकड़ों के प्रकार को सीमित करके आइसोपेरिमेट्रिक समस्या को कभी-कभी सरल किया जाता है। विशेष रूप से, चतुर्भुज, या त्रिकोण, या किसी अन्य विशेष आकृति को खोजने के लिए, सबसे बड़े क्षेत्र के साथ  समान आकार वाले परिधि के साथ। चतुर्भुज समपरिमितीय समस्या का समाधान [[वर्ग]] है, और त्रिभुज समस्या का समाधान समबाहु त्रिभुज है। सामान्य तौर पर, बहुभुज के साथ {{math|''n''}} भुजाओं का क्षेत्रफल सबसे बड़ा होता है और एक दी गई परिधि नियमित बहुभुज होती है, जो समान भुजाओं वाले किसी भी अनियमित बहुभुज की तुलना में एक वृत्त होने के अधिक निकट होती है।
आइसोपेरिमेट्रिक समस्या एक दी गई परिधि वाले लोगों के बीच सबसे बड़े क्षेत्र के साथ  आंकड़ा निर्धारित करना है। समाधान सहज है; यह चक्र है। विशेष रूप से, यह समझाने के लिए उपयोग किया जा सकता है कि [[शोरबा|ब्रॉथ]] की सतह पर वसा की बूंदें गोलाकार क्यों होती हैं।
 
यह समस्या सरल लग सकती है, किन्तु इसके गणितीय प्रमाण के लिए कुछ परिष्कृत प्रमेयों की आवश्यकता है। उपयोग किए जाने वाले आंकड़ों के प्रकार को सीमित करके आइसोपेरिमेट्रिक समस्या को कभी-कभी सरल किया जाता है। विशेष रूप से, चतुर्भुज, या त्रिकोण, या किसी अन्य विशेष आकृति को खोजने के लिए, सबसे बड़े क्षेत्र के साथ  समान आकार वाले परिधि के साथ किया जाता है । चतुर्भुज समपरिमितीय समस्या का समाधान [[वर्ग]] है, और त्रिभुज समस्या का समाधान समबाहु त्रिभुज है। सामान्यतः, बहुभुज के साथ {{math|''n''}} भुजाओं का क्षेत्रफल सबसे बड़ा होता है और एक दी गई परिधि नियमित बहुभुज होती है, जो समान भुजाओं वाले किसी भी अनियमित बहुभुज की तुलना में एक वृत्त होने के अधिक निकट होती है।


'''चक्कर (ज्यामिति) में कितनी दूर तक लुढ़केगा। इसी तरह, एक स्पूल के चारों ओर लपेटी गई स्ट्रिंग की मात्रा स्पूल की परिधि से संबंधित होती है;'''  
'''चक्कर (ज्यामिति) में कितनी दूर तक लुढ़केगा। इसी तरह, एक स्पूल के चारों ओर लपेटी गई स्ट्रिंग की मात्रा स्पूल की परिधि से संबंधित होती है;'''  

Revision as of 11:07, 22 April 2023

Error creating thumbnail:
परिधि दो आयामी आकार के चारों ओर की दूरी है, किसी चीज़ के चारों ओर की दूरी का माप; सीमा की लंबाई।

परिधि एक बंद पथ (ज्यामिति) है जो दो आयामी आकार या एक आयामी लंबाई (गणित) को घेरता है, या रेखांकित करता है। किसी वृत्त या दीर्घवृत्त की परिधि को उसकी परिधि कहते हैं।

परिधि की गणना के कई व्यावहारिक अनुप्रयोग हैं। गणना परिधि एक यार्ड या बगीचे को घेरने के लिए आवश्यक बाड़ की लंबाई है। चक्र (इसकी परिधि) की परिधि बताती है कि यह एक चक्कर (ज्यामिति) में कितनी दूर तक लुढ़केगा। इसी तरह, एक स्पूल के चारों ओर लपेटी गई स्ट्रिंग की मात्रा स्पूल की परिधि से संबंधित होती है; यदि स्ट्रिंग की लंबाई स्पष्ट होती, तो यह परिमाप के बराबर जाती है।

सूत्र

shape formula variables
वृत्त जहाँ 𝑟 वृत्त की त्रिज्या है और 𝑑 व्यास है.
त्रिकोण जहां 𝑎 , 𝑏 और 𝑐 त्रिभुज की भुजाओं की लंबाई हैं.
वर्ग// समचतुर्भुज जहां 𝑎 भुजा की लंबाई है।
आयत जहां 𝑙 लंबाई है और 𝑤 चौड़ाई है।
समभुज

बहुभुज

जहां 𝑛 भुजाओं की संख्या है और 𝑎 एक भुजा की लंबाई है।
नियमित बहुभुज जहां 𝑛 भुजाओं की संख्या है और 𝑏 बहुभुज के केंद्र और बहुभुज के शीर्षों में से एक के बीच की दूरी है।
सामान्य

बहुभुज

जहां 𝑎 𝑖 एक n-पक्षीय बहुभुज के 𝑖 -वें (पहला, दूसरा, तीसरा ... nवां) भुजा की लंबाई है।
File:Herzkurve2.svg
कारडायोड
(के साथ आरेखण )


परिधि आकृति के चारों ओर की दूरी है। के साथ किसी भी पथ के रूप में अधिक सामान्य आकृतियों के लिए परिमाप की गणना की जा सकती है,,जहां पथ की लंबाई है और एक अतिसूक्ष्म रेखा तत्व है। व्यावहारिक रूप से गणना करने के लिए इन दोनों को बीजगणितीय रूपों से प्रतिस्थापित किया जाना चाहिए। यदि परिधि बंद समतल वक्र के रूप में दी गई है |

फिर इसकी लंबाई निम्नानुसार गणना की जा सकती है:

परिधि की सामान्यीकृत धारणा, जिसमें ऊनविम पृष्ठ बाउंडिंग वॉल्यूम सम्मिलित -आयाम (गणित) यूक्लिडियन अंतरिक्ष स्थान, कैसीओपोली समुच्चय के सिद्धांत द्वारा वर्णित है।

बहुभुज

File:PerimeterRectangle.svg
एक आयत की परिधि।

बहुभुज परिधि के निर्धारण के लिए मौलिक हैं, न केवल इसलिए कि वे सबसे सरल आकार हैं किंतु इसलिए भी कि कई आकृतियों के परिधि की गणना अनुमान गणित द्वारा की जाती है, जिसमें इन आकृतियों के बहुभुजों के अनुक्रम की सीमा होती है। इस तरह के तर्क का उपयोग करने वाले पहले गणितज्ञ आर्किमिडीज हैं, जिन्होंने नियमित बहुभुज के साथ एक वृत्त की परिधि का अनुमान लगाया था।

एक बहुभुज का परिमाप उसके किनारे (ज्यामिति) भुजाओं (किनारों) की लंबाई के योग के बराबर होता है। विशेष रूप से, चौड़ाई और लंबाई के आयत की परिमाप के बराबर होता है |

.

समबाहु बहुभुज एक ऐसा बहुभुज है जिसकी सभी भुजाएँ समान लंबाई की होती हैं (उदाहरण के लिए, एक समभुज एक 4-भुजाओं वाला समबाहु बहुभुज है)। एक समबाहु बहुभुज की परिधि की गणना करने के लिए, भुजाओं की संख्या से भुजाओं की सामान्य लंबाई को गुणा करना होता है।

एक नियमित बहुभुज को इसके पक्षों की संख्या और इसकी परिधि के द्वारा चित्रित किया जा सकता है, अर्थात, इसके केंद्र (ज्यामिति) और इसके प्रत्येक वर्टेक्स (ज्यामिति) के बीच की निरंतर दूरी है । त्रिकोणमिति का उपयोग करके इसके पक्षों की लंबाई की गणना की जा सकती है। यदि R एक नियमित बहुभुज की त्रिज्या है और n उसकी भुजाओं की संख्या है, तो उसका परिमाप है

त्रिभुज का एक विभाजक (ज्यामिति) एक केवियन (शीर्ष से विपरीत दिशा में एक खंड) है जो परिधि को दो समान लंबाई में विभाजित करता है, इस सामान्य लंबाई को त्रिभुज का अर्धपरिधि कहा जाता है। त्रिकोण के तीन विभाजन त्रिभुज के नागल बिंदु पर एक दूसरे कों काटते है ।

त्रिकोण का एक क्लीवर (ज्यामिति) त्रिभुज की एक भुजा के मध्य बिंदु से विपरीत दिशा में एक खंड होता है जैसे कि परिधि को दो समान लंबाई में विभाजित किया जाता है। एक त्रिभुज के तीन क्लीवर त्रिभुज के स्पाइकर केंद्र पर एक दूसरे को काटते हैं।

एक वृत्त की परिधि

File:Pi-unrolled-720.gif
यदि किसी वृत्त का व्यास 1 है, तो उसकी परिधि बराबर है π.

एक वृत्त की परिधि, जिसे अक्सर परिधि कहा जाता है, उसके व्यास और उसकी त्रिज्या के समानुपाती होती है। कहने का कारण यह है कि एक स्थिर संख्या पाई π (परिधि के लिए प्राचीन ग्रीक पी) उपस्थित है, जैसे कि यदि P वृत्त की परिधि है और D इसका व्यास तब,

त्रिज्या के संदर्भ में r वृत्त का, यह सूत्र बन जाता है,

वृत्त की परिधि की गणना करने के लिए, इसकी त्रिज्या या व्यास और संख्या π का अध्यन पर्याप्त है। समस्या यह है कि π परिमेय संख्या नहीं है (इसे दो पूर्णांक के भागफल के रूप में व्यक्त नहीं किया जा सकता है), न ही यह बीजगणितीय संख्या है (यह परिमेय गुणांक वाले बहुपद समीकरण का मूल नहीं है)। तो,π का स्पष्ट अनुमान प्राप्त करना गणना में महत्वपूर्ण है।π के अंकों की गणना गणितीय विश्लेषण, एल्गोरिथम और कंप्यूटर विज्ञान जैसे कई क्षेत्रों के लिए प्रासंगिक है।

परिमाप की धारणा

File:Hexaflake.gif
इस आकृति को जितना अधिक काटा जाएगा, क्षेत्रफल उतना ही कम होगा और परिमाप भी उतना ही अधिक होगा। उत्तल हल वही रहता है।
Error creating thumbnail:
नेफ-ब्रिसाच किलेबंदी परिधि जटिल है। इसके चारों ओर का सबसे छोटा रास्ता इसके उत्तल पतवार के साथ है।

परिधि और क्षेत्र (ज्यामिति) ज्यामितीय आकृतियों के दो मुख्य उपाय हैं। उन्हें भ्रमित करना सामान्य त्रुटि है, साथ ही यह विश्वास करना कि उनमें से एक जितना बड़ा है, उतना ही बड़ा दूसरा होना चाहिए। वास्तव में, एक सामान्य अवलोकन यह है कि किसी आकृति का विस्तार (या कमी) उसके क्षेत्रफल के साथ-साथ उसकी परिधि को भी बढ़ाता है (या घटाता है)। उदाहरण के लिए, यदि कोई फ़ील्ड 1/10,000 स्केल मैप, वास्तविक क्षेत्र परिधि की गणना ड्राइंग परिधि को गुणा करके की जा सकती है 10,000. वास्तविक क्षेत्र है 10,0002 मानचित्र पर आकृति के क्षेत्रफल का गुणा। फिर भी, एक साधारण आकृति के क्षेत्रफल और परिमाप के बीच कोई संबंध नहीं है। उदाहरण के लिए, चौड़ाई 0.001 और लंबाई 1000 के आयत का परिमाप 2000 से थोड़ा ऊपर है, जबकि चौड़ाई 0.5 और लंबाई 2 के आयत का परिमाप 5 है। दोनों क्षेत्रफल 1 के बराबर हैं।

प्रोक्लस (5वीं शताब्दी) ने बताया कि ग्रीक किसानों ने अपने परिधि पर निर्भर खेतों को अधिक अलग किया। [1] चूंकि, खेत का उत्पादन उसके क्षेत्रफल के अनुपात में होता है, उसकी परिधि के अनुसार नहीं, इसलिए कई भोले-भाले किसानों को लंबी परिधि वाले किन्तु छोटे क्षेत्र (इस प्रकार, कुछ फसलें) वाले खेत मिल सकते हैं।

यदि किसी आकृति में से एक टुकड़ा हटा दिया जाए, तो उसका क्षेत्रफल घट जाता है, किन्तु उसकी परिधि नहीं घटती है । अधिक अनियमित आकृतियों के स्थितियों में परिधि और उत्तल पतवार के बीच भ्रम पैदा हो सकता है। आकृति के उत्तल पतवार को उसके चारों ओर फैले रबर बैंड द्वारा बनाई गई आकृति के रूप में देखा जा सकता है। बाईं ओर के एनिमेटेड चित्र में, सभी आकृतियों बड़ा, पहला षट्भुज में समान उत्तल पतवार है;

आइसोपेरिमेट्री

आइसोपेरिमेट्रिक समस्या एक दी गई परिधि वाले लोगों के बीच सबसे बड़े क्षेत्र के साथ आंकड़ा निर्धारित करना है। समाधान सहज है; यह चक्र है। विशेष रूप से, यह समझाने के लिए उपयोग किया जा सकता है कि ब्रॉथ की सतह पर वसा की बूंदें गोलाकार क्यों होती हैं।

यह समस्या सरल लग सकती है, किन्तु इसके गणितीय प्रमाण के लिए कुछ परिष्कृत प्रमेयों की आवश्यकता है। उपयोग किए जाने वाले आंकड़ों के प्रकार को सीमित करके आइसोपेरिमेट्रिक समस्या को कभी-कभी सरल किया जाता है। विशेष रूप से, चतुर्भुज, या त्रिकोण, या किसी अन्य विशेष आकृति को खोजने के लिए, सबसे बड़े क्षेत्र के साथ समान आकार वाले परिधि के साथ किया जाता है । चतुर्भुज समपरिमितीय समस्या का समाधान वर्ग है, और त्रिभुज समस्या का समाधान समबाहु त्रिभुज है। सामान्यतः, बहुभुज के साथ n भुजाओं का क्षेत्रफल सबसे बड़ा होता है और एक दी गई परिधि नियमित बहुभुज होती है, जो समान भुजाओं वाले किसी भी अनियमित बहुभुज की तुलना में एक वृत्त होने के अधिक निकट होती है।

चक्कर (ज्यामिति) में कितनी दूर तक लुढ़केगा। इसी तरह, एक स्पूल के चारों ओर लपेटी गई स्ट्रिंग की मात्रा स्पूल की परिधि से संबंधित होती है;

व्युत्पत्ति

यह शब्द प्राचीन ग्रीक περιμετρος पेरिमेट्रोस, περι पेरी अराउंड और μέτρον मेट्रोन माप से आया है।

यह भी देखें


संदर्भ

  1. Heath, T. (1981). ग्रीक गणित का इतिहास. Vol. 2. Dover Publications. p. 206. ISBN 0-486-24074-6.


बाहरी संबंध