होमोटॉपी: Difference between revisions
(Created page with "{{short description|Continuous deformation between two continuous functions}} {{About|topology|chemistry|Homotopic groups}} {{more footnotes|date=June 2017}} File:HomotopyS...") |
No edit summary |
||
| (7 intermediate revisions by 5 users not shown) | |||
| Line 1: | Line 1: | ||
[[File:HomotopySmall.gif|thumb|ऊपर दिखाए गए दो धराशायी [[पथ (टोपोलॉजी)|पथ (सांस्थिति)]] उनके समापन बिंदुओं के सापेक्ष समस्थानी हैं। सजीवता एक संभावित होमोटॉपी का प्रतिनिधित्व करता है।]][[टोपोलॉजी|सांस्थितिकी]] में, गणित की शाखा, एक [[टोपोलॉजिकल स्पेस|सांस्थितिकी]] [[टोपोलॉजिकल स्पेस|स्थल]] से दूसरे में दो [[निरंतर कार्य (टोपोलॉजी)|निरंतर कार्यो को]] समस्थानी कहा जाता हैं यद्यपि एक को दूसरे में निरंतर विकृत किया जा सकता है, तो ऐसी विकृति को दो कार्यों के बीच होमोटॉपी कहा जाता है । '''होमोटॉपी''' ('''समस्थेयता''') का एक उल्लेखनीय उपयोग [[होमोटॉपी समूह|होमोटॉपी समूहों]] और [[कोहोमोटॉपी समूह|कोहोमोटॉपी समूहों]] की परिभाषा है,जो [[बीजगणितीय टोपोलॉजी|बीजगणितीय सांस्थितिकी]] में महत्वपूर्ण व् [[अपरिवर्तनीय (गणित)|अपरिवर्तनीय है]]।<ref>{{Cite web|url=https://www.britannica.com/science/homotopy|title=Homotopy {{!}} mathematics|website=Encyclopedia Britannica|language=en|access-date=2019-08-17}}</ref> | |||
कार्यप्रणाली में, कुछ स्थानों के साथ होमोटॉपी का उपयोग करने में तकनीकी कठिनाइयाँ हैं। बीजगणितीय सांस्थितिकीय सघन रूप से उत्पन्न रिक्त स्थान, [[सीडब्ल्यू कॉम्प्लेक्स|सीडब्ल्यू परिसरों]] या [[स्पेक्ट्रम (होमोटोपी सिद्धांत)|वर्णक्रम]] के साथ काम करते हैं। | |||
[[File:HomotopySmall.gif|thumb|ऊपर दिखाए गए दो धराशायी [[पथ (टोपोलॉजी)]] उनके समापन बिंदुओं के सापेक्ष | |||
== औपचारिक परिभाषा == | == औपचारिक परिभाषा == | ||
[[File:Mug and Torus morph.gif|thumb|right|250px|आर में [[टोरस्र्स]] के दो [[एम्बेडिंग]] के बीच एक | [[File:Mug and Torus morph.gif|thumb|right|250px|आर में [[टोरस्र्स|स्थूलक्र्स]] के दो [[एम्बेडिंग|अंतःस्थापन]] के बीच एक होमोटॉपी<sup>3</sup>: एक डोनट की सतह के रूप में और एक कॉफी मग की सतह के रूप में। यह भी एक #आइसोटोपी का उदाहरण है।]]औपचारिक रूप से, से दो निरंतर फलन f और g के बीच एक होमोटॉपी | ||
सांस्थितिक स्थल X से सांस्थितिक स्थल Y को एक निरंतर कार्य के रूप में परिभाषित किया गया है <math>H: X \times [0,1] \to Y</math> [[इकाई अंतराल]] [0, 1] के साथ स्थल X के [[उत्पाद टोपोलॉजी|उत्पाद सांस्थिति]] से Y तक <math>H(x,0) = f(x)</math> और <math>H(x,1) = g(x)</math> सभी के लिए <math>x \in X</math>. | |||
यद्यपि हम समय के रूप में H के दूसरे [[पैरामीटर|मापदण्ड]] के विषय में सोचते हैं तो H g में g के निरंतर विरूपण का वर्णन करता है: समय 0 पर हमारे पास फलन f होता है और समय 1 पर हमारे पास फलन g होता है। हम दूसरे मापदण्ड को सर्पक नियंत्रण के रूप में भी सोच सकते हैं जो हमें f से g तक आसानी से संपर्क करने की अनुमति देता है क्योंकि सर्पक 0 से 1 तक चलता है, परन्तु इसके विपरीत है। | |||
वैकल्पिक संकेतन का यह कहना है कि दो निरंतर कार्यों के बीच एक होमोटॉपी <math>f, g: X \to Y</math> निरंतर कार्यों का एक परिवार है <math>h_t: X \to Y</math> के लिए <math>t \in [0,1]</math> ऐसा है कि <math>h_0 = f</math> और <math>h_1 = g</math>, और Map_(गणित) <math>(x, t) \mapsto h_t(x)</math> से निरन्तर है <math>X \times [0,1]</math> को <math>Y</math>. दो संस्करण समायोजन से मेल खाते हैं <math>h_t(x) = H(x,t)</math>. प्रत्येक मानचित्र की आवश्यकता के लिए पर्याप्त नहीं है <math>h_t(x)</math> निरंतर किया जाना।<ref>{{Cite web|url=https://math.stackexchange.com/questions/104515/path-homotopy-and-separately-continuous-functions|title=algebraic topology - Path homotopy and separately continuous functions|website=Mathematics Stack Exchange}}</ref> | |||
सजीवता जो ऊपर दाईं ओर चक्रित किया गया है, स्थूलक के दो अंतःस्थापन, f और g के बीच एक होमोटॉपी का उदाहरण प्रदान करता है {{nowrap|1=''R''<sup>3</sup>}}. X स्थूलक है, Y है {{nowrap|1=''R''<sup>3</sup>}}, f स्थूलक से R तक कुछ निरंतर कार्य है<sup>3</sup> जो स्थूलक को डोनट आकार की अन्तःस्थापित सतह पर ले जाता है जिसके साथ सजीवता शुरू होता है; g कुछ निरंतर कार्य है जो स्थूलक को एक कॉफी-मग आकार की अन्तःस्थापित सतह पर ले जाता है। सजीवता H की छवि प्रदर्शित करता है<sub>''t''</sub>(x) मापदण्ड टी के एक समारोह के रूप में, जहां टी सजीवता चक्रण के प्रत्येक चक्र पर 0 से 1 के समय के साथ बदलता रहता है। यह रुकता है, फिर छवि प्रदर्शित करता है क्योंकि टी 1 से 0 तक भिन्न होता है, रुकता है और इस चक्र को दोहराता है। | |||
=== गुण === | === गुण === | ||
निरंतर कार्य f और g को | निरंतर कार्य f और g को समस्थानी कहा जाता है यदि ऊपर बताए गए के अनुसार f को g पर ले जाने वाला होमोटॉपी H है।समना X से Y तक सभी निरंतर कार्यों के समुच्चय पर एक [[तुल्यता संबंध]] है। | ||
यह होमोटॉपी संबंध निम्नलिखित अर्थों में कार्य रचना के अनुकूल है: यदि {{nowrap|1=''f''<sub>1</sub>, ''g''<sub>1</sub> : ''X'' → ''Y''}} | यह होमोटॉपी संबंध निम्नलिखित अर्थों में कार्य रचना के अनुकूल है: यदि {{nowrap|1=''f''<sub>1</sub>, ''g''<sub>1</sub> : ''X'' → ''Y''}} समस्थानी हैं, और {{nowrap|1=''f''<sub>2</sub>, ''g''<sub>2</sub> : ''Y'' → ''Z''}} समस्थानी हैं, तो उनकी रचनाएँ {{nowrap|1=''f''<sub>2</sub> ∘ ''f''<sub>1</sub>}} और {{nowrap|1=''g''<sub>2</sub> ∘ ''g''<sub>1</sub> : ''X'' → ''Z''}} समस्थानी हैं। | ||
== उदाहरण == | == उदाहरण == | ||
* | * यदि <math>f, g: \R \to \R^2</math> द्वारा दिए गए हैं <math>f(x) := \left(x, x^3\right)</math> और <math>g(x) = \left(x, e^x\right)</math>, फिर मैप <math>H: \mathbb{R} \times [0, 1] \to \mathbb{R}^2</math> द्वारा दिए गए <math>H(x, t) = \left(x, (1 - t)x^3 + te^x\right)</math> उनके बीच एक होमोटॉपी है। | ||
* अधिक | * अधिक प्रायः, यदि <math>C \subseteq \mathbb{R}^n</math> [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन स्थल]] का एक [[उत्तल सेट|उत्तल समुच्चय]] सबसमुच्चय है और <math>f, g: [0, 1] \to C</math> पथ एक ही समापन बिंदु के साथ हैं, जो एक रैखिक होमोटॉपी है<ref>{{Cite book|title=Algebraic topology|last=Allen.|first=Hatcher|date=2002|publisher=Cambridge University Press|isbn=9780521795401|location=Cambridge|pages=185|oclc=45420394}}</ref> तो सरल रेखा होमोटॉपी द्वारा दिया गया | ||
*: <math>\begin{align} | *: <math>\begin{align} | ||
H: [0, 1] \times [0, 1] &\longrightarrow C \\ | H: [0, 1] \times [0, 1] &\longrightarrow C \\ | ||
(s, t) &\longmapsto (1 - t)f(s) + tg(s). | (s, t) &\longmapsto (1 - t)f(s) + tg(s). | ||
\end{align}</math> | \end{align}</math> | ||
* | ** माना <math>\operatorname{id}_{B^n}:B^n\to B^n</math> इकाई n-चक्र पर [[पहचान समारोह|परिचय फलन]] हो; अर्थात समुच्चय <math>B^n := \left\{x\in\mathbb{R}^n: \|x\| \leq 1\right\}</math>. होने देना <math>c_{\vec{0}}: B^n \to B^n</math> [[निरंतर कार्य]] हो <math>c_\vec{0}(x) := \vec{0}</math> जो सभी बिंदु को [[उत्पत्ति (गणित)|मूल स्थान पर]] भेजता है। तब निम्नलिखित से उनके बीच एक होमोटॉपी होती है : | ||
*: <math>\begin{align} | **: <math>\begin{align} | ||
H: B^n \times [0, 1] &\longrightarrow B^n \\ | H: B^n \times [0, 1] &\longrightarrow B^n \\ | ||
(x, t) &\longmapsto (1 - t)x. | (x, t) &\longmapsto (1 - t)x. | ||
| Line 35: | Line 31: | ||
== होमोटॉपी तुल्यता == | == होमोटॉपी तुल्यता == | ||
दो | दो सांस्थितिक स्थल X और Y दिए गए हैं, X और Y के बीच एक 'होमोटॉपी समतुल्यता' निरंतर मानचित्र की एक जोड़ी है {{nowrap|1=''f'' : ''X'' → ''Y''}} और {{nowrap|1=''g'' : ''Y'' → ''X''}}, ऐसा है कि {{nowrap|1=''g'' ∘ ''f''}} पहचान मानचित्र id<sub>''X''</sub> के लिए समस्थानी है<sub>''X''</sub> और {{nowrap|1=''f'' ∘ ''g''}} आईडी के लिए समस्थानी है<sub>''Y''</sub>. यदि ऐसी कोई जोड़ी उपस्थित है, तो X और Y को '<nowiki/>'''होमोटॉपी''' '''समतुल्य'''<nowiki/>' या समान ''''होमोटॉपी''' '''प्रकार'''<nowiki/>' कहा जाता है। सहज रूप से, दो रिक्त स्थान X और Y '''होमोटॉपी समतुल्य''' हैं यद्यपि उन्हें झुकने, सिकुड़ने और संचालन के विस्तार से एक दूसरे में परिवर्तित किया जा सकता है। रिक्त स्थान जो होमोटॉपी-एक बिंदु के समतुल्य होते हैं, संविदात्मक कहलाते हैं। | ||
=== होमोटॉपी तुल्यता बनाम | === होमोटॉपी तुल्यता बनाम होमियोमोर्फिज्म === | ||
होमोमोर्फिज्म | होमोमोर्फिज्म होमोटॉपी तुल्यता का एक विशेष मामला है, जिसमें {{nowrap|1=''g'' ∘ ''f''}} पहचान मानचित्र id<sub>''X''</sub> के बराबर है और {{nowrap|1=''f'' ∘ ''g''}} id<sub>''Y''</sub> के बराबर है.<ref>Archived at [https://ghostarchive.org/varchive/youtube/20211211/XxFGokyYo6g Ghostarchive]{{cbignore}} and the [https://web.archive.org/web/20200829013025/https://www.youtube.com/watch?v=XxFGokyYo6g&gl=US&hl=en Wayback Machine]{{cbignore}}: {{Cite web|last=Albin|first=Pierre|date=2019|title=History of algebraic topology|website=[[YouTube]] |url=https://www.youtube.com/watch?v=XxFGokyYo6g}}{{cbignore}}</ref>{{Rp|0:53:00}} इसलिए, यदि X और Y होमियोमॉर्फिक हैं तो वे होमोटॉपी-समतुल्य हैं, परन्तु विपरीत सत्य नहीं है। कुछ उदाहरण: | ||
* | * ठोस चक्र होमोटॉपी-एक बिंदु के बराबर है, क्योंकि आप चक्र को उज्जवल रेखाओं के साथ एक बिंदु पर लगातार विकृत कर सकते हैं। यद्यपि, वे होमियोमॉर्फिक नहीं हैं, क्योंकि उनके बीच कोई आपत्ति नहीं है चूंकि एक अनंत समुच्चय है, जबकि दूसरा परिमित है। | ||
* मोबियस | * मोबियस स्ट्रीपऔर एक मुड़ी हुईस्ट्रीपहोमोटॉपी समतुल्य हैं, क्योंकि आप दोनों स्ट्रीप को लगातार एक वृत्त में विकृत कर सकते हैं। परन्तु वे होमियोमॉर्फिक नहीं हैं। | ||
=== उदाहरण === | === उदाहरण === | ||
* होमोटॉपी तुल्यता का पहला उदाहरण है <math>\mathbb{R}^n</math> एक बिंदु के साथ, निरूपित <math>\mathbb{R}^n \simeq \{ 0\}</math>. जिस भाग की जाँच करने की आवश्यकता है वह एक होमोटॉपी का अस्तित्व है <math>H: I \times \mathbb{R}^n \to \mathbb{R}^n</math> बीच में <math>\operatorname{id}_{\mathbb{R}^n}</math> और <math>p_0</math>, का प्रक्षेपण <math>\mathbb{R}^n</math> उत्पत्ति पर। इसका वर्णन इस प्रकार किया जा सकता है <math>H(t,\cdot) = t\cdot p_0 + (1-t)\cdot\operatorname{id}_{\mathbb{R}^n}</math>. | * होमोटॉपी तुल्यता का पहला उदाहरण है <math>\mathbb{R}^n</math> एक बिंदु के साथ, निरूपित <math>\mathbb{R}^n \simeq \{ 0\}</math>. जिस भाग की जाँच करने की आवश्यकता है वह एक होमोटॉपी का अस्तित्व है <math>H: I \times \mathbb{R}^n \to \mathbb{R}^n</math> बीच में <math>\operatorname{id}_{\mathbb{R}^n}</math> और <math>p_0</math>, का प्रक्षेपण <math>\mathbb{R}^n</math> उत्पत्ति पर। इसका वर्णन इस प्रकार किया जा सकता है <math>H(t,\cdot) = t\cdot p_0 + (1-t)\cdot\operatorname{id}_{\mathbb{R}^n}</math>. | ||
* के बीच एक | * के बीच एक होमोटॉपी समानता है <math>S^1</math> ([[n-sphere|1-sphere]]) और <math>\mathbb{R}^2-\{0\}</math>. | ||
** | ** प्रायः अधिक, <math>\mathbb{R}^n-\{ 0\} \simeq S^{n-1}</math>. | ||
* कोई [[फाइबर बंडल]] <math>\pi: E \to B</math> तंतुओं के साथ <math>F_b</math> होमोटॉपी एक बिंदु के बराबर होमोटॉपी समतुल्य कुल और आधार स्थान है। यह पिछले दो उदाहरणों को सामान्यीकृत करता है <math>\pi:\mathbb{R}^n - \{0\} \to S^{n-1}</math>फाइबर के साथ फाइबर बंडल है <math>\mathbb{R}_{>0}</math>. | * कोई [[फाइबर बंडल]] <math>\pi: E \to B</math> तंतुओं के साथ <math>F_b</math> होमोटॉपी एक बिंदु के बराबर होमोटॉपी समतुल्य कुल और आधार स्थान है। यह पिछले दो उदाहरणों को सामान्यीकृत करता है <math>\pi:\mathbb{R}^n - \{0\} \to S^{n-1}</math>फाइबर के साथ फाइबर बंडल है <math>\mathbb{R}_{>0}</math>. | ||
* प्रत्येक [[वेक्टर बंडल]] एक फाइबर बंडल है जिसमें एक बिंदु के बराबर फाइबर होमोटॉपी होता है। | * प्रत्येक [[वेक्टर बंडल|दिष्ट बंडल]] एक फाइबर बंडल है जिसमें एक बिंदु के बराबर फाइबर होमोटॉपी होता है। | ||
* <math>\mathbb{R}^n - \mathbb{R}^k \simeq S^{n-k-1}</math> किसी के लिए <math>0 \le k < n</math>, लेखन से <math>\mathbb{R}^n - \mathbb{R}^k</math> फाइबर बंडल के कुल स्थान के रूप में <math>\mathbb{R}^k \times (\mathbb{R}^{n-k}-\{0\})\to (\mathbb{R}^{n-k}-\{0\})</math>, फिर उपरोक्त होमोटॉपी समकक्षों को लागू करना। | * <math>\mathbb{R}^n - \mathbb{R}^k \simeq S^{n-k-1}</math> किसी के लिए <math>0 \le k < n</math>, लेखन से <math>\mathbb{R}^n - \mathbb{R}^k</math> फाइबर बंडल के कुल स्थान के रूप में <math>\mathbb{R}^k \times (\mathbb{R}^{n-k}-\{0\})\to (\mathbb{R}^{n-k}-\{0\})</math>, फिर उपरोक्त होमोटॉपी समकक्षों को लागू करना। | ||
* यदि | * यदि उपसमुच्चय <math>A</math> एक सीडब्ल्यू परिसर की <math>X</math> सिकुड़ा हुआ है, फिर [[भागफल स्थान (टोपोलॉजी)|भागफल स्थान (सांस्थिति)]] <math>X/A</math> होमोटॉपी के बराबर है <math>X</math>.<ref>{{Cite book|title=Algebraic topology|last=Allen.|first=Hatcher|date=2002|publisher=Cambridge University Press|isbn=9780521795401|location=Cambridge|pages=11|oclc=45420394}}</ref> | ||
* एक विरूपण प्रत्यावर्तन एक होमोटॉपी तुल्यता है। | * एक विरूपण प्रत्यावर्तन एक होमोटॉपी तुल्यता है। | ||
=== | === शून्य-होमोटॉपी === | ||
फलन f को '<nowiki/>'''शून्य-होमोटॉपी'''<nowiki/>' कहा जाता है यदि यह निरंतर कार्य के लिए समस्थानी है। (f से एक स्थिर कार्य के लिए होमोटॉपी को कभी-कभी ''''शून्य-होमोटॉपी'''<nowiki/>' कहा जाता है।) उदाहरण के लिए, [[यूनिट सर्कल|इकाई सर्कल]] एस से एक मैप f किसी भी स्थान के लिए 1 X शून्य-होमोटॉपी है जब इसे इकाई चक्र D<sup>2</sup> से मानचित्र पर लगातार बढ़ाया जा सकता है से X जो सीमा पर f से सहमत है। | |||
यह इन | यह इन परिस्थानी हो भाषाओं से अनुसरण करता है कि एक स्थान X सिकुड़ा हुआ है यदि और केवल यदि एक्स से स्वयं के लिए पहचान मानचित्र - जो हमेशा एक होमोटॉपी तुल्यता है - शून्य-होमोटॉपी है। | ||
== अपरिवर्तन == | == अपरिवर्तन == | ||
होमोटॉपी तुल्यता महत्वपूर्ण है क्योंकि बीजगणितीय | होमोटॉपी तुल्यता महत्वपूर्ण है क्योंकि बीजगणितीय सांस्थिति में कई अवधारणाएं '''होमोटॉपी अपरिवर्तनीय''' हैं, अर्थात, वे होमोटॉपी तुल्यता के संबंध का सम्मान करते हैं। उदाहरण के लिए, यदि ''X'' और ''Y'' समरूप समतुल्य स्थान हैं, तो: | ||
* ''X'' [[जुड़ा हुआ स्थान]] है|पथ-कनेक्टेड | * ''X'' [[जुड़ा हुआ स्थान]] है|पथ-कनेक्टेड यदि और केवल यदि ''Y'' है। | ||
* ''X'' [[बस जुड़ा हुआ है]] | * ''X'' [[बस जुड़ा हुआ है]] यदि और केवल यदि ''Y'' है। | ||
* (एकवचन) | * (एकवचन) सजातीय (गणित) और '' एक्स '' और '' वाई '' के [[कोहोलॉजी समूह|कोहोलॉg समूह]] [[समूह समरूपता|समूह होमोटॉपी]] हैं। | ||
* यदि ''X'' और ''Y'' पाथ-कनेक्टेड हैं, तो ''X'' और ''Y'' के [[मौलिक समूह]] आइसोमॉर्फिक हैं, और इसलिए उच्च समरूप समूह हैं। (पथ-जुड़ाव धारणा के बिना, किसी के पास π | * यदि ''X'' और ''Y'' पाथ-कनेक्टेड हैं, तो ''X'' और ''Y'' के [[मौलिक समूह]] आइसोमॉर्फिक हैं, और इसलिए उच्च समरूप समूह हैं। (पथ-जुड़ाव धारणा के बिना, किसी के पास π<sub>1</sub> है(X, -X<sub>0</sub>) तुल्याकारी से π<sub>1</sub>(Y, f (X<sub>0</sub>)) जहाँ {{nowrap|1=''f'' : ''X'' → ''Y''}} एक होमोटॉपी तुल्यता है और {{nowrap|1=''x''<sub>0</sub> ∈ ''X''.)}} | ||
सांस्थितिक रिक्त स्थान के एक बीजगणितीय अपरिवर्तनीय का एक उदाहरण जो होमोटॉपी-अपरिवर्तनीय नहीं है, [[कॉम्पैक्ट रूप से समर्थित होमोलॉजी|कॉम्पैक्ट रूप से समर्थित सजातीय]] है (जो मोटे तौर पर बोल रहा है, [[संघनन (गणित)]]गणित) की सजातीय, और कॉम्पैक्टिफिकेशन होमोटॉपी-अपरिवर्तनीय नहीं है)। | |||
== वेरिएंट == | == वेरिएंट == | ||
=== सापेक्ष | === सापेक्ष होमोटॉपी === | ||
मौलिक समूह को परिभाषित करने के लिए, किसी को एक उप-स्थान के सापेक्ष | मौलिक समूह को परिभाषित करने के लिए, किसी को एक उप-स्थान के सापेक्ष होमोटॉपी की धारणा की आवश्यकता होती है। ये होमोटॉपीएं हैं जो उप-स्थान के तत्वों को स्थिर रखती हैं। औपचारिक रूप से: यदि ''f'' और ''g'' ''X'' से ''Y'' तक निरंतर मानचित्र हैं और ''K'' ''X'' का उपसमुच्चय है, तो हम कहते हैं कि ' यदि होमोटॉपी उपस्थित है तो 'के' के सापेक्ष 'f' और 'g' समस्थानी हैं {{nowrap|1=''H'' : ''X'' × [0, 1] → ''Y''}} f और g के बीच ऐसा है कि {{nowrap|1=''H''(''k'', ''t'') = ''f''(''k'') = ''g''(''k'')}} सभी के लिए {{nowrap|1=''k'' ∈ ''K''}} और {{nowrap|1=''t'' ∈ [0, 1].}} साथ ही, यदि g, X से K तक एक [[प्रत्यावर्तन (टोपोलॉजी)|प्रत्यावर्तन (सांस्थिति)]] है और f पहचान मानचित्र है, तो इसे X से K तक एक मजबूत विरूपण वापसी के रूप में जाना जाता है। | ||
जब K एक बिंदु होता है, तो 'पॉइंटेड होमोटॉपी' शब्द का प्रयोग किया जाता है। | जब K एक बिंदु होता है, तो 'पॉइंटेड होमोटॉपी' शब्द का प्रयोग किया जाता है। | ||
| Line 80: | Line 76: | ||
| footer = The [[unknot]] is not equivalent to the [[trefoil knot]] since one cannot be deformed into the other through a continuous path of homeomorphisms of the ambient space. Thus they are not ambient-isotopic. | | footer = The [[unknot]] is not equivalent to the [[trefoil knot]] since one cannot be deformed into the other through a continuous path of homeomorphisms of the ambient space. Thus they are not ambient-isotopic. | ||
}} | }} | ||
यदि | यदि सांस्थितिक स्थल X से सांस्थितिक स्थल Y तक दिए गए दो निरंतर कार्य f और g अंतःस्थापन हैं, तो कोई पूछ सकता है कि क्या उन्हें 'अंतःस्थापन के माध्यम से' जोड़ा जा सकता है। यह 'आइसोटोपी' की अवधारणा को जन्म देता है, जो पहले उपयोग किए गए अंकन में एक होमोटॉपी, H है, जैसा कि प्रत्येक निश्चित T के लिए, H एक अंतःस्थापन देता है।<ref>{{MathWorld|Isotopy|Isotopy}}</ref> परन्तु अलग, अवधारणा [[परिवेश समस्थानिक]] की है। | ||
यह आवश्यक है कि दो अंतःस्थापन समस्थानिक हों, यह एक प्रबल आवश्यक है कि वे समस्थानी हों। उदाहरण के लिए, अंतराल [−1, 1] से f(x) = −x द्वारा परिभाषित वास्तविक संख्याओं में आरेख पहचान g(x) = x के समस्थानिक नहीं है। f से पहचान तक किसी भी होमोटॉपी को समापन बिंदुओं का आदान-प्रदान करना होगा, जिसका अर्थ होगा कि उन्हें एक-दूसरे से 'गुजरना' होगा। इसके अतिरिक्त, f ने अंतराल के अभिविन्यास को बदल दिया है और g ने नहीं किया है, जो एक समस्थानिक के तहत असंभव है। हालाँकि, नक्शे समरूप हैं; पहचान के लिए f से एक होमोटॉपी H: [−1, 1] × [0, 1] → [−1, 1] H(x, y) = 2yx − x द्वारा दिया गया है। | |||
इकाई बॉल के दो होमोमोर्फिम्स (जो अंतःस्थापन के विशेष मामले हैं) जो सीमा पर सहमत हैं, को अलेक्जेंडर की चाल का उपयोग करके समस्थानिक दिखाया जा सकता है। इसी कारण से 'R' में इकाई चक्र का मानचित्र<sup>2</sup> f(x, y) = (−x, −y) द्वारा परिभाषित मूल बिंदु के चारों ओर 180-डिग्री घुमाव के लिए समस्थानिक है, और इसलिए पहचान मानचित्र और f समस्थानिक हैं क्योंकि वे घूर्णन द्वारा जुड़े हो सकते हैं। | |||
[[ज्यामितीय टोपोलॉजी|ज्यामितीय सांस्थिति]] में - उदाहरण के लिए [[गाँठ सिद्धांत]] में - समस्थानिक के विचार का उपयोग तुल्यता संबंधों के निर्माण के लिए किया जाता है। उदाहरण के लिए, कब दो गांठों को समान माना जाना चाहिए? हम दो समुद्री मील लेते हैं, के<sub>1</sub> और के<sub>2</sub>, त्रि-[[आयाम]]ी स्थल में। एक गाँठ इस स्थान में एक-आयामी स्थान, स्ट्रिंग (या सर्कल) के चक्रण का एक अंतःस्थापन है, और यह अंतःस्थापन सर्कल और इसकी छवि के बीच अंतःस्थापन स्थल में एक होमोमोर्फिज्म देता है। गाँठ तुल्यता की धारणा के पीछे सहज ज्ञान युक्त विचार यह है कि अंतःस्थापन के पथ के माध्यम से एक अंतःस्थापन को दूसरे में विकृत किया जा सकता है: टी = 0 पर शुरू होने वाला एक सतत कार्य के देता है<sub>1</sub> अंतःस्थापन, t = 1 पर समाप्त होने पर K देता है<sub>2</sub> अंतःस्थापन, अंतःस्थापन के अनुरूप सभी मध्यवर्ती मानों के साथ। यह आइसोटोपी की परिभाषा के अनुरूप है। इस संदर्भ में अध्ययन किया गया एक परिवेश समस्थानिक, बड़े स्थान का एक समस्थानिक है, जिसे अंतःस्थापित सबमनीफोल्ड पर इसकी क्रिया के प्रकाश में माना जाता है। नॉट्स के<sub>1</sub> और के<sub>2</sub> समतुल्य माना जाता है जब एक परिवेश समस्थानिक होता है जो K को स्थानांतरित करता है<sub>1</sub> कश्मीर के लिए<sub>2</sub>. यह सामयिक श्रेणी में उपयुक्त परिभाषा है। | |||
समान भाषा का उपयोग समकक्ष अवधारणा के संदर्भ में किया जाता है जहां किसी के पास समानता की एक मजबूत धारणा होती है। उदाहरण के लिए, दो चिकनी अंतःस्थापन के बीच एक पथ एक चिकनी समस्थानिक है। | |||
=== होमोटॉपी === | |||
लोरेन्ट्ज़ियन मैनिफोल्ड पर, कुछ वक्रों को टाइमलाइक के रूप में प्रतिष्ठित किया जाता है (कुछ का प्रतिनिधित्व करता है जो केवल आगे बढ़ता है, पीछे नहीं, समय में, हर स्थानीय फ्रेम में)। दो [[समयबद्ध वक्र]]्स के बीच एक [[टाइमलाइक होमोटॉपी]] एक होमोटॉपी है जैसे कि कर्व एक कर्व से दूसरे कर्व में निरंतर परिवर्तन के दौरान टाइमलाइक रहता है। [[लोरेंट्ज़ियन कई गुना]] पर कोई बंद टाइमलाइक कर्व (सीटीसी) एक बिंदु के लिए टाइमलाइक समस्थानी नहीं है (यानी, शून्य टाइमलाइक समस्थानी); इस तरह के कई गुना इसलिए कहा जाता है कि समयबद्ध घटता से गुणा किया जाता है। 3-गोले जैसे मैनिफोल्ड को आसानी से जोड़ा जा सकता है (किसी भी प्रकार के वक्र द्वारा), और फिर [[बंद समयबद्ध वक्र]] से गुणा किया जा सकता है।<ref>{{Cite journal|last=Monroe|first=Hunter|date=2008-11-01|title=Are Causality Violations Undesirable?|journal=Foundations of Physics|language=en|volume=38|issue=11|pages=1065–1069|doi=10.1007/s10701-008-9254-9|issn=0015-9018|arxiv=gr-qc/0609054|bibcode=2008FoPh...38.1065M|s2cid=119707350 }}</ref> | |||
== गुण == | == गुण == | ||
=== भारोत्तोलन और विस्तार गुण === | === भारोत्तोलन और विस्तार गुण === | ||
यदि हमारे पास होमोटॉपी है {{nowrap|1=''H'' : ''X'' × [0,1] → ''Y''}} और एक आवरण {{nowrap|1=''p'' : <span style="text-decoration: overline;">''Y''</span> → ''Y''}} और हमें एक मैप दिया जाता है {{nowrap|1=<span style="text-decoration: overline;">''h''</span><sub>0</sub> : ''X'' → <span style="text-decoration: overline;">''Y''</span>}} ऐसा है कि {{nowrap|1=''H''<sub>0</sub> = ''p'' ○ <span style="text-decoration: overline;">''h''</span><sub>0</sub>}} (<span style= text-decoration: overline; >h</span><sub>0</sub> h की [[लिफ्ट (गणित)]] कहलाती है<sub>0</sub>), तो हम सभी H को एक मानचित्र पर उठा सकते हैं {{nowrap|1=<span style="text-decoration: overline;">''H''</span> : ''X'' × [0, 1] → <span style="text-decoration: overline;">''Y''</span>}} ऐसा है कि {{nowrap|1=''p'' ○ <span style="text-decoration: overline;">''H''</span> = ''H''.}} होमोटॉपी उठाने की संपत्ति का उपयोग फ़िब्रेशन को चिह्नित करने के लिए किया जाता है। | |||
होमोटॉपी से जुड़ी एक और उपयोगी संपत्ति [[होमोटॉपी एक्सटेंशन संपत्ति]] है, | होमोटॉपी से जुड़ी एक और उपयोगी संपत्ति [[होमोटॉपी एक्सटेंशन संपत्ति]] है, | ||
जो कुछ | जो कुछ समुच्चय के सबसमुच्चय से समुच्चय तक दो कार्यों के बीच एक होमोटॉपी के विस्तार की विशेषता है। [[co[[fibration]]]] से निपटने के दौरान यह उपयोगी है। | ||
=== समूह === | === समूह === | ||
दो कार्यों के संबंध के बाद से <math>f, g\colon X\to Y</math> एक उपसमष्टि के सापेक्ष समस्थानी होना एक तुल्यता संबंध है, हम एक निश्चित X और Y के बीच के मानचित्रों के [[तुल्यता वर्ग|तुल्यता वर्गों]] को देख सकते हैं। यदि हम तय करते हैं <math>X = [0,1]^n</math>, इकाई अंतराल [0, 1] कार्तीय उत्पाद स्वयं के साथ n बार, और हम इसकी [[सीमा (टोपोलॉजी)|सीमा]] लेते हैं <math>\partial([0,1]^n)</math> एक उप-स्थान के रूप में, तब तुल्यता वर्ग एक समूह बनाते हैं, जिसे निरूपित किया जाता है <math>\pi_n(Y,y_0)</math>, कहाँ <math>y_0</math> उप-स्थान की छवि में है <math>\partial([0,1]^n)</math>. | |||
हम एक समतुल्य वर्ग की क्रिया को दूसरे पर परिभाषित कर सकते हैं, और इस प्रकार हमें एक समूह प्राप्त होता है। इन समूहों को होमोटॉपी समूह कहा जाता है। यदि <math>n = 1</math>, इसे मौलिक समूह भी कहा जाता है। | |||
हम एक समतुल्य वर्ग की क्रिया को दूसरे पर परिभाषित कर सकते हैं, और इस प्रकार हमें एक समूह प्राप्त होता है। इन समूहों को | |||
=== होमोटॉपी श्रेणी === | === होमोटॉपी श्रेणी === | ||
होमोटॉपी के विचार को [[श्रेणी सिद्धांत]] की एक औपचारिक श्रेणी में बदला जा सकता है। [[होमोटॉपी श्रेणी]] वह श्रेणी है जिसकी वस्तुएँ सांस्थितिक स्थल हैं, और जिनकी आकृति विज्ञान निरंतर मानचित्रों के होमोटॉपी तुल्यता वर्ग हैं। इस श्रेणी में दो सांस्थितिक स्थल 'X' और 'Y' समरूप हैं यदि केवल वे होमोटॉपी-समतुल्य हैं। फिर सांस्थितिक रिक्त स्थान की श्रेणी पर एक [[ऑपरेटर|प्रचालक]] होमोटॉपी अपरिवर्तनीय है यदि इसे होमोटॉपी श्रेणी पर एक कारक के रूप में व्यक्त किया जा सकता है। | |||
उदाहरण के लिए, | उदाहरण के लिए, सजातीय समूह एक ''क्रियाशील'' होमोटॉपी अपरिवर्तनीय हैं: इसका तात्पर्य है कि यदि ''f'' और ''g'' ''X'' से ''Y'' समस्थानी हैं, तो [[समूह समरूपता|समूह होमोटॉपी]] प्रेरित सजातीय समूहों के स्तर पर 'f' और 'g' द्वारा समान हैं: H<sub>''n''</sub>(f) = H<sub>''n''</sub>(g): (X) → H<sub>''n''</sub> (Y) सभी n के लिए। इसी तरह, यदि X और Y अतिरिक्त जुड़ाव में हैं, और f और g के बीच की होमोटॉपी को इंगित किया गया है, तो होमोटॉपी समूहों के स्तर पर f और g द्वारा प्रेरित समूह होमोटॉपी भी समान हैं: π<sub>''n''</sub>(f) = π<sub>''n''</sub>(g): π<sub>''n''</sub>(X) → π<sub>''n''</sub> । | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
होमोटॉपी की अवधारणा के आधार पर, [[बीजगणितीय समीकरण|बीजगणितीय समीकरणों]] और अवकल समीकरणों के लिए संख्यात्मक विधियों का विकास किया गया है। बीजगणितीय समीकरणों की विधियों में होमोटॉपी एवं निरंतरता विधि सम्मिलित है<ref>{{Cite book |last=Allgower |first=E. L. |url=https://www.worldcat.org/oclc/52377653 |title=Introduction to numerical continuation methods |date=2003 |publisher=SIAM |others=Kurt Georg |isbn=0-89871-544-X |location=Philadelphia |oclc=52377653}}</ref> विभेदक समीकरणों के विधि में होमोटॉपी विश्लेषण पद्धति सम्मिलित है। | |||
होमोटॉपी सिद्धांत को | होमोटॉपी सिद्धांत को सजातीय सिद्धांत के लिए एक नींव के रूप में उपयोग किया जा सकता है: होमोटॉपी समतुल्यता तक X के आरेखण द्वारा स्थल X पर एक सह-होमोटॉपी कारक का प्रतिनिधित्व करने योग्य प्रकार्यक हो सकता है। उदाहरण के लिए, किसी भी एबेलियन समूह g और किसी भी आधारित सीडब्ल्यू-परिसर X के लिए, समुच्चय <math>[X,K(G,n)]</math> X से ईलेनबर्ग-मैकलेन स्थल के आधारित आरेखों पर होमोटॉपी वर्गों का <math>K(G,n)</math> n एकवचनीय सह-होमोटॉपी समूह के साथ प्राकृतिक आपत्ति में है <math>H^n(X,G)</math> का कहना है कि [[स्पेक्ट्रम (टोपोलॉजी)|वर्णक्रम]] ईलेनबर्ग-मैकलेन स्थल का अंत वर्णक्रम G में गुणांक के साथ एकवचन सह-होमोटॉपी के लिए स्थान का प्रतिनिधित्व कर रहा है। | ||
== यह भी देखें == | == यह भी देखें == | ||
| Line 139: | Line 128: | ||
*{{Springer |title=Isotopy (in topology) |id=p/i052940}} | *{{Springer |title=Isotopy (in topology) |id=p/i052940}} | ||
*{{cite book |last=Spanier |first=Edwin |title=बीजगणितीय टोपोलॉजी|date=December 1994 |publisher=Springer |isbn=978-0-387-94426-5}} | *{{cite book |last=Spanier |first=Edwin |title=बीजगणितीय टोपोलॉजी|date=December 1994 |publisher=Springer |isbn=978-0-387-94426-5}} | ||
{{Authority control}} | {{Authority control}} | ||
श्रेणी: | श्रेणी:होमोटॉपी सिद्धांत|* | ||
श्रेणी:सतत कार्यों का सिद्धांत | श्रेणी:सतत कार्यों का सिद्धांत | ||
श्रेणी:कई गुना के मानचित्र | श्रेणी:कई गुना के मानचित्र | ||
[[Category:CS1 English-language sources (en)]] | |||
[[Category: | |||
[[Category:Created On 08/02/2023]] | [[Category:Created On 08/02/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages using multiple image with auto scaled images]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
Latest revision as of 12:31, 10 October 2023
सांस्थितिकी में, गणित की शाखा, एक सांस्थितिकी स्थल से दूसरे में दो निरंतर कार्यो को समस्थानी कहा जाता हैं यद्यपि एक को दूसरे में निरंतर विकृत किया जा सकता है, तो ऐसी विकृति को दो कार्यों के बीच होमोटॉपी कहा जाता है । होमोटॉपी (समस्थेयता) का एक उल्लेखनीय उपयोग होमोटॉपी समूहों और कोहोमोटॉपी समूहों की परिभाषा है,जो बीजगणितीय सांस्थितिकी में महत्वपूर्ण व् अपरिवर्तनीय है।[1]
कार्यप्रणाली में, कुछ स्थानों के साथ होमोटॉपी का उपयोग करने में तकनीकी कठिनाइयाँ हैं। बीजगणितीय सांस्थितिकीय सघन रूप से उत्पन्न रिक्त स्थान, सीडब्ल्यू परिसरों या वर्णक्रम के साथ काम करते हैं।
औपचारिक परिभाषा
औपचारिक रूप से, से दो निरंतर फलन f और g के बीच एक होमोटॉपी
सांस्थितिक स्थल X से सांस्थितिक स्थल Y को एक निरंतर कार्य के रूप में परिभाषित किया गया है इकाई अंतराल [0, 1] के साथ स्थल X के उत्पाद सांस्थिति से Y तक और सभी के लिए .
यद्यपि हम समय के रूप में H के दूसरे मापदण्ड के विषय में सोचते हैं तो H g में g के निरंतर विरूपण का वर्णन करता है: समय 0 पर हमारे पास फलन f होता है और समय 1 पर हमारे पास फलन g होता है। हम दूसरे मापदण्ड को सर्पक नियंत्रण के रूप में भी सोच सकते हैं जो हमें f से g तक आसानी से संपर्क करने की अनुमति देता है क्योंकि सर्पक 0 से 1 तक चलता है, परन्तु इसके विपरीत है।
वैकल्पिक संकेतन का यह कहना है कि दो निरंतर कार्यों के बीच एक होमोटॉपी निरंतर कार्यों का एक परिवार है के लिए ऐसा है कि और , और Map_(गणित) से निरन्तर है को . दो संस्करण समायोजन से मेल खाते हैं . प्रत्येक मानचित्र की आवश्यकता के लिए पर्याप्त नहीं है निरंतर किया जाना।[2] सजीवता जो ऊपर दाईं ओर चक्रित किया गया है, स्थूलक के दो अंतःस्थापन, f और g के बीच एक होमोटॉपी का उदाहरण प्रदान करता है R3. X स्थूलक है, Y है R3, f स्थूलक से R तक कुछ निरंतर कार्य है3 जो स्थूलक को डोनट आकार की अन्तःस्थापित सतह पर ले जाता है जिसके साथ सजीवता शुरू होता है; g कुछ निरंतर कार्य है जो स्थूलक को एक कॉफी-मग आकार की अन्तःस्थापित सतह पर ले जाता है। सजीवता H की छवि प्रदर्शित करता हैt(x) मापदण्ड टी के एक समारोह के रूप में, जहां टी सजीवता चक्रण के प्रत्येक चक्र पर 0 से 1 के समय के साथ बदलता रहता है। यह रुकता है, फिर छवि प्रदर्शित करता है क्योंकि टी 1 से 0 तक भिन्न होता है, रुकता है और इस चक्र को दोहराता है।
गुण
निरंतर कार्य f और g को समस्थानी कहा जाता है यदि ऊपर बताए गए के अनुसार f को g पर ले जाने वाला होमोटॉपी H है।समना X से Y तक सभी निरंतर कार्यों के समुच्चय पर एक तुल्यता संबंध है। यह होमोटॉपी संबंध निम्नलिखित अर्थों में कार्य रचना के अनुकूल है: यदि f1, g1 : X → Y समस्थानी हैं, और f2, g2 : Y → Z समस्थानी हैं, तो उनकी रचनाएँ f2 ∘ f1 और g2 ∘ g1 : X → Z समस्थानी हैं।
उदाहरण
- यदि द्वारा दिए गए हैं और , फिर मैप द्वारा दिए गए उनके बीच एक होमोटॉपी है।
- अधिक प्रायः, यदि यूक्लिडियन स्थल का एक उत्तल समुच्चय सबसमुच्चय है और पथ एक ही समापन बिंदु के साथ हैं, जो एक रैखिक होमोटॉपी है[3] तो सरल रेखा होमोटॉपी द्वारा दिया गया
- माना इकाई n-चक्र पर परिचय फलन हो; अर्थात समुच्चय . होने देना निरंतर कार्य हो जो सभी बिंदु को मूल स्थान पर भेजता है। तब निम्नलिखित से उनके बीच एक होमोटॉपी होती है :
होमोटॉपी तुल्यता
दो सांस्थितिक स्थल X और Y दिए गए हैं, X और Y के बीच एक 'होमोटॉपी समतुल्यता' निरंतर मानचित्र की एक जोड़ी है f : X → Y और g : Y → X, ऐसा है कि g ∘ f पहचान मानचित्र idX के लिए समस्थानी हैX और f ∘ g आईडी के लिए समस्थानी हैY. यदि ऐसी कोई जोड़ी उपस्थित है, तो X और Y को 'होमोटॉपी समतुल्य' या समान 'होमोटॉपी प्रकार' कहा जाता है। सहज रूप से, दो रिक्त स्थान X और Y होमोटॉपी समतुल्य हैं यद्यपि उन्हें झुकने, सिकुड़ने और संचालन के विस्तार से एक दूसरे में परिवर्तित किया जा सकता है। रिक्त स्थान जो होमोटॉपी-एक बिंदु के समतुल्य होते हैं, संविदात्मक कहलाते हैं।
होमोटॉपी तुल्यता बनाम होमियोमोर्फिज्म
होमोमोर्फिज्म होमोटॉपी तुल्यता का एक विशेष मामला है, जिसमें g ∘ f पहचान मानचित्र idX के बराबर है और f ∘ g idY के बराबर है.[4]: 0:53:00 इसलिए, यदि X और Y होमियोमॉर्फिक हैं तो वे होमोटॉपी-समतुल्य हैं, परन्तु विपरीत सत्य नहीं है। कुछ उदाहरण:
- ठोस चक्र होमोटॉपी-एक बिंदु के बराबर है, क्योंकि आप चक्र को उज्जवल रेखाओं के साथ एक बिंदु पर लगातार विकृत कर सकते हैं। यद्यपि, वे होमियोमॉर्फिक नहीं हैं, क्योंकि उनके बीच कोई आपत्ति नहीं है चूंकि एक अनंत समुच्चय है, जबकि दूसरा परिमित है।
- मोबियस स्ट्रीपऔर एक मुड़ी हुईस्ट्रीपहोमोटॉपी समतुल्य हैं, क्योंकि आप दोनों स्ट्रीप को लगातार एक वृत्त में विकृत कर सकते हैं। परन्तु वे होमियोमॉर्फिक नहीं हैं।
उदाहरण
- होमोटॉपी तुल्यता का पहला उदाहरण है एक बिंदु के साथ, निरूपित . जिस भाग की जाँच करने की आवश्यकता है वह एक होमोटॉपी का अस्तित्व है बीच में और , का प्रक्षेपण उत्पत्ति पर। इसका वर्णन इस प्रकार किया जा सकता है .
- के बीच एक होमोटॉपी समानता है (1-sphere) और .
- प्रायः अधिक, .
- कोई फाइबर बंडल तंतुओं के साथ होमोटॉपी एक बिंदु के बराबर होमोटॉपी समतुल्य कुल और आधार स्थान है। यह पिछले दो उदाहरणों को सामान्यीकृत करता है फाइबर के साथ फाइबर बंडल है .
- प्रत्येक दिष्ट बंडल एक फाइबर बंडल है जिसमें एक बिंदु के बराबर फाइबर होमोटॉपी होता है।
- किसी के लिए , लेखन से फाइबर बंडल के कुल स्थान के रूप में , फिर उपरोक्त होमोटॉपी समकक्षों को लागू करना।
- यदि उपसमुच्चय एक सीडब्ल्यू परिसर की सिकुड़ा हुआ है, फिर भागफल स्थान (सांस्थिति) होमोटॉपी के बराबर है .[5]
- एक विरूपण प्रत्यावर्तन एक होमोटॉपी तुल्यता है।
शून्य-होमोटॉपी
फलन f को 'शून्य-होमोटॉपी' कहा जाता है यदि यह निरंतर कार्य के लिए समस्थानी है। (f से एक स्थिर कार्य के लिए होमोटॉपी को कभी-कभी 'शून्य-होमोटॉपी' कहा जाता है।) उदाहरण के लिए, इकाई सर्कल एस से एक मैप f किसी भी स्थान के लिए 1 X शून्य-होमोटॉपी है जब इसे इकाई चक्र D2 से मानचित्र पर लगातार बढ़ाया जा सकता है से X जो सीमा पर f से सहमत है।
यह इन परिस्थानी हो भाषाओं से अनुसरण करता है कि एक स्थान X सिकुड़ा हुआ है यदि और केवल यदि एक्स से स्वयं के लिए पहचान मानचित्र - जो हमेशा एक होमोटॉपी तुल्यता है - शून्य-होमोटॉपी है।
अपरिवर्तन
होमोटॉपी तुल्यता महत्वपूर्ण है क्योंकि बीजगणितीय सांस्थिति में कई अवधारणाएं होमोटॉपी अपरिवर्तनीय हैं, अर्थात, वे होमोटॉपी तुल्यता के संबंध का सम्मान करते हैं। उदाहरण के लिए, यदि X और Y समरूप समतुल्य स्थान हैं, तो:
- X जुड़ा हुआ स्थान है|पथ-कनेक्टेड यदि और केवल यदि Y है।
- X बस जुड़ा हुआ है यदि और केवल यदि Y है।
- (एकवचन) सजातीय (गणित) और एक्स और वाई के कोहोलॉg समूह समूह होमोटॉपी हैं।
- यदि X और Y पाथ-कनेक्टेड हैं, तो X और Y के मौलिक समूह आइसोमॉर्फिक हैं, और इसलिए उच्च समरूप समूह हैं। (पथ-जुड़ाव धारणा के बिना, किसी के पास π1 है(X, -X0) तुल्याकारी से π1(Y, f (X0)) जहाँ f : X → Y एक होमोटॉपी तुल्यता है और x0 ∈ X.)
सांस्थितिक रिक्त स्थान के एक बीजगणितीय अपरिवर्तनीय का एक उदाहरण जो होमोटॉपी-अपरिवर्तनीय नहीं है, कॉम्पैक्ट रूप से समर्थित सजातीय है (जो मोटे तौर पर बोल रहा है, संघनन (गणित)गणित) की सजातीय, और कॉम्पैक्टिफिकेशन होमोटॉपी-अपरिवर्तनीय नहीं है)।
वेरिएंट
सापेक्ष होमोटॉपी
मौलिक समूह को परिभाषित करने के लिए, किसी को एक उप-स्थान के सापेक्ष होमोटॉपी की धारणा की आवश्यकता होती है। ये होमोटॉपीएं हैं जो उप-स्थान के तत्वों को स्थिर रखती हैं। औपचारिक रूप से: यदि f और g X से Y तक निरंतर मानचित्र हैं और K X का उपसमुच्चय है, तो हम कहते हैं कि ' यदि होमोटॉपी उपस्थित है तो 'के' के सापेक्ष 'f' और 'g' समस्थानी हैं H : X × [0, 1] → Y f और g के बीच ऐसा है कि H(k, t) = f(k) = g(k) सभी के लिए k ∈ K और t ∈ [0, 1]. साथ ही, यदि g, X से K तक एक प्रत्यावर्तन (सांस्थिति) है और f पहचान मानचित्र है, तो इसे X से K तक एक मजबूत विरूपण वापसी के रूप में जाना जाता है। जब K एक बिंदु होता है, तो 'पॉइंटेड होमोटॉपी' शब्द का प्रयोग किया जाता है।
समस्थानिक
यदि सांस्थितिक स्थल X से सांस्थितिक स्थल Y तक दिए गए दो निरंतर कार्य f और g अंतःस्थापन हैं, तो कोई पूछ सकता है कि क्या उन्हें 'अंतःस्थापन के माध्यम से' जोड़ा जा सकता है। यह 'आइसोटोपी' की अवधारणा को जन्म देता है, जो पहले उपयोग किए गए अंकन में एक होमोटॉपी, H है, जैसा कि प्रत्येक निश्चित T के लिए, H एक अंतःस्थापन देता है।[6] परन्तु अलग, अवधारणा परिवेश समस्थानिक की है।
यह आवश्यक है कि दो अंतःस्थापन समस्थानिक हों, यह एक प्रबल आवश्यक है कि वे समस्थानी हों। उदाहरण के लिए, अंतराल [−1, 1] से f(x) = −x द्वारा परिभाषित वास्तविक संख्याओं में आरेख पहचान g(x) = x के समस्थानिक नहीं है। f से पहचान तक किसी भी होमोटॉपी को समापन बिंदुओं का आदान-प्रदान करना होगा, जिसका अर्थ होगा कि उन्हें एक-दूसरे से 'गुजरना' होगा। इसके अतिरिक्त, f ने अंतराल के अभिविन्यास को बदल दिया है और g ने नहीं किया है, जो एक समस्थानिक के तहत असंभव है। हालाँकि, नक्शे समरूप हैं; पहचान के लिए f से एक होमोटॉपी H: [−1, 1] × [0, 1] → [−1, 1] H(x, y) = 2yx − x द्वारा दिया गया है।
इकाई बॉल के दो होमोमोर्फिम्स (जो अंतःस्थापन के विशेष मामले हैं) जो सीमा पर सहमत हैं, को अलेक्जेंडर की चाल का उपयोग करके समस्थानिक दिखाया जा सकता है। इसी कारण से 'R' में इकाई चक्र का मानचित्र2 f(x, y) = (−x, −y) द्वारा परिभाषित मूल बिंदु के चारों ओर 180-डिग्री घुमाव के लिए समस्थानिक है, और इसलिए पहचान मानचित्र और f समस्थानिक हैं क्योंकि वे घूर्णन द्वारा जुड़े हो सकते हैं।
ज्यामितीय सांस्थिति में - उदाहरण के लिए गाँठ सिद्धांत में - समस्थानिक के विचार का उपयोग तुल्यता संबंधों के निर्माण के लिए किया जाता है। उदाहरण के लिए, कब दो गांठों को समान माना जाना चाहिए? हम दो समुद्री मील लेते हैं, के1 और के2, त्रि-आयामी स्थल में। एक गाँठ इस स्थान में एक-आयामी स्थान, स्ट्रिंग (या सर्कल) के चक्रण का एक अंतःस्थापन है, और यह अंतःस्थापन सर्कल और इसकी छवि के बीच अंतःस्थापन स्थल में एक होमोमोर्फिज्म देता है। गाँठ तुल्यता की धारणा के पीछे सहज ज्ञान युक्त विचार यह है कि अंतःस्थापन के पथ के माध्यम से एक अंतःस्थापन को दूसरे में विकृत किया जा सकता है: टी = 0 पर शुरू होने वाला एक सतत कार्य के देता है1 अंतःस्थापन, t = 1 पर समाप्त होने पर K देता है2 अंतःस्थापन, अंतःस्थापन के अनुरूप सभी मध्यवर्ती मानों के साथ। यह आइसोटोपी की परिभाषा के अनुरूप है। इस संदर्भ में अध्ययन किया गया एक परिवेश समस्थानिक, बड़े स्थान का एक समस्थानिक है, जिसे अंतःस्थापित सबमनीफोल्ड पर इसकी क्रिया के प्रकाश में माना जाता है। नॉट्स के1 और के2 समतुल्य माना जाता है जब एक परिवेश समस्थानिक होता है जो K को स्थानांतरित करता है1 कश्मीर के लिए2. यह सामयिक श्रेणी में उपयुक्त परिभाषा है।
समान भाषा का उपयोग समकक्ष अवधारणा के संदर्भ में किया जाता है जहां किसी के पास समानता की एक मजबूत धारणा होती है। उदाहरण के लिए, दो चिकनी अंतःस्थापन के बीच एक पथ एक चिकनी समस्थानिक है।
होमोटॉपी
लोरेन्ट्ज़ियन मैनिफोल्ड पर, कुछ वक्रों को टाइमलाइक के रूप में प्रतिष्ठित किया जाता है (कुछ का प्रतिनिधित्व करता है जो केवल आगे बढ़ता है, पीछे नहीं, समय में, हर स्थानीय फ्रेम में)। दो समयबद्ध वक्र्स के बीच एक टाइमलाइक होमोटॉपी एक होमोटॉपी है जैसे कि कर्व एक कर्व से दूसरे कर्व में निरंतर परिवर्तन के दौरान टाइमलाइक रहता है। लोरेंट्ज़ियन कई गुना पर कोई बंद टाइमलाइक कर्व (सीटीसी) एक बिंदु के लिए टाइमलाइक समस्थानी नहीं है (यानी, शून्य टाइमलाइक समस्थानी); इस तरह के कई गुना इसलिए कहा जाता है कि समयबद्ध घटता से गुणा किया जाता है। 3-गोले जैसे मैनिफोल्ड को आसानी से जोड़ा जा सकता है (किसी भी प्रकार के वक्र द्वारा), और फिर बंद समयबद्ध वक्र से गुणा किया जा सकता है।[7]
गुण
भारोत्तोलन और विस्तार गुण
यदि हमारे पास होमोटॉपी है H : X × [0,1] → Y और एक आवरण p : Y → Y और हमें एक मैप दिया जाता है h0 : X → Y ऐसा है कि H0 = p ○ h0 (h0 h की लिफ्ट (गणित) कहलाती है0), तो हम सभी H को एक मानचित्र पर उठा सकते हैं H : X × [0, 1] → Y ऐसा है कि p ○ H = H. होमोटॉपी उठाने की संपत्ति का उपयोग फ़िब्रेशन को चिह्नित करने के लिए किया जाता है।
होमोटॉपी से जुड़ी एक और उपयोगी संपत्ति होमोटॉपी एक्सटेंशन संपत्ति है, जो कुछ समुच्चय के सबसमुच्चय से समुच्चय तक दो कार्यों के बीच एक होमोटॉपी के विस्तार की विशेषता है। [[cofibration]] से निपटने के दौरान यह उपयोगी है।
समूह
दो कार्यों के संबंध के बाद से एक उपसमष्टि के सापेक्ष समस्थानी होना एक तुल्यता संबंध है, हम एक निश्चित X और Y के बीच के मानचित्रों के तुल्यता वर्गों को देख सकते हैं। यदि हम तय करते हैं , इकाई अंतराल [0, 1] कार्तीय उत्पाद स्वयं के साथ n बार, और हम इसकी सीमा लेते हैं एक उप-स्थान के रूप में, तब तुल्यता वर्ग एक समूह बनाते हैं, जिसे निरूपित किया जाता है , कहाँ उप-स्थान की छवि में है .
हम एक समतुल्य वर्ग की क्रिया को दूसरे पर परिभाषित कर सकते हैं, और इस प्रकार हमें एक समूह प्राप्त होता है। इन समूहों को होमोटॉपी समूह कहा जाता है। यदि , इसे मौलिक समूह भी कहा जाता है।
होमोटॉपी श्रेणी
होमोटॉपी के विचार को श्रेणी सिद्धांत की एक औपचारिक श्रेणी में बदला जा सकता है। होमोटॉपी श्रेणी वह श्रेणी है जिसकी वस्तुएँ सांस्थितिक स्थल हैं, और जिनकी आकृति विज्ञान निरंतर मानचित्रों के होमोटॉपी तुल्यता वर्ग हैं। इस श्रेणी में दो सांस्थितिक स्थल 'X' और 'Y' समरूप हैं यदि केवल वे होमोटॉपी-समतुल्य हैं। फिर सांस्थितिक रिक्त स्थान की श्रेणी पर एक प्रचालक होमोटॉपी अपरिवर्तनीय है यदि इसे होमोटॉपी श्रेणी पर एक कारक के रूप में व्यक्त किया जा सकता है।
उदाहरण के लिए, सजातीय समूह एक क्रियाशील होमोटॉपी अपरिवर्तनीय हैं: इसका तात्पर्य है कि यदि f और g X से Y समस्थानी हैं, तो समूह होमोटॉपी प्रेरित सजातीय समूहों के स्तर पर 'f' और 'g' द्वारा समान हैं: Hn(f) = Hn(g): (X) → Hn (Y) सभी n के लिए। इसी तरह, यदि X और Y अतिरिक्त जुड़ाव में हैं, और f और g के बीच की होमोटॉपी को इंगित किया गया है, तो होमोटॉपी समूहों के स्तर पर f और g द्वारा प्रेरित समूह होमोटॉपी भी समान हैं: πn(f) = πn(g): πn(X) → πn ।
अनुप्रयोग
होमोटॉपी की अवधारणा के आधार पर, बीजगणितीय समीकरणों और अवकल समीकरणों के लिए संख्यात्मक विधियों का विकास किया गया है। बीजगणितीय समीकरणों की विधियों में होमोटॉपी एवं निरंतरता विधि सम्मिलित है[8] विभेदक समीकरणों के विधि में होमोटॉपी विश्लेषण पद्धति सम्मिलित है।
होमोटॉपी सिद्धांत को सजातीय सिद्धांत के लिए एक नींव के रूप में उपयोग किया जा सकता है: होमोटॉपी समतुल्यता तक X के आरेखण द्वारा स्थल X पर एक सह-होमोटॉपी कारक का प्रतिनिधित्व करने योग्य प्रकार्यक हो सकता है। उदाहरण के लिए, किसी भी एबेलियन समूह g और किसी भी आधारित सीडब्ल्यू-परिसर X के लिए, समुच्चय X से ईलेनबर्ग-मैकलेन स्थल के आधारित आरेखों पर होमोटॉपी वर्गों का n एकवचनीय सह-होमोटॉपी समूह के साथ प्राकृतिक आपत्ति में है का कहना है कि वर्णक्रम ईलेनबर्ग-मैकलेन स्थल का अंत वर्णक्रम G में गुणांक के साथ एकवचन सह-होमोटॉपी के लिए स्थान का प्रतिनिधित्व कर रहा है।
यह भी देखें
- फाइबर-होमोटॉपी तुल्यता (होमोटॉपी तुल्यता का सापेक्ष संस्करण)
- होम्योपैथी
- होमोटॉपी प्रकार सिद्धांत
- मानचित्रण वर्ग समूह
- पॉइनकेयर अनुमान
- नियमित होमोटॉपी
संदर्भ
- ↑ "Homotopy | mathematics". Encyclopedia Britannica (in English). Retrieved 2019-08-17.
- ↑ "algebraic topology - Path homotopy and separately continuous functions". Mathematics Stack Exchange.
- ↑ Allen., Hatcher (2002). Algebraic topology. Cambridge: Cambridge University Press. p. 185. ISBN 9780521795401. OCLC 45420394.
- ↑ Archived at Ghostarchive and the Wayback Machine: Albin, Pierre (2019). "History of algebraic topology". YouTube.
- ↑ Allen., Hatcher (2002). Algebraic topology. Cambridge: Cambridge University Press. p. 11. ISBN 9780521795401. OCLC 45420394.
- ↑ Weisstein, Eric W. "Isotopy". MathWorld.
- ↑ Monroe, Hunter (2008-11-01). "Are Causality Violations Undesirable?". Foundations of Physics (in English). 38 (11): 1065–1069. arXiv:gr-qc/0609054. Bibcode:2008FoPh...38.1065M. doi:10.1007/s10701-008-9254-9. ISSN 0015-9018. S2CID 119707350.
- ↑ Allgower, E. L. (2003). Introduction to numerical continuation methods. Kurt Georg. Philadelphia: SIAM. ISBN 0-89871-544-X. OCLC 52377653.
स्रोत
- Armstrong, M.A. (1979). बेसिक टोपोलॉजी. Springer. ISBN 978-0-387-90839-7.
- "Homotopy", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- "Isotopy (in topology)", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Spanier, Edwin (December 1994). बीजगणितीय टोपोलॉजी. Springer. ISBN 978-0-387-94426-5.
श्रेणी:होमोटॉपी सिद्धांत|* श्रेणी:सतत कार्यों का सिद्धांत श्रेणी:कई गुना के मानचित्र