परिमेय फलन: Difference between revisions

From Vigyanwiki
 
Line 1: Line 1:
गणित में, एक '''परिमेय फलन''' एक ऐसा फलन है जिसे परिमेय भिन्न द्वारा परिभाषित किया जा सकता है, तथा एक [[ बीजीय भिन्न |बीजीय भिन्न]] इस प्रकार है कि अंश और हर दोनों [[ बहुपद |बहुपद]] होते हैं। बहुपदों के गुणांकों का [[ परिमेय संख्या |परिमेय संख्या]] होना आवश्यक नहीं है, उन्हें किसी भी [[ क्षेत्र (गणित) |क्षेत्र (गणित)]] K में लिया जा सकता है। इस मामले में, हम K के ऊपर एक परिमेय फलन और एक परिमेय भिन्न की बात करते हैं। चरों के मान K वाले किसी भी क्षेत्र के लिए L में लिए जा सकते हैं। इस प्रकार [[ डोमेन (फ़ंक्शन) |डोमेन (फ़ंक्शन)]] की रेंज चरों के मानों के एक समुच्चय को प्रदर्शित करती है जिसके लिए हर का मान शून्य नहीं होता है, और [[ कोडोमेन |कोडोमेन]] L होती है। एक क्षेत्र ''K'' पर परिमेय फलनों का समुच्चय वह क्षेत्र है, जो K के ऊपरी बहुपद के फलनों के वलय (गणित) के [[ भिन्नों का क्षेत्र |भिन्नों के क्षेत्र]] को प्रदर्शित करता है।
गणित में, एक '''परिमेय फलन''' एक ऐसा फलन है जिसे परिमेय भिन्न द्वारा परिभाषित किया जा सकता है, तथा एक [[ बीजीय भिन्न |बीजीय भिन्न]] इस प्रकार है कि अंश और हर दोनों [[ बहुपद |बहुपद]] होते हैं। बहुपदों के गुणांकों का [[ परिमेय संख्या |परिमेय संख्या]] होना आवश्यक नहीं है, उन्हें किसी भी [[ क्षेत्र (गणित) |क्षेत्र (गणित)]] K में लिया जा सकता है। इस मामले में, हम K के ऊपर एक परिमेय फलन और एक परिमेय भिन्न की बात करते हैं। चरों के मान K वाले किसी भी क्षेत्र के लिए L में लिए जा सकते हैं। इस प्रकार [[ डोमेन (फ़ंक्शन) |डोमेन (फ़ंक्शन)]] की रेंज चरों के मानों के एक समुच्चय को प्रदर्शित करती है जिसके लिए हर का मान शून्य नहीं होता है, और [[ कोडोमेन |कोडोमेन]] L होती है। एक क्षेत्र ''K'' पर परिमेय फलनों का समुच्चय वह क्षेत्र है, जो K के ऊपरी बहुपद के फलनों के वलय (गणित) के [[ भिन्नों का क्षेत्र |भिन्नों के क्षेत्र]] को प्रदर्शित करता है।


== परिभाषाएं ==
== परिभाषाएं ==
Line 7: Line 7:
जहाँ <math>P\,</math> और <math>Q\,</math> के बहुपद फलन हैं, <math>x\,</math> और <math>Q\,</math> शून्य फलन नहीं है। <math>f\,</math> का प्रांत <math>x\,</math> के सभी मानों का समुच्चय है, जिसके लिए हर <math>Q(x)\,</math> शून्य नहीं है।
जहाँ <math>P\,</math> और <math>Q\,</math> के बहुपद फलन हैं, <math>x\,</math> और <math>Q\,</math> शून्य फलन नहीं है। <math>f\,</math> का प्रांत <math>x\,</math> के सभी मानों का समुच्चय है, जिसके लिए हर <math>Q(x)\,</math> शून्य नहीं है।


हालाँकि, यदि <math>\textstyle P</math> और <math>\textstyle Q</math> में एक गैर-स्थिर बहुपद सबसे बड़ा सामान्य भाजक <math>\textstyle R</math> है, तब <math>\textstyle P=P_1R</math> और <math>\textstyle Q=Q_1R</math> को सेट करने से एक परिमेय फलन उत्पन्न होता है
हालाँकि, यदि <math>\textstyle P</math> और <math>\textstyle Q</math> में एक गैर-स्थिर बहुपद सबसे बड़ा सामान्य भाजक <math>\textstyle R</math> है, तब <math>\textstyle P=P_1R</math> और <math>\textstyle Q=Q_1R</math> को समुच्चय करने से एक परिमेय फलन उत्पन्न होता है


:<math> f_1(x) = \frac{P_1(x)}{Q_1(x)}, </math>
:<math> f_1(x) = \frac{P_1(x)}{Q_1(x)}, </math>
Line 22: Line 22:
{{math|''w''}} के कुछ मानों को छोड़कर {{math|''z''}} में {{math|''d''}} विशिष्ट समाधान हैं, जिसे हम महत्वपूर्ण मूल्य कहते हैं, जहां दो या दो से अधिक समाधान मेल खाते हैं या जहां कुछ समाधान [[ अनंत पर बिंदु |अनंत पर बिंदु]] को खारिज कर दिया जाता है (अर्थात, जब हर को साफ करने के बाद समीकरण की  घात घट जाती है)।
{{math|''w''}} के कुछ मानों को छोड़कर {{math|''z''}} में {{math|''d''}} विशिष्ट समाधान हैं, जिसे हम महत्वपूर्ण मूल्य कहते हैं, जहां दो या दो से अधिक समाधान मेल खाते हैं या जहां कुछ समाधान [[ अनंत पर बिंदु |अनंत पर बिंदु]] को खारिज कर दिया जाता है (अर्थात, जब हर को साफ करने के बाद समीकरण की  घात घट जाती है)।


[[ जटिल संख्या |जटिल संख्या]] के मामले में  घात एक के साथ एक परिमेय फलन एक मोबियस परिवर्तन है।
[[ जटिल संख्या |सम्मिश्र संख्या]] के मामले में  घात एक के साथ एक परिमेय फलन एक मोबियस परिवर्तन है।


एक परिमेय फलन के ग्राफ की  घात वह  घात नहीं है जैसा कि ऊपर परिभाषित किया गया है, यह अंश की  घात का अधिकतम और हर की  घात का एक प्लस है।
एक परिमेय फलन के ग्राफ की  घात वह  घात नहीं है जैसा कि ऊपर परिभाषित किया गया है, यह अंश की  घात का अधिकतम और हर की  घात का एक प्लस है।
Line 51: Line 51:


:<math>f(x) = \frac{x^2 + 2}{x^2 + 1}</math>
:<math>f(x) = \frac{x^2 + 2}{x^2 + 1}</math>
सभी [[ वास्तविक संख्या | वास्तविक संख्या]] ओं के लिए परिभाषित किया गया है, लेकिन सभी जटिल संख्याओं के लिए नहीं, क्योंकि यदि x का वर्गमूल <math>-1</math> था  (अर्थात [[ काल्पनिक इकाई | काल्पनिक इकाई]] या नकारात्मक इकाई), तो औपचारिक मूल्यांकन शून्य से विभाजन की ओर ले जाएगा:
सभी [[ वास्तविक संख्या | वास्तविक संख्या]] ओं के लिए परिभाषित किया गया है, लेकिन सभी सम्मिश्र संख्याओं के लिए नहीं, क्योंकि यदि x का वर्गमूल <math>-1</math> था  (अर्थात [[ काल्पनिक इकाई | काल्पनिक इकाई]] या नकारात्मक इकाई), तो औपचारिक मूल्यांकन शून्य से विभाजन की ओर ले जाएगा:


:<math>f(i) = \frac{i^2 + 2}{i^2 + 1} = \frac{-1 + 2}{-1 + 1} = \frac{1}{0},</math>
:<math>f(i) = \frac{i^2 + 2}{i^2 + 1} = \frac{-1 + 2}{-1 + 1} = \frac{1}{0},</math>
Line 90: Line 90:


==अमूर्त बीजगणित और ज्यामितीय धारणा ==
==अमूर्त बीजगणित और ज्यामितीय धारणा ==
अमूर्त बीजगणित में औपचारिक अभिव्यक्तियों को शामिल करने के लिए बहुपद की अवधारणा का विस्तार किया जाता है  जिसमें बहुपद के गुणांक किसी भी क्षेत्र से लिए जा सकते हैं।  जिसमें बहुपद के गुणांक किसी भी क्षेत्र से लिए जा सकते हैं। इस सेटिंग में एक फ़ील्ड F और कुछ अनिश्चित X दिया गया है,एक परिमेय व्यंजक [[ बहुपद वलय |बहुपद वलय]] F[X] के भिन्नों के क्षेत्र का कोई भी अवयव है। किसी भी परिमेय व्यंजक को Q 0 वाले दो बहुपद P/Q के भागफल के रूप में लिखा जा सकता है, हालाँकि यह निरूपण अद्वितीय नहीं है।  
अमूर्त बीजगणित में औपचारिक अभिव्यक्तियों को शामिल करने के लिए बहुपद की अवधारणा का विस्तार किया जाता है  जिसमें बहुपद के गुणांक किसी भी क्षेत्र से लिए जा सकते हैं।  जिसमें बहुपद के गुणांक किसी भी क्षेत्र से लिए जा सकते हैं। इस समुच्चयिंग में एक फ़ील्ड F और कुछ अनिश्चित X दिया गया है,एक परिमेय व्यंजक [[ बहुपद वलय |बहुपद वलय]] F[X] के भिन्नों के क्षेत्र का कोई भी अवयव है। किसी भी परिमेय व्यंजक को Q 0 वाले दो बहुपद P/Q के भागफल के रूप में लिखा जा सकता है, हालाँकि यह निरूपण अद्वितीय नहीं है।  


P/Q बहुपदों P, Q, R, और S के लिए R/S के समतुल्य है, जब PS = QR है। हालाँकि, चूँकि F[X] एक अद्वितीय गुणनखंडन डोमेन है, किसी भी परिमेय अभिव्यक्ति P/Q के लिए एक अद्वितीय प्रतिनिधित्व है जिसमें P और Q सबसे कम  घात के बहुपद हैं और Q को [[ मोनिक बहुपद |मोनिक बहुपद]] चुना गया है। यह उसी तरह है जैसे पूर्णांकों का एक [[ अंश (गणित) |अंश (गणित)]] हमेशा सामान्य कारकों को रद्द करके सबसे कम शब्दों में विशिष्ट रूप से लिखा जा सकता है।
P/Q बहुपदों P, Q, R, और S के लिए R/S के समतुल्य है, जब PS = QR है। हालाँकि, चूँकि F[X] एक अद्वितीय गुणनखंडन डोमेन है, किसी भी परिमेय अभिव्यक्ति P/Q के लिए एक अद्वितीय प्रतिनिधित्व है जिसमें P और Q सबसे कम  घात के बहुपद हैं और Q को [[ मोनिक बहुपद |मोनिक बहुपद]] चुना गया है। यह उसी तरह है जैसे पूर्णांकों का एक [[ अंश (गणित) |अंश (गणित)]] हमेशा सामान्य कारकों को रद्द करके सबसे कम शब्दों में विशिष्ट रूप से लिखा जा सकता है।
Line 96: Line 96:
परिमेय व्यंजकों के क्षेत्र को F(X) से दर्शाया जाता है। कहा जाता है कि यह क्षेत्र एफ पर (एक [[ पारलौकिक तत्व |अधिक प्रवीण तत्व]]) एक्स द्वारा उत्पन्न (एक क्षेत्र के रूप में) उत्पन्न होता है, क्योंकि F(X) में कोई उचित उपक्षेत्र नहीं है जिसमें F और तत्व X दोनों हों।
परिमेय व्यंजकों के क्षेत्र को F(X) से दर्शाया जाता है। कहा जाता है कि यह क्षेत्र एफ पर (एक [[ पारलौकिक तत्व |अधिक प्रवीण तत्व]]) एक्स द्वारा उत्पन्न (एक क्षेत्र के रूप में) उत्पन्न होता है, क्योंकि F(X) में कोई उचित उपक्षेत्र नहीं है जिसमें F और तत्व X दोनों हों।


===जटिल परिमेय फलन ===
===सम्मिश्र परिमेय फलन ===
'''जूलिया सेट परिमेय नक्शे के लिए सेट करता है'''<gallery>
'''जूलिया समुच्चय परिमेय नक्शे के लिए समुच्चय करता है'''<gallery>
File:Julia set f(z)=1 over az5+z3+bz.png|alt=<nowiki>{\displaystyle {\frac {1}{az^{5}+z^{3}+bz}}}</nowiki>|<math>\frac{1}{ az^5+z^3+bz}</math>
File:Julia set f(z)=1 over az5+z3+bz.png|alt=<nowiki>{\displaystyle {\frac {1}{az^{5}+z^{3}+bz}}}</nowiki>|<math>\frac{1}{ az^5+z^3+bz}</math>
File:Julia set f(z)=1 over z3+z*(-3-3*I).png|<math>\frac{1}{z^3+z(-3-3i)}</math>
File:Julia set f(z)=1 over z3+z*(-3-3*I).png|<math>\frac{1}{z^3+z(-3-3i)}</math>
File:Julia set for f(z)=(z2+a) over (z2+b) a=-0.2+0.7i , b=0.917.png|<math>\frac{z^2 - 0.2 + 0.7i}{z^2 + 0.917}</math>
File:Julia set for f(z)=(z2+a) over (z2+b) a=-0.2+0.7i , b=0.917.png|<math>\frac{z^2 - 0.2 + 0.7i}{z^2 + 0.917}</math>
File:Julia set for f(z)=z2 over (z9-z+0.025).png|<math>\frac{z^2}{z^9 - z + 0.025}</math>
File:Julia set for f(z)=z2 over (z9-z+0.025).png|<math>\frac{z^2}{z^9 - z + 0.025}</math>
</gallery>[[ जटिल विश्लेषण |जटिल विश्लेषण]] में, एक परिमेय फलन
</gallery>[[ जटिल विश्लेषण |सम्मिश्र विश्लेषण]] में, एक परिमेय फलन


<math>f(z) = \frac{P(z)}{Q(z)}</math>
<math>f(z) = \frac{P(z)}{Q(z)}</math>


जटिल गुणांक वाले दो बहुपदों का अनुपात है, जहाँ {{math|''Q''}} शून्य बहुपद नहीं है और {{math|''P''}} और {{math|''Q''}} का कोई उभयनिष्ठ गुणनखंड नहीं है (यह f को अनिश्चित मान 0/0 लेने से बचाता है)।
सम्मिश्र गुणांक वाले दो बहुपदों का अनुपात है, जहाँ {{math|''Q''}} शून्य बहुपद नहीं है और {{math|''P''}} और {{math|''Q''}} का कोई उभयनिष्ठ गुणनखंड नहीं है (यह f को अनिश्चित मान 0/0 लेने से बचाता है)।


{{mvar|f}} का प्रांत सम्मिश्र संख्याओं का समुच्चय है
{{mvar|f}} का प्रांत सम्मिश्र संख्याओं का समुच्चय है
Line 112: Line 112:
जैसे कि <math>Q(z)\ne 0</math>
जैसे कि <math>Q(z)\ne 0</math>


प्रत्येक परिमेय फलन को स्वाभाविक रूप से एक फलन तक बढ़ाया जा सकता है जिसका डोमेन और रेंज संपूर्ण [[ रीमैन क्षेत्र | रीमैन क्षेत्र]] ([[ जटिल प्रक्षेप्य रेखा | जटिल प्रक्षेप्य रेखा]] ) है। परिमेय फलन [[ मेरोमॉर्फिक फ़ंक्शन |मेरोमॉर्फिक फ़ंक्शन]] के प्रतिनिधि उदाहरण हैं। रीमैन क्षेत्र पर परिमेय फलनों (नक्शे)<ref>[https://www.matem.unam.mx/~omar/no-wandering-domains.pdf Iteration of Rational Functions by Omar Antolín Camarena]</ref> का पुनरावृत्ति [[ असतत गतिशील प्रणाली | असतत गतिशील प्रणाली]] बनाता है।
प्रत्येक परिमेय फलन को स्वाभाविक रूप से एक फलन तक बढ़ाया जा सकता है जिसका डोमेन और रेंज संपूर्ण [[ रीमैन क्षेत्र | रीमैन क्षेत्र]] ([[ जटिल प्रक्षेप्य रेखा | सम्मिश्र प्रक्षेप्य रेखा]] ) है। परिमेय फलन [[ मेरोमॉर्फिक फ़ंक्शन |मेरोमॉर्फिक फ़ंक्शन]] के प्रतिनिधि उदाहरण हैं। रीमैन क्षेत्र पर परिमेय फलनों (नक्शे)<ref>[https://www.matem.unam.mx/~omar/no-wandering-domains.pdf Iteration of Rational Functions by Omar Antolín Camarena]</ref> का पुनरावृत्ति [[ असतत गतिशील प्रणाली | असतत गतिशील प्रणाली]] बनाता है।


=== एक बीजीय विविधता पर एक परिमेय फलन की धारणा ===
=== एक बीजीय विविधता पर एक परिमेय फलन की धारणा ===
{{Main|बीजीय किस्म का कार्य क्षेत्र}}
{{Main|बीजीय किस्म का कार्य क्षेत्र}}


बहुपदों की तरह, परिमेय व्यंजकों को भी n अनिश्चित X<sub>1</sub>,..., X<sub>''n''</sub>, के लिए सामान्यीकृत किया जा सकता है। F[X<sub>1</sub>,..., X<sub>''n''</sub>] के भिन्नों का क्षेत्र लेकर, जिसे F(X<sub>1</sub>,..., X<sub>''n''</sub>) द्वारा दर्शाया जाता है। बीजगणितीय ज्यामिति में परिमेय फलन के अमूर्त विचार का एक विस्तारित संस्करण प्रयोग किया जाता है। वहां एक बीजीय किस्म वी का फलन क्षेत्र वी के समन्वय रिंग के अंशों के क्षेत्र के रूप में बनता है (अधिक सटीक रूप से कहा जाता है, एक ज़रिस्की-घने ​​एफ़िन ओपन सेट वी में)। इसके तत्वों f को नियमित फलन माना जाता है जो गैर-रिक्त खुले सेट यू पर बीजगणितीय ज्यामिति के अर्थ में है, और इसे [[ प्रक्षेप्य रेखा |प्रक्षेप्य रेखा]] के रूपवाद के रूप में भी देखा जा सकता है।
बहुपदों की तरह, परिमेय व्यंजकों को भी n अनिश्चित X<sub>1</sub>,..., X<sub>''n''</sub>, के लिए सामान्यीकृत किया जा सकता है। F[X<sub>1</sub>,..., X<sub>''n''</sub>] के भिन्नों का क्षेत्र लेकर, जिसे F(X<sub>1</sub>,..., X<sub>''n''</sub>) द्वारा दर्शाया जाता है। बीजगणितीय ज्यामिति में परिमेय फलन के अमूर्त विचार का एक विस्तारित संस्करण प्रयोग किया जाता है। वहां एक बीजीय किस्म वी का फलन क्षेत्र वी के समन्वय रिंग के अंशों के क्षेत्र के रूप में बनता है (अधिक सटीक रूप से कहा जाता है, एक ज़रिस्की-घने ​​एफ़िन ओपन समुच्चय वी में)। इसके तत्वों f को नियमित फलन माना जाता है जो गैर-रिक्त खुले समुच्चय यू पर बीजगणितीय ज्यामिति के अर्थ में है, और इसे [[ प्रक्षेप्य रेखा |प्रक्षेप्य रेखा]] के रूपवाद के रूप में भी देखा जा सकता है।


== आवेदन ==
== आवेदन ==
परिमेय फलनों का उपयोग [[ संख्यात्मक विश्लेषण ]] में फलनों के [[ प्रक्षेप ]]  और [[ सन्निकटन |सन्निकटन]] के लिए किया जाता है, उदाहरण के लिए हेनरी पाडे द्वारा पेश किए गए पाडे सन्निकटन। परिमेय फलनों के संदर्भ में अनुमान कंप्यूटर बीजगणित प्रणालियों और अन्य संख्यात्मक [[ सॉफ़्टवेयर | सॉफ़्टवेयर]] के लिए उपयुक्त हैं। बहुपदों की तरह, उनका सीधा मूल्यांकन किया जा सकता है, और साथ ही वे बहुपदों की तुलना में अधिक विविध व्यवहार व्यक्त करते हैं। विज्ञान और अभियंत्रिकी में अधिक जटिल समीकरणों को अनुमानित या मॉडल करने के लिए परिमेय फलनों का उपयोग किया जाता है जिसमें भौतिकी में क्षेत्र और बल, विश्लेषणात्मक रसायन विज्ञान में स्पेक्ट्रोस्कोपी, जैव रसायन में एंजाइम ऊष्मागतिकी, इलेक्ट्रॉनिक परिपथ, वायुगतिकी, विवो में दवा सांद्रता, परमाणुओं और अणुओं के लिए तरंग फलन, छवि संकल्प में सुधार के लिए प्रकाशिकी और फोटोग्राफी, और ध्वनिकी और ध्वनि शामिल हैं।{{Citation needed|date=April 2017}}
परिमेय फलनों का उपयोग [[ संख्यात्मक विश्लेषण ]] में फलनों के [[ प्रक्षेप ]]  और [[ सन्निकटन |सन्निकटन]] के लिए किया जाता है, उदाहरण के लिए हेनरी पाडे द्वारा पेश किए गए पाडे सन्निकटन। परिमेय फलनों के संदर्भ में अनुमान कंप्यूटर बीजगणित प्रणालियों और अन्य संख्यात्मक [[ सॉफ़्टवेयर | सॉफ़्टवेयर]] के लिए उपयुक्त हैं। बहुपदों की तरह, उनका सीधा मूल्यांकन किया जा सकता है, और साथ ही वे बहुपदों की तुलना में अधिक विविध व्यवहार व्यक्त करते हैं। विज्ञान और अभियंत्रिकी में अधिक सम्मिश्र समीकरणों को अनुमानित या मॉडल करने के लिए परिमेय फलनों का उपयोग किया जाता है जिसमें भौतिकी में क्षेत्र और बल, विश्लेषणात्मक रसायन विज्ञान में स्पेक्ट्रोस्कोपी, जैव रसायन में एंजाइम ऊष्मागतिकी, इलेक्ट्रॉनिक परिपथ, वायुगतिकी, विवो में दवा सांद्रता, परमाणुओं और अणुओं के लिए तरंग फलन, छवि संकल्प में सुधार के लिए प्रकाशिकी और फोटोग्राफी, और ध्वनिकी और ध्वनि शामिल हैं।{{Citation needed|date=April 2017}}


[[ संकेत का प्रक्रमण |सिग्नल प्रोसेसिंग]] में, [[ लाप्लास ट्रांसफॉर्म |लाप्लास ट्रांसफॉर्म]] (निरंतर सिस्टम के लिए) या [[ z-परिणत |z-परिणत]] (असतत समय सिस्टम के लिए) आमतौर पर इस्तेमाल किए जाने वाले रैखिक समय अपरिवर्तनीय सिस्टम (फिल्टर) के [[ आवेग प्रतिक्रिया |आवेग प्रतिक्रिया]] के साथ [[ अनंत आवेग प्रतिक्रिया ]] जटिल संख्याओं पर परिमेय फलन हैं।
[[ संकेत का प्रक्रमण |सिग्नल प्रोसेसिंग]] में, [[ लाप्लास ट्रांसफॉर्म |लाप्लास ट्रांसफॉर्म]] (निरंतर सिस्टम के लिए) या [[ z-परिणत |z-परिणत]] (असतत समय सिस्टम के लिए) आमतौर पर इस्तेमाल किए जाने वाले रैखिक समय अपरिवर्तनीय सिस्टम (फिल्टर) के [[ आवेग प्रतिक्रिया |आवेग प्रतिक्रिया]] के साथ [[ अनंत आवेग प्रतिक्रिया ]] सम्मिश्र संख्याओं पर परिमेय फलन हैं।


==यह भी देखें==
==यह भी देखें==

Latest revision as of 16:04, 8 September 2023

गणित में, एक परिमेय फलन एक ऐसा फलन है जिसे परिमेय भिन्न द्वारा परिभाषित किया जा सकता है, तथा एक बीजीय भिन्न इस प्रकार है कि अंश और हर दोनों बहुपद होते हैं। बहुपदों के गुणांकों का परिमेय संख्या होना आवश्यक नहीं है, उन्हें किसी भी क्षेत्र (गणित) K में लिया जा सकता है। इस मामले में, हम K के ऊपर एक परिमेय फलन और एक परिमेय भिन्न की बात करते हैं। चरों के मान K वाले किसी भी क्षेत्र के लिए L में लिए जा सकते हैं। इस प्रकार डोमेन (फ़ंक्शन) की रेंज चरों के मानों के एक समुच्चय को प्रदर्शित करती है जिसके लिए हर का मान शून्य नहीं होता है, और कोडोमेन L होती है। एक क्षेत्र K पर परिमेय फलनों का समुच्चय वह क्षेत्र है, जो K के ऊपरी बहुपद के फलनों के वलय (गणित) के भिन्नों के क्षेत्र को प्रदर्शित करता है।

परिभाषाएं

एक फलन को परिमेय फलन हम तभी कह सकते है जब इसे इस रूप में लिखा जाता है

जहाँ और के बहुपद फलन हैं, और शून्य फलन नहीं है। का प्रांत के सभी मानों का समुच्चय है, जिसके लिए हर शून्य नहीं है।

हालाँकि, यदि और में एक गैर-स्थिर बहुपद सबसे बड़ा सामान्य भाजक है, तब और को समुच्चय करने से एक परिमेय फलन उत्पन्न होता है

जिसका डोमेन से बड़ा हो सकता है और यह के प्रांत पर के बराबर है। यह और की पहचान करने के लिए एक सामान्य उपयोग है, यानी के डोमेन को "निरंतरता से" के डोमेन तक विस्तारित करना है। उसके इस मान के लिए वास्तव में, एक परिमेय भिन्न को बहुपदों के भिन्नों के तुल्यता वर्ग के रूप में परिभाषित किया जा सकता है, जहाँ दो भिन्न तथा को यदि हो तब इन्हें समकक्ष माना जाता है। इस मामले में के बराबर है .

एक उचित परिमेय फलन एक परिमेय फलन है जिसमें के बहुपद की घात की घात से कम है और दोनों वास्तविक बहुपद हैं, जिन्हें एक भिन्न के सादृश्य द्वारा नामित किया गया है जिसमें उचित और अनुचित भिन्न है।[1]

घात (डिग्री)

एक परिमेय फलन के घात के बारे में कई गैर समकक्ष परिभाषाएं हैं।

सामान्यतः, एक परिमेय फलन की घात उसके संघटक बहुपदों P और Q की घातों का अधिकतम होता है। जब भिन्न को निम्नतम पदों पर घटाया जाता है। यदि f की घात d है, तो समीकरण कुछ इस प्रकार होगा-

w के कुछ मानों को छोड़कर z में d विशिष्ट समाधान हैं, जिसे हम महत्वपूर्ण मूल्य कहते हैं, जहां दो या दो से अधिक समाधान मेल खाते हैं या जहां कुछ समाधान अनंत पर बिंदु को खारिज कर दिया जाता है (अर्थात, जब हर को साफ करने के बाद समीकरण की घात घट जाती है)।

सम्मिश्र संख्या के मामले में घात एक के साथ एक परिमेय फलन एक मोबियस परिवर्तन है।

एक परिमेय फलन के ग्राफ की घात वह घात नहीं है जैसा कि ऊपर परिभाषित किया गया है, यह अंश की घात का अधिकतम और हर की घात का एक प्लस है।

कुछ संदर्भों में, जैसे कि स्पर्शोन्मुख विश्लेषण में, एक परिमेय फलन की घात अंश और हर की घात के बीच का अंतर है। नेटवर्क संश्लेषण और नेटवर्क विश्लेषण (विद्युत सर्किट) में, घात दो का एक परिमेय फलन (अर्थात, घात के दो बहुपदों का अनुपात अधिकतम दो) को अक्सर चतुर्घात फलन कहा जाता है।[2]

उदाहरण

तर्कसंगत कार्यों के उदाहरण
डिग्री का परिमेय फलन 3
डिग्री 3 का परिमेय फलन, के ग्राफ के साथ degree 3:
डिग्री का परिमेय फलन 2
डिग्री 2 का परिमेय फलन, के ग्राफ के साथ degree 3:

परिमेय फलन

पर परिभाषित नहीं है

यह स्पर्शोन्मुख है जैसा

परिमेय फलन

सभी वास्तविक संख्या ओं के लिए परिभाषित किया गया है, लेकिन सभी सम्मिश्र संख्याओं के लिए नहीं, क्योंकि यदि x का वर्गमूल था (अर्थात काल्पनिक इकाई या नकारात्मक इकाई), तो औपचारिक मूल्यांकन शून्य से विभाजन की ओर ले जाएगा:

जो कि अपरिभाषित है।

एक स्थिर फलन जैसे f(x) =π एक परिमेय फलन है क्योंकि अचर बहुपद होते हैं। फलन स्वयं परिमेय है, भले ही f(x) का मान सभी x के लिए अपरिमेय हो।

प्रत्येक बहुपद फलन, के साथ एक परिमेय फलन है। एक फ़ंक्शन जिसे इस रूप में नहीं लिखा जा सकता है, जैसे एक परिमेय फलन नहीं है।

हालांकि, "तर्कहीन" विशेषण सामान्यतः  फलनों के लिए उपयोग नहीं किये जाते है।

परिमेय फलन 0 को छोड़कर सभी x के लिए 1 के बराबर है, जहां हटाने योग्य विलक्षणता है। दो परिमेय फलनों का योग, गुणनफल या भागफल (शून्य बहुपद द्वारा भाग को छोड़कर) अपने आप में एक परिमेय फलन है। हालांकि, मानक रूप में कमी की प्रक्रिया अनजाने में ऐसी विलक्षणताओं को हटाने में परिणत हो सकती है जब तक कि सावधानी न बरती जाए। परिमेय फलन की परिभाषा का उपयोग करते हुए तुल्यता वर्ग इसके आसपास हो जाता है, क्योंकि x/x, 1/1 के बराबर है।

टेलर श्रृंखला

किसी भी परिमेय फलन की टेलर श्रेणी के गुणांक एक रेखीय पुनरावर्तन संबंध को संतुष्ट करते हैं, जो कि परिमेय फलन को एक टेलर श्रृंखला के अनिश्चित गुणांकों के साथ जोड़कर और हर के मान को खत्म करने के बाद समान पदों को एकत्रित करके पाया जा सकता है।

उदाहरण के लिए,

हर से गुणा करना और बांटना,

x की घात को समान करने के लिए योगों के सूचकांकों को समायोजित किया जाता हैं जैसे-

समान पदों का संयोजन देता है

चूंकि यह मूल टेलर श्रृंखला के अभिसरण की त्रिज्या में सभी मान x के लिए उपयुक्त है, इस प्रकार हम निम्नानुसार इसकी गणना कर सकते हैं। इस प्रकार बायीं ओर का अचर पद दायीं ओर के अचर पद के बराबर होना चाहिए, जो कि इस प्रकार है

इस प्रकार बाईं ओर x की कोई घात नहीं है इसलिए दाईं ओर के सभी गुणांक शून्य होने चाहिए, इसे हम इस प्रकार प्रदर्शित कर सकते हैं-

इसके विपरीत, कोई भी अनुक्रम जो एक रैखिक पुनरावृत्ति को संतुष्ट करता है, एक टेलर श्रृंखला के गुणांक के रूप में उपयोग किए जाने पर एक परिमेय फलन निर्धारित करता है। यह ऐसी पुनरावृत्तियों को हल करने में उपयोगी है, चूंकि आंशिक अंश अपघटन का उपयोग करके हम किसी भी उचित परिमेय फलन को 1 / (ax + b) के रूप के गुणनखंडों के योग के रूप में लिख सकते हैं। और हम इनका विस्तार ज्यामितीय श्रृंखला के रूप में भी कर सकते हैं, जो टेलर गुणांकों के लिए एक स्पष्ट सूत्र देता है; यह फलनों को उत्पन्न करने की विधि है।

अमूर्त बीजगणित और ज्यामितीय धारणा

अमूर्त बीजगणित में औपचारिक अभिव्यक्तियों को शामिल करने के लिए बहुपद की अवधारणा का विस्तार किया जाता है जिसमें बहुपद के गुणांक किसी भी क्षेत्र से लिए जा सकते हैं। जिसमें बहुपद के गुणांक किसी भी क्षेत्र से लिए जा सकते हैं। इस समुच्चयिंग में एक फ़ील्ड F और कुछ अनिश्चित X दिया गया है,एक परिमेय व्यंजक बहुपद वलय F[X] के भिन्नों के क्षेत्र का कोई भी अवयव है। किसी भी परिमेय व्यंजक को Q 0 वाले दो बहुपद P/Q के भागफल के रूप में लिखा जा सकता है, हालाँकि यह निरूपण अद्वितीय नहीं है।

P/Q बहुपदों P, Q, R, और S के लिए R/S के समतुल्य है, जब PS = QR है। हालाँकि, चूँकि F[X] एक अद्वितीय गुणनखंडन डोमेन है, किसी भी परिमेय अभिव्यक्ति P/Q के लिए एक अद्वितीय प्रतिनिधित्व है जिसमें P और Q सबसे कम घात के बहुपद हैं और Q को मोनिक बहुपद चुना गया है। यह उसी तरह है जैसे पूर्णांकों का एक अंश (गणित) हमेशा सामान्य कारकों को रद्द करके सबसे कम शब्दों में विशिष्ट रूप से लिखा जा सकता है।

परिमेय व्यंजकों के क्षेत्र को F(X) से दर्शाया जाता है। कहा जाता है कि यह क्षेत्र एफ पर (एक अधिक प्रवीण तत्व) एक्स द्वारा उत्पन्न (एक क्षेत्र के रूप में) उत्पन्न होता है, क्योंकि F(X) में कोई उचित उपक्षेत्र नहीं है जिसमें F और तत्व X दोनों हों।

सम्मिश्र परिमेय फलन

जूलिया समुच्चय परिमेय नक्शे के लिए समुच्चय करता है

सम्मिश्र विश्लेषण में, एक परिमेय फलन

सम्मिश्र गुणांक वाले दो बहुपदों का अनुपात है, जहाँ Q शून्य बहुपद नहीं है और P और Q का कोई उभयनिष्ठ गुणनखंड नहीं है (यह f को अनिश्चित मान 0/0 लेने से बचाता है)।

f का प्रांत सम्मिश्र संख्याओं का समुच्चय है

जैसे कि

प्रत्येक परिमेय फलन को स्वाभाविक रूप से एक फलन तक बढ़ाया जा सकता है जिसका डोमेन और रेंज संपूर्ण रीमैन क्षेत्र ( सम्मिश्र प्रक्षेप्य रेखा ) है। परिमेय फलन मेरोमॉर्फिक फ़ंक्शन के प्रतिनिधि उदाहरण हैं। रीमैन क्षेत्र पर परिमेय फलनों (नक्शे)[3] का पुनरावृत्ति असतत गतिशील प्रणाली बनाता है।

एक बीजीय विविधता पर एक परिमेय फलन की धारणा

बहुपदों की तरह, परिमेय व्यंजकों को भी n अनिश्चित X1,..., Xn, के लिए सामान्यीकृत किया जा सकता है। F[X1,..., Xn] के भिन्नों का क्षेत्र लेकर, जिसे F(X1,..., Xn) द्वारा दर्शाया जाता है। बीजगणितीय ज्यामिति में परिमेय फलन के अमूर्त विचार का एक विस्तारित संस्करण प्रयोग किया जाता है। वहां एक बीजीय किस्म वी का फलन क्षेत्र वी के समन्वय रिंग के अंशों के क्षेत्र के रूप में बनता है (अधिक सटीक रूप से कहा जाता है, एक ज़रिस्की-घने ​​एफ़िन ओपन समुच्चय वी में)। इसके तत्वों f को नियमित फलन माना जाता है जो गैर-रिक्त खुले समुच्चय यू पर बीजगणितीय ज्यामिति के अर्थ में है, और इसे प्रक्षेप्य रेखा के रूपवाद के रूप में भी देखा जा सकता है।

आवेदन

परिमेय फलनों का उपयोग संख्यात्मक विश्लेषण में फलनों के प्रक्षेप और सन्निकटन के लिए किया जाता है, उदाहरण के लिए हेनरी पाडे द्वारा पेश किए गए पाडे सन्निकटन। परिमेय फलनों के संदर्भ में अनुमान कंप्यूटर बीजगणित प्रणालियों और अन्य संख्यात्मक सॉफ़्टवेयर के लिए उपयुक्त हैं। बहुपदों की तरह, उनका सीधा मूल्यांकन किया जा सकता है, और साथ ही वे बहुपदों की तुलना में अधिक विविध व्यवहार व्यक्त करते हैं। विज्ञान और अभियंत्रिकी में अधिक सम्मिश्र समीकरणों को अनुमानित या मॉडल करने के लिए परिमेय फलनों का उपयोग किया जाता है जिसमें भौतिकी में क्षेत्र और बल, विश्लेषणात्मक रसायन विज्ञान में स्पेक्ट्रोस्कोपी, जैव रसायन में एंजाइम ऊष्मागतिकी, इलेक्ट्रॉनिक परिपथ, वायुगतिकी, विवो में दवा सांद्रता, परमाणुओं और अणुओं के लिए तरंग फलन, छवि संकल्प में सुधार के लिए प्रकाशिकी और फोटोग्राफी, और ध्वनिकी और ध्वनि शामिल हैं।[citation needed]

सिग्नल प्रोसेसिंग में, लाप्लास ट्रांसफॉर्म (निरंतर सिस्टम के लिए) या z-परिणत (असतत समय सिस्टम के लिए) आमतौर पर इस्तेमाल किए जाने वाले रैखिक समय अपरिवर्तनीय सिस्टम (फिल्टर) के आवेग प्रतिक्रिया के साथ अनंत आवेग प्रतिक्रिया सम्मिश्र संख्याओं पर परिमेय फलन हैं।

यह भी देखें

संदर्भ

  1. Martin J. Corless, Art Frazho, Linear Systems and Control, p. 163, CRC Press, 2003 ISBN 0203911377.
    • Malcolm W. Pownall, Functions and Graphs: Calculus Preparatory Mathematics, p. 203, Prentice-Hall, 1983 ISBN 0133323048.

  2. Glisson, Tildon H., Introduction to Circuit Analysis and Design, Springer, 2011 ISBN ISBN 9048194431.
  3. Iteration of Rational Functions by Omar Antolín Camarena

बाहरी संबंध