[[Category: बहुपदों]] [[Category: ऑर्थोगोनल बहुपद]] [[Category: विशेष हाइपरज्यामितीय कार्य]]
[[Category:CS1 English-language sources (en)]]
[[Category:CS1 maint]]
[[Category: Machine Translated Page]]
[[Category:Created On 03/03/2023]]
[[Category:Created On 03/03/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:ऑर्थोगोनल बहुपद]]
[[Category:बहुपदों]]
[[Category:विशेष हाइपरज्यामितीय कार्य]]
Latest revision as of 10:18, 21 March 2023
लैगुएरे बहुपद L n(x) के जटिल रंग प्लॉट को -1 के रूप में विभाजित किया गया 9 और x के रूप में z से 4 की घात -2-2i से 2+2i तक
गणित में, एडमंड लैगुएरे (1834-1886) के नाम पर लैगुएरे बहुपद, मुख्य रूप से लैगुएरे के अंतर समीकरण के मान को प्रदर्शित करता हैं:
जो द्वितीय कोटि के रेखीय अवकल समीकरण को प्रदर्शित करता हैं। इस प्रकार यदि n गैर-ऋणात्मक पूर्णांक हो तब इस समीकरण का केवल ऐकक मान होता है। कभी-कभी लैगुएरे बहुपद नाम का उपयोग मान प्राप्त करने के लिए किया जाता है
जहाँ n गैर-ऋणात्मक पूर्णांक है।
इस प्रकार इन्हें सामान्यीकृत लैगुएरे बहुपद भी नाम दिया गया है, जैसा कि यहाँ पर इसका उपयोग करके दिखाया गया हैं। (वैकल्पिक रूप से जुड़े लैगुएरे बहुपद या, संभवतः ही कभी सोनिन बहुपद उनके आविष्कार के बाद निकोलाई याकोवलेविच सोनिन का उपयोग किया था।[1]
अधिक सामान्य लैगुएरे फ़ंक्शन के कुछ मान होते है, इस प्रकार जब n आवश्यक रूप से गैर-ऋणात्मक पूर्णांक नहीं होते हैं। तब लैगुएरे बहुपदों का उपयोग गॉसियन चतुर्भुज के रूप में संख्यात्मक रूप से पूर्णांकों की गणना करने के लिए किया जाता है।
ये बहुपद सामान्यतः L0, L1, …, बहुपद अनुक्रम द्वारा निरूपित होते हैं जिसे रॉड्रिक्स सूत्र द्वारा परिभाषित किया जा सकता है,
निम्नलिखित खंड के बंद प्रारूप का कम उपयोग किया जाता हैं। वे आंतरिक उत्पाद के संबंध में ओर्थोगोनल बहुपद को प्रकट करते हैं।
लैगुएरे बहुपदों का क्रम n! Ln शेफ़र अनुक्रम है,
कॉम्बिनेटरिक्स में किश्ती बहुपद कमोबेश लैगुएरे बहुपद के समान हैं, इस प्रकार वैरियेबल के प्राथमिक परिवर्तन तक इसे आगे के ट्रिकोमी-कार्लिट्ज़ बहुपद के रूप में उपयोग किया जाता हैं। एक इलेक्ट्रॉन परमाणु के लिए श्रोडिंगर समीकरण के मान के रेडियल भाग में लैगुएरे बहुपद क्वांटम यांत्रिकी में उत्पन्न होते हैं। वे फेज स्पेस सूत्र साधारण हार्मोनिक ऑसिलेटर में ऑसिलेटर प्रणाली के स्टैटिक विग्नर फंक्शन्स को भी वर्णन करते हैं। इस प्रकार मोर्स क्षमता और क्वांटम हार्मोनिक ऑसिलेटर उदाहरण के क्वांटम यांत्रिकी में प्रवेश करते हैं, जिसे 3 डी आइसोट्रोपिक हार्मोनिक ऑसिलेटर के रूप में प्रदर्शित किया जाता हैं।
भौतिक विज्ञान कभी-कभी लैगुएरे बहुपदों के लिए परिभाषा का उपयोग करते हैं जो n! के गुणक द्वारा यहां उपयोग की गई परिभाषा से बड़ी होती है। (इसी प्रकार कुछ भौतिक विज्ञान तथाकथित संबंधित लैगुएरे बहुपदों की कुछ भिन्न परिभाषाओं का उपयोग करते हैं।)
वास्तविक α का मान प्राप्त करने के लिए अंतर समीकरण के बहुपद मान सेट किया जाता हैं।[2]
सामान्यीकृत लैगुएरे बहुपद कहलाते हैं, या संबंधित लैगुएरे बहुपद कहलाते हैं। पहले दो बहुपदों को परिभाषित करते हुए सामान्यीकृत लेगुएरे बहुपदों को पुनरावर्ती रूप से भी परिभाषित किया जा सकता है
और फिर किसी भी के लिए निम्नलिखित ओर्थोगोनल बहुपद पुनरावृत्ति संबंधों का उपयोग करता हैं जिसके लिए k ≥ 1 का मान सेट किया जाता हैं:
सरल लैगुएरे बहुपद विशेष स्थितियाँ हैं जहाँ पर α = 0 सामान्यीकृत लैगुएरे बहुपद हैं:
जहाँ सामान्यीकृत द्विपद गुणांक है। जिसमें n पूर्णांक होते है जो फ़ंक्शन डिग्री के बहुपद n तक कम हो जाता है, इसकी वैकल्पिक अभिव्यक्ति भी की जाती है[4]
कंफ्लुएंट हाइपरज्यामेट्रिक फ़ंक्शन के संदर्भ में या दूसरा फ़ंक्शन उपयोग में लाया जाता हैं।
डिग्री के इन सामान्यीकृत लैगुएरे बहुपदों के लिए बंद रूप n है[5]
लीबनिज नियम (सामान्यीकृत उत्पाद नियम) लागू करके प्राप्त किया गया जाता हैं, रोड्रिग्स के फार्मूले से उत्पाद के विभेदन के लिए लाइबनिज की प्रमेय होती हैं।
लैगुएरे बहुपदों में विभेदक संकारक प्रतिनिधित्व होता है, जो बहुत निकट से संबंधित हर्मिट बहुपदों की तरह होता है। अर्थात् और अंतर ऑपरेटर पर विचार करें, तब का मान होता हैं।
पहले कुछ सामान्यीकृत लैगुएरे बहुपद हैं:
अग्रणी पद का गुणांक है (−1)n/n!;
स्थिर पद, जिसका मान 0 है, है
यदि α गैर-ऋणात्मक है, तो Ln(α) में n वास्तविक संख्या होती हैं, फ़ंक्शन का धनात्मक रूट (ध्यान दें कि स्टर्म श्रृंखला है), जो सभी अंतराल (गणित) में हैं
इसमें से बड़े मान के लिए बहुपदों का स्पर्शोन्मुख मान n होता हैं, किन्तु α और x > 0, द्वारा दिया गया है [6][7] और संक्षेप में
यहाँ पर दूसरी समानता निम्नलिखित पहचान द्वारा अनुसरण करती है, जो पूर्णांक i और n के लिए मान्य है, और इसकी अभिव्यक्ति से तत्काल चार्लीयर बहुपद के संदर्भ में:
तीसरी समानता के लिए इस खंड की चौथी और पाँचवीं सर्वसमिकाएँ लागू की जाती हैं।
सामान्यीकृत लैगुएरे बहुपदों के डेरिवेटिव्स
सामान्यीकृत लैगुएरे बहुपद के घात श्रेणी निरूपण में अंतर करना k क्रम की ओर जाता है।
यह विशेष स्थितियों (α = 0) को इंगित करता है, उपरोक्त सूत्र का: पूर्णांक के लिए α = k सामान्यीकृत बहुपद लिखा जा सकता है
इस क्रम के द्वारा k कभी-कभी व्युत्पन्न के लिए सामान्य कोष्ठक संकेतन के साथ भ्रम उत्पन्न करता है।
इसके अतिरिक्त, निम्नलिखित समीकरण रखती है:
जो एंटीडेरिवेटिव एकीकरण की तकनीक या कॉची के सूत्र के साथ सामान्यीकरण करता है
घातीय फंक्शन के लिए। अपूर्ण गामा फ़ंक्शन का प्रतिनिधित्व होता है
क्वांटम यांत्रिकी में
क्वांटम यांत्रिकी में हाइड्रोजन जैसे परमाणु के लिए श्रोडिंगर समीकरण गोलाकार निर्देशांक में वैरियेबल्स को अलग करके बिल्कुल मान करने योग्य बनाया जाता है। वेव फ़ंक्शन का रेडियल भाग (सामान्यीकृत) लैगुएरे बहुपद है।[11]
फ्रेंक-कॉन्डन सन्निकटन में वाइब्रोनिक युग्मन को लैगुएरे बहुपदों का उपयोग करके भी वर्णित किया जाता हैं।[12]
आर्थर एर्डेली|एर्डेली निम्नलिखित दो गुणन प्रमेय देते हैं [13]
हर्मिट बहुपदों से संबंध
सामान्यीकृत लैगुएरे बहुपद हर्मिट बहुपदों से संबंधित होता हैं:
जहाँ Hn(x) मुख्य फलन पर आधारित हर्मिट बहुपद हैं। इस प्रकार exp(−x2) को तथाकथित भौतिक विज्ञान का संस्करण माना जा सकता हैं।
इस कारण क्वांटम हार्मोनिक ऑसिलेटर के उपचार में सामान्यीकृत लैगुएरे बहुपद उत्पन्न होते हैं।
लैगुएरे बहुपदों को हाइपरज्यामितीय कार्यों के संदर्भ में परिभाषित किया जा सकता है, विशेष रूप से संगम हाइपरज्यामितीय फंक्शन के रूप में प्रदर्शित करते हैं।
जहाँ पोश्चमर प्रतीक है (जो इस स्थिति में बढ़ते फैक्टोरियल मान का प्रतिनिधित्व करता है)।
हार्डी-हिल फॉर्मूला
सामान्यीकृत लैगुएरे बहुपद हार्डी-हिल सूत्र को संतुष्ट करते हैं[14][15]
जहां बाईं ओर की श्रंखला के लिए अभिसरित होती है इस प्रकार और इसके सूत्र का उपयोग करता हैं।
(सामान्यीकृत हाइपरजियोमेट्रिक फ़ंक्शन # श्रृंखला 0F1 देखें), इसे इस रूप में भी लिखा जा सकता है
यह सूत्र हर्मिट बहुपदों के लिए मेहलर कर्नेल का सामान्यीकरण है, जिसे ऊपर दिए गए लैगुएरे और हर्मिट बहुपदों के बीच संबंधों का उपयोग करके इससे पुनर्प्राप्त किया जा सकता है।
भौतिक विज्ञान स्केलिंग कन्वेंशन
हाइड्रोजन परमाणु ऑर्बिटल्स के लिए क्वांटम वेवफंक्शन का वर्णन करने के लिए सामान्यीकृत लैगुएरे बहुपदों का उपयोग किया जाता है। इस विषय पर परिचयात्मक साहित्य में,[16][17][18] इस आलेख में प्रस्तुत स्केलिंग की तुलना में सामान्यीकृत लैगुएरे बहुपदों के लिए अलग स्केलिंग का उपयोग किया जाता है। यहाँ ली गई परिपाटी में, सामान्यीकृत लैगुएरे बहुपदों को इस रूप में व्यक्त किया जा सकता है [19]
जहाँ मिला हुआ हाइपरज्यामितीय कार्य है।
भौतिक विज्ञान साहित्य में, जैसे [18] इसके अतिरिक्त सामान्यीकृत लैगुएरे बहुपदों को इस रूप में परिभाषित किया गया है
भौतिक विज्ञान संस्करण द्वारा मानक संस्करण से संबंधित है
भौतिक विज्ञान के साहित्य में और उक्त सूत्र का प्रयोग किया जाता है, चूंकि इसकी आवृत्ति कम होती है। इस सूत्र के अनुसार लैगुएरे बहुपदों को संलग्न किया जाता है। [20][21][22]
↑D. Borwein, J. M. Borwein, R. E. Crandall, "Effective Laguerre asymptotics", SIAM J. Numer. Anal., vol. 46 (2008), no. 6, pp. 3285–3312 doi:10.1137/07068031X
↑Ratner, Schatz, Mark A., George C. (2001). रसायन विज्ञान में क्वांटम यांत्रिकी. 0-13-895491-7: Prentice Hall. pp. 90–91.{{cite book}}: CS1 maint: location (link) CS1 maint: multiple names: authors list (link)