होमोटॉपी: Difference between revisions

From Vigyanwiki
No edit summary
Line 6: Line 6:
सांस्थितिक स्थल X से सांस्थितिक स्थल Y को एक निरंतर कार्य के रूप में परिभाषित किया गया है <math>H: X \times  [0,1] \to Y</math> [[इकाई अंतराल]] [0, 1] के साथ स्थल X के [[उत्पाद टोपोलॉजी|उत्पाद सांस्थिति]] से Y तक <math>H(x,0) = f(x)</math> और <math>H(x,1) = g(x)</math> सभी के लिए <math>x \in X</math>.
सांस्थितिक स्थल X से सांस्थितिक स्थल Y को एक निरंतर कार्य के रूप में परिभाषित किया गया है <math>H: X \times  [0,1] \to Y</math> [[इकाई अंतराल]] [0, 1] के साथ स्थल X के [[उत्पाद टोपोलॉजी|उत्पाद सांस्थिति]] से Y तक <math>H(x,0) = f(x)</math> और <math>H(x,1) = g(x)</math> सभी के लिए <math>x \in X</math>.


यद्यपि हम समय के रूप में H के दूसरे [[पैरामीटर|मापदण्ड]] के विषय में सोचते हैं तो H g में g के निरंतर विरूपण का वर्णन करता है: समय 0 पर हमारे पास फलन f होता है और समय 1 पर हमारे पास फलन g होता है। हम दूसरे मापदण्ड को सर्पक नियंत्रण के रूप में भी सोच सकते हैं जो हमें f से g तक आसानी से संपर्क करने की अनुमति देता है क्योंकि सर्पक 0 से 1 तक चलता है, परन्तु इसके विपरीत।
यद्यपि हम समय के रूप में H के दूसरे [[पैरामीटर|मापदण्ड]] के विषय में सोचते हैं तो H g में g के निरंतर विरूपण का वर्णन करता है: समय 0 पर हमारे पास फलन f होता है और समय 1 पर हमारे पास फलन g होता है। हम दूसरे मापदण्ड को सर्पक नियंत्रण के रूप में भी सोच सकते हैं जो हमें f से g तक आसानी से संपर्क करने की अनुमति देता है क्योंकि सर्पक 0 से 1 तक चलता है, परन्तु इसके विपरीत है।


एक वैकल्पिक संकेतन का यह कहना है कि दो निरंतर कार्यों के बीच एक समरूपता <math>f, g: X \to Y</math> निरंतर कार्यों का एक परिवार है <math>h_t: X \to Y</math> के लिए <math>t \in [0,1]</math> ऐसा है कि <math>h_0 = f</math> और <math>h_1 = g</math>, और Map_(गणित) <math>(x, t) \mapsto h_t(x)</math> से निरन्तर है <math>X \times [0,1]</math> को <math>Y</math>. दो संस्करण समायोजन से मेल खाते हैं <math>h_t(x) = H(x,t)</math>. प्रत्येक मानचित्र की आवश्यकता के लिए पर्याप्त नहीं है <math>h_t(x)</math> निरंतर किया जाना।<ref>{{Cite web|url=https://math.stackexchange.com/questions/104515/path-homotopy-and-separately-continuous-functions|title=algebraic topology - Path homotopy and separately continuous functions|website=Mathematics Stack Exchange}}</ref>
वैकल्पिक संकेतन का यह कहना है कि दो निरंतर कार्यों के बीच एक समरूपता <math>f, g: X \to Y</math> निरंतर कार्यों का एक परिवार है <math>h_t: X \to Y</math> के लिए <math>t \in [0,1]</math> ऐसा है कि <math>h_0 = f</math> और <math>h_1 = g</math>, और Map_(गणित) <math>(x, t) \mapsto h_t(x)</math> से निरन्तर है <math>X \times [0,1]</math> को <math>Y</math>. दो संस्करण समायोजन से मेल खाते हैं <math>h_t(x) = H(x,t)</math>. प्रत्येक मानचित्र की आवश्यकता के लिए पर्याप्त नहीं है <math>h_t(x)</math> निरंतर किया जाना।<ref>{{Cite web|url=https://math.stackexchange.com/questions/104515/path-homotopy-and-separately-continuous-functions|title=algebraic topology - Path homotopy and separately continuous functions|website=Mathematics Stack Exchange}}</ref>
सजीवता जो ऊपर दाईं ओर चक्रित किया गया है, स्थूलक के दो अंतःस्थापन, f और g के बीच एक समरूपता का उदाहरण प्रदान करता है {{nowrap|1=''R''<sup>3</sup>}}. X स्थूलक है, Y है {{nowrap|1=''R''<sup>3</sup>}}, f स्थूलक से R तक कुछ निरंतर कार्य है<sup>3</sup> जो स्थूलक को डोनट आकार की अन्तःस्थापित सतह पर ले जाता है जिसके साथ सजीवता शुरू होता है; g कुछ निरंतर कार्य है जो स्थूलक को एक कॉफी-मग आकार की अन्तःस्थापित सतह पर ले जाता है। सजीवता H की छवि प्रदर्शित करता है<sub>''t''</sub>(x) मापदण्ड टी के एक समारोह के रूप में, जहां टी सजीवता चक्रण के प्रत्येक चक्र पर 0 से 1 के समय के साथ बदलता रहता है। यह रुकता है, फिर छवि प्रदर्शित करता है क्योंकि टी 1 से 0 तक भिन्न होता है, रुकता है और इस चक्र को दोहराता है।
सजीवता जो ऊपर दाईं ओर चक्रित किया गया है, स्थूलक के दो अंतःस्थापन, f और g के बीच एक समरूपता का उदाहरण प्रदान करता है {{nowrap|1=''R''<sup>3</sup>}}. X स्थूलक है, Y है {{nowrap|1=''R''<sup>3</sup>}}, f स्थूलक से R तक कुछ निरंतर कार्य है<sup>3</sup> जो स्थूलक को डोनट आकार की अन्तःस्थापित सतह पर ले जाता है जिसके साथ सजीवता शुरू होता है; g कुछ निरंतर कार्य है जो स्थूलक को एक कॉफी-मग आकार की अन्तःस्थापित सतह पर ले जाता है। सजीवता H की छवि प्रदर्शित करता है<sub>''t''</sub>(x) मापदण्ड टी के एक समारोह के रूप में, जहां टी सजीवता चक्रण के प्रत्येक चक्र पर 0 से 1 के समय के साथ बदलता रहता है। यह रुकता है, फिर छवि प्रदर्शित करता है क्योंकि टी 1 से 0 तक भिन्न होता है, रुकता है और इस चक्र को दोहराता है।


Line 17: Line 17:


== उदाहरण ==
== उदाहरण ==
* अगर <math>f, g: \R \to \R^2</math> द्वारा दिए गए हैं <math>f(x) := \left(x, x^3\right)</math> और <math>g(x) = \left(x, e^x\right)</math>, फिर नक्शा <math>H: \mathbb{R} \times [0, 1] \to \mathbb{R}^2</math> द्वारा दिए गए <math>H(x, t) = \left(x, (1 - t)x^3 + te^x\right)</math> उनके बीच एक समरूपता है।
* यदि <math>f, g: \R \to \R^2</math> द्वारा दिए गए हैं <math>f(x) := \left(x, x^3\right)</math> और <math>g(x) = \left(x, e^x\right)</math>, फिर नक्शा <math>H: \mathbb{R} \times [0, 1] \to \mathbb{R}^2</math> द्वारा दिए गए <math>H(x, t) = \left(x, (1 - t)x^3 + te^x\right)</math> उनके बीच एक समरूपता है।
* अधिक प्रायः, यदि <math>C \subseteq \mathbb{R}^n</math> [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन स्थल]] का एक [[उत्तल सेट|उत्तल समुच्चय]] सबसमुच्चय है और <math>f, g: [0, 1] \to C</math> पथ एक ही समापन बिंदु के साथ हैं, जो एक रैखिक समरूपता है<ref>{{Cite book|title=Algebraic topology|last=Allen.|first=Hatcher|date=2002|publisher=Cambridge University Press|isbn=9780521795401|location=Cambridge|pages=185|oclc=45420394}}</ref> तो सरल रेखा समस्थेयता द्वारा दिया गया
* अधिक प्रायः, यदि <math>C \subseteq \mathbb{R}^n</math> [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन स्थल]] का एक [[उत्तल सेट|उत्तल समुच्चय]] सबसमुच्चय है और <math>f, g: [0, 1] \to C</math> पथ एक ही समापन बिंदु के साथ हैं, जो एक रैखिक समरूपता है<ref>{{Cite book|title=Algebraic topology|last=Allen.|first=Hatcher|date=2002|publisher=Cambridge University Press|isbn=9780521795401|location=Cambridge|pages=185|oclc=45420394}}</ref> तो सरल रेखा समस्थेयता द्वारा दिया गया
*: <math>\begin{align}
*: <math>\begin{align}
Line 33: Line 33:
दो सांस्थितिक स्थल X और Y दिए गए हैं, X और Y के बीच एक 'समस्थेयता समतुल्यता' निरंतर मानचित्र की एक जोड़ी है {{nowrap|1=''f'' : ''X'' → ''Y''}} और {{nowrap|1=''g'' : ''Y'' → ''X''}}, ऐसा है कि {{nowrap|1=''g''&thinsp;∘&thinsp;''f''}} पहचान मानचित्र id<sub>''X''</sub>  के लिए समस्थानी है<sub>''X''</sub> और {{nowrap|1=''f''&thinsp;∘&thinsp;''g''}} आईडी के लिए समस्थानी है<sub>''Y''</sub>. यदि ऐसी कोई जोड़ी मौजूद है, तो X और Y को 'समरूपता समतुल्य' या समान 'समरूपता प्रकार' कहा जाता है। सहज रूप से, दो रिक्त स्थान X और Y समस्थेयता समतुल्य हैं यद्यपि उन्हें झुकने, सिकुड़ने और संचालन के विस्तार से एक दूसरे में परिवर्तित किया जा सकता है। रिक्त स्थान जो समस्थेयता-एक बिंदु के समतुल्य होते हैं, संविदात्मक कहलाते हैं।
दो सांस्थितिक स्थल X और Y दिए गए हैं, X और Y के बीच एक 'समस्थेयता समतुल्यता' निरंतर मानचित्र की एक जोड़ी है {{nowrap|1=''f'' : ''X'' → ''Y''}} और {{nowrap|1=''g'' : ''Y'' → ''X''}}, ऐसा है कि {{nowrap|1=''g''&thinsp;∘&thinsp;''f''}} पहचान मानचित्र id<sub>''X''</sub>  के लिए समस्थानी है<sub>''X''</sub> और {{nowrap|1=''f''&thinsp;∘&thinsp;''g''}} आईडी के लिए समस्थानी है<sub>''Y''</sub>. यदि ऐसी कोई जोड़ी मौजूद है, तो X और Y को 'समरूपता समतुल्य' या समान 'समरूपता प्रकार' कहा जाता है। सहज रूप से, दो रिक्त स्थान X और Y समस्थेयता समतुल्य हैं यद्यपि उन्हें झुकने, सिकुड़ने और संचालन के विस्तार से एक दूसरे में परिवर्तित किया जा सकता है। रिक्त स्थान जो समस्थेयता-एक बिंदु के समतुल्य होते हैं, संविदात्मक कहलाते हैं।


=== समस्थेयता तुल्यता बनाम [[होमियोमोर्फिज्म]] ===
=== समस्थेयता तुल्यता बनाम होमियोमोर्फिज्म ===
होमोमोर्फिज्म समस्थेयता तुल्यता का एक विशेष मामला है, जिसमें {{nowrap|1=''g''&thinsp;∘&thinsp;''f''}} पहचान मानचित्र id<sub>''X''</sub> के बराबर है और {{nowrap|1=''f''&thinsp;∘&thinsp;''g''}} id<sub>''Y''</sub> के बराबर है.<ref>Archived at [https://ghostarchive.org/varchive/youtube/20211211/XxFGokyYo6g Ghostarchive]{{cbignore}} and the [https://web.archive.org/web/20200829013025/https://www.youtube.com/watch?v=XxFGokyYo6g&gl=US&hl=en Wayback Machine]{{cbignore}}: {{Cite web|last=Albin|first=Pierre|date=2019|title=History of algebraic topology|website=[[YouTube]] |url=https://www.youtube.com/watch?v=XxFGokyYo6g}}{{cbignore}}</ref>{{Rp|0:53:00}} इसलिए, यदि X और Y होमियोमॉर्फिक हैं तो वे समस्थेयता-समतुल्य हैं, परन्तु विपरीत सत्य नहीं है। कुछ उदाहरण:
होमोमोर्फिज्म समस्थेयता तुल्यता का एक विशेष मामला है, जिसमें {{nowrap|1=''g''&thinsp;∘&thinsp;''f''}} पहचान मानचित्र id<sub>''X''</sub> के बराबर है और {{nowrap|1=''f''&thinsp;∘&thinsp;''g''}} id<sub>''Y''</sub> के बराबर है.<ref>Archived at [https://ghostarchive.org/varchive/youtube/20211211/XxFGokyYo6g Ghostarchive]{{cbignore}} and the [https://web.archive.org/web/20200829013025/https://www.youtube.com/watch?v=XxFGokyYo6g&gl=US&hl=en Wayback Machine]{{cbignore}}: {{Cite web|last=Albin|first=Pierre|date=2019|title=History of algebraic topology|website=[[YouTube]] |url=https://www.youtube.com/watch?v=XxFGokyYo6g}}{{cbignore}}</ref>{{Rp|0:53:00}} इसलिए, यदि X और Y होमियोमॉर्फिक हैं तो वे समस्थेयता-समतुल्य हैं, परन्तु विपरीत सत्य नहीं है। कुछ उदाहरण:


Line 44: Line 44:
** प्रायः अधिक, <math>\mathbb{R}^n-\{ 0\} \simeq S^{n-1}</math>.
** प्रायः अधिक, <math>\mathbb{R}^n-\{ 0\} \simeq S^{n-1}</math>.
* कोई [[फाइबर बंडल]] <math>\pi: E \to B</math> तंतुओं के साथ <math>F_b</math> समस्थेयता एक बिंदु के बराबर समस्थेयता समतुल्य कुल और आधार स्थान है। यह पिछले दो उदाहरणों को सामान्यीकृत करता है <math>\pi:\mathbb{R}^n - \{0\} \to S^{n-1}</math>फाइबर के साथ फाइबर बंडल है <math>\mathbb{R}_{>0}</math>.
* कोई [[फाइबर बंडल]] <math>\pi: E \to B</math> तंतुओं के साथ <math>F_b</math> समस्थेयता एक बिंदु के बराबर समस्थेयता समतुल्य कुल और आधार स्थान है। यह पिछले दो उदाहरणों को सामान्यीकृत करता है <math>\pi:\mathbb{R}^n - \{0\} \to S^{n-1}</math>फाइबर के साथ फाइबर बंडल है <math>\mathbb{R}_{>0}</math>.
* प्रत्येक [[वेक्टर बंडल]] एक फाइबर बंडल है जिसमें एक बिंदु के बराबर फाइबर समस्थेयता होता है।
* प्रत्येक [[वेक्टर बंडल|दिष्‍ट बंडल]] एक फाइबर बंडल है जिसमें एक बिंदु के बराबर फाइबर समस्थेयता होता है।
* <math>\mathbb{R}^n - \mathbb{R}^k \simeq S^{n-k-1}</math> किसी के लिए <math>0 \le k < n</math>, लेखन से <math>\mathbb{R}^n - \mathbb{R}^k</math> फाइबर बंडल के कुल स्थान के रूप में <math>\mathbb{R}^k \times (\mathbb{R}^{n-k}-\{0\})\to (\mathbb{R}^{n-k}-\{0\})</math>, फिर उपरोक्त समस्थेयता समकक्षों को लागू करना।
* <math>\mathbb{R}^n - \mathbb{R}^k \simeq S^{n-k-1}</math> किसी के लिए <math>0 \le k < n</math>, लेखन से <math>\mathbb{R}^n - \mathbb{R}^k</math> फाइबर बंडल के कुल स्थान के रूप में <math>\mathbb{R}^k \times (\mathbb{R}^{n-k}-\{0\})\to (\mathbb{R}^{n-k}-\{0\})</math>, फिर उपरोक्त समस्थेयता समकक्षों को लागू करना।
* यदि एक उपसमुच्चय <math>A</math> एक सीडब्ल्यू परिसर की <math>X</math> सिकुड़ा हुआ है, फिर [[भागफल स्थान (टोपोलॉजी)|भागफल स्थान (सांस्थिति)]] <math>X/A</math> समस्थेयता के बराबर है <math>X</math>.<ref>{{Cite book|title=Algebraic topology|last=Allen.|first=Hatcher|date=2002|publisher=Cambridge University Press|isbn=9780521795401|location=Cambridge|pages=11|oclc=45420394}}</ref>
* यदि उपसमुच्चय <math>A</math> एक सीडब्ल्यू परिसर की <math>X</math> सिकुड़ा हुआ है, फिर [[भागफल स्थान (टोपोलॉजी)|भागफल स्थान (सांस्थिति)]] <math>X/A</math> समस्थेयता के बराबर है <math>X</math>.<ref>{{Cite book|title=Algebraic topology|last=Allen.|first=Hatcher|date=2002|publisher=Cambridge University Press|isbn=9780521795401|location=Cambridge|pages=11|oclc=45420394}}</ref>
* एक विरूपण प्रत्यावर्तन एक समस्थेयता तुल्यता है।
* एक विरूपण प्रत्यावर्तन एक समस्थेयता तुल्यता है।


=== अशक्त-समरूपता ===
=== अशक्त-समरूपता ===
एक फलन f को 'अशक्त-समरूपता' कहा जाता है {{anchor|null homotopic}} अगर यह निरंतर कार्य के लिए समस्थानी है। (f से एक स्थिर कार्य के लिए समस्थेयता को कभी-कभी 'नल-समस्थेयता' कहा जाता है।) उदाहरण के लिए, [[यूनिट सर्कल|इकाई सर्कल]] एस से एक नक्शा f<sup>किसी भी स्थान के लिए 1</sup> X अशक्त-समस्थानी है जब इसे इकाई चक्र D से मानचित्र पर लगातार बढ़ाया जा सकता है<sup>2</sup> से X जो सीमा पर f से सहमत है।
एक फलन f को 'अशक्त-समरूपता' कहा जाता है {{anchor|null homotopic}} यदि यह निरंतर कार्य के लिए समस्थानी है। (f से एक स्थिर कार्य के लिए समस्थेयता को कभी-कभी 'नल-समस्थेयता' कहा जाता है।) उदाहरण के लिए, [[यूनिट सर्कल|इकाई सर्कल]] एस से एक नक्शा f<sup>किसी भी स्थान के लिए 1</sup> X अशक्त-समस्थानी है जब इसे इकाई चक्र D से मानचित्र पर लगातार बढ़ाया जा सकता है<sup>2</sup> से X जो सीमा पर f से सहमत है।


यह इन परिस्थानी होभाषाओं से अनुसरण करता है कि एक स्थान एक्स सिकुड़ा हुआ है अगर और केवल अगर एक्स से स्वयं के लिए पहचान मानचित्र - जो हमेशा एक समस्थेयता तुल्यता है - अशक्त-समस्थानी है।
यह इन परिस्थानी होभाषाओं से अनुसरण करता है कि एक स्थान एक्स सिकुड़ा हुआ है यदि और केवल यदि एक्स से स्वयं के लिए पहचान मानचित्र - जो हमेशा एक समस्थेयता तुल्यता है - अशक्त-समस्थानी है।


== अपरिवर्तन ==
== अपरिवर्तन ==
समस्थेयता तुल्यता महत्वपूर्ण है क्योंकि बीजगणितीय सांस्थिति में कई अवधारणाएं समस्थेयता अपरिवर्तनीय हैं, अर्थात, वे समस्थेयता तुल्यता के संबंध का सम्मान करते हैं। उदाहरण के लिए, यदि ''X'' और ''Y'' समरूप समतुल्य स्थान हैं, तो:
समस्थेयता तुल्यता महत्वपूर्ण है क्योंकि बीजगणितीय सांस्थिति में कई अवधारणाएं समस्थेयता अपरिवर्तनीय हैं, अर्थात, वे समस्थेयता तुल्यता के संबंध का सम्मान करते हैं। उदाहरण के लिए, यदि ''X'' और ''Y'' समरूप समतुल्य स्थान हैं, तो:
* ''X'' [[जुड़ा हुआ स्थान]] है|पथ-कनेक्टेड अगर और केवल अगर ''Y'' है।
* ''X'' [[जुड़ा हुआ स्थान]] है|पथ-कनेक्टेड यदि और केवल यदि ''Y'' है।
* ''X'' [[बस जुड़ा हुआ है]] अगर और केवल अगर ''Y'' है।
* ''X'' [[बस जुड़ा हुआ है]] यदि और केवल यदि ''Y'' है।
* (एकवचन) सजातीय (गणित) और '' एक्स '' और '' वाई '' के [[कोहोलॉजी समूह|कोहोलॉg समूह]] [[समूह समरूपता]] हैं।
* (एकवचन) सजातीय (गणित) और '' एक्स '' और '' वाई '' के [[कोहोलॉजी समूह|कोहोलॉg समूह]] [[समूह समरूपता]] हैं।
* यदि ''X'' और ''Y'' पाथ-कनेक्टेड हैं, तो ''X'' और ''Y'' के [[मौलिक समूह]] आइसोमॉर्फिक हैं, और इसलिए उच्च समरूप समूह हैं। (पथ-जुड़ाव धारणा के बिना, किसी के पास π है<sub>1</sub>(एक्स, -एक्स<sub>0</sub>) तुल्याकारी से π<sub>1</sub>(वाई, f (एक्स<sub>0</sub>)) कहाँ {{nowrap|1=''f'' : ''X'' → ''Y''}} एक समरूपता तुल्यता है और {{nowrap|1=''x''<sub>0</sub> &isin; ''X''.)}}
* यदि ''X'' और ''Y'' पाथ-कनेक्टेड हैं, तो ''X'' और ''Y'' के [[मौलिक समूह]] आइसोमॉर्फिक हैं, और इसलिए उच्च समरूप समूह हैं। (पथ-जुड़ाव धारणा के बिना, किसी के पास π है<sub>1</sub>(एक्स, -एक्स<sub>0</sub>) तुल्याकारी से π<sub>1</sub>(वाई, f (एक्स<sub>0</sub>)) कहाँ {{nowrap|1=''f'' : ''X'' → ''Y''}} एक समरूपता तुल्यता है और {{nowrap|1=''x''<sub>0</sub> &isin; ''X''.)}}
Line 86: Line 86:
समान भाषा का उपयोग समकक्ष अवधारणा के संदर्भ में किया जाता है जहां किसी के पास समानता की एक मजबूत धारणा होती है। उदाहरण के लिए, दो चिकनी अंतःस्थापन के बीच एक पथ एक चिकनी समस्थानिक है।
समान भाषा का उपयोग समकक्ष अवधारणा के संदर्भ में किया जाता है जहां किसी के पास समानता की एक मजबूत धारणा होती है। उदाहरण के लिए, दो चिकनी अंतःस्थापन के बीच एक पथ एक चिकनी समस्थानिक है।


=== [[timelike]] समस्थेयता ===
=== समस्थेयता ===
लोरेन्ट्ज़ियन मैनिफोल्ड पर, कुछ वक्रों को टाइमलाइक के रूप में प्रतिष्ठित किया जाता है (कुछ का प्रतिनिधित्व करता है जो केवल आगे बढ़ता है, पीछे नहीं, समय में, हर स्थानीय फ्रेम में)। दो [[समयबद्ध वक्र]]्स के बीच एक [[टाइमलाइक होमोटॉपी|टाइमलाइक समस्थेयता]] एक समस्थेयता है जैसे कि कर्व एक कर्व से दूसरे कर्व में निरंतर परिवर्तन के दौरान टाइमलाइक रहता है। [[लोरेंट्ज़ियन कई गुना]] पर कोई बंद टाइमलाइक कर्व (सीटीसी) एक बिंदु के लिए टाइमलाइक समस्थानी नहीं है (यानी, शून्य टाइमलाइक समस्थानी); इस तरह के कई गुना इसलिए कहा जाता है कि समयबद्ध घटता से गुणा किया जाता है। 3-गोले जैसे मैनिफोल्ड को आसानी से जोड़ा जा सकता है (किसी भी प्रकार के वक्र द्वारा), और फिर [[बंद समयबद्ध वक्र]] से गुणा किया जा सकता है।<ref>{{Cite journal|last=Monroe|first=Hunter|date=2008-11-01|title=Are Causality Violations Undesirable?|journal=Foundations of Physics|language=en|volume=38|issue=11|pages=1065–1069|doi=10.1007/s10701-008-9254-9|issn=0015-9018|arxiv=gr-qc/0609054|bibcode=2008FoPh...38.1065M|s2cid=119707350 }}</ref>
लोरेन्ट्ज़ियन मैनिफोल्ड पर, कुछ वक्रों को टाइमलाइक के रूप में प्रतिष्ठित किया जाता है (कुछ का प्रतिनिधित्व करता है जो केवल आगे बढ़ता है, पीछे नहीं, समय में, हर स्थानीय फ्रेम में)। दो [[समयबद्ध वक्र]]्स के बीच एक [[टाइमलाइक होमोटॉपी|टाइमलाइक समस्थेयता]] एक समस्थेयता है जैसे कि कर्व एक कर्व से दूसरे कर्व में निरंतर परिवर्तन के दौरान टाइमलाइक रहता है। [[लोरेंट्ज़ियन कई गुना]] पर कोई बंद टाइमलाइक कर्व (सीटीसी) एक बिंदु के लिए टाइमलाइक समस्थानी नहीं है (यानी, शून्य टाइमलाइक समस्थानी); इस तरह के कई गुना इसलिए कहा जाता है कि समयबद्ध घटता से गुणा किया जाता है। 3-गोले जैसे मैनिफोल्ड को आसानी से जोड़ा जा सकता है (किसी भी प्रकार के वक्र द्वारा), और फिर [[बंद समयबद्ध वक्र]] से गुणा किया जा सकता है।<ref>{{Cite journal|last=Monroe|first=Hunter|date=2008-11-01|title=Are Causality Violations Undesirable?|journal=Foundations of Physics|language=en|volume=38|issue=11|pages=1065–1069|doi=10.1007/s10701-008-9254-9|issn=0015-9018|arxiv=gr-qc/0609054|bibcode=2008FoPh...38.1065M|s2cid=119707350 }}</ref>
== गुण ==
== गुण ==


=== भारोत्तोलन और विस्तार गुण ===
=== भारोत्तोलन और विस्तार गुण ===
अगर हमारे पास समस्थेयता है {{nowrap|1=''H'' : ''X'' &times; [0,1] &rarr; ''Y''}} और एक आवरण {{nowrap|1=''p'' : <span style="text-decoration: overline;">''Y''</span> &rarr; ''Y''}} और हमें एक नक्शा दिया जाता है {{nowrap|1=<span style="text-decoration: overline;">''h''</span><sub>0</sub> : ''X'' &rarr; <span style="text-decoration: overline;">''Y''</span>}} ऐसा है कि {{nowrap|1=''H''<sub>0</sub> = ''p'' ○ <span style="text-decoration: overline;">''h''</span><sub>0</sub>}} (<span style= text-decoration: overline; >h</span><sub>0</sub> h की [[लिफ्ट (गणित)]] कहलाती है<sub>0</sub>), तो हम सभी H को एक मानचित्र पर उठा सकते हैं {{nowrap|1=<span style="text-decoration: overline;">''H''</span> : ''X'' &times; [0,&thinsp;1] &rarr; <span style="text-decoration: overline;">''Y''</span>}} ऐसा है कि {{nowrap|1=''p'' ○ <span style="text-decoration: overline;">''H''</span> = ''H''.}} समस्थेयता उठाने की संपत्ति का उपयोग फ़िब्रेशन को चिह्नित करने के लिए किया जाता है।
यदि हमारे पास समस्थेयता है {{nowrap|1=''H'' : ''X'' &times; [0,1] &rarr; ''Y''}} और एक आवरण {{nowrap|1=''p'' : <span style="text-decoration: overline;">''Y''</span> &rarr; ''Y''}} और हमें एक नक्शा दिया जाता है {{nowrap|1=<span style="text-decoration: overline;">''h''</span><sub>0</sub> : ''X'' &rarr; <span style="text-decoration: overline;">''Y''</span>}} ऐसा है कि {{nowrap|1=''H''<sub>0</sub> = ''p'' ○ <span style="text-decoration: overline;">''h''</span><sub>0</sub>}} (<span style= text-decoration: overline; >h</span><sub>0</sub> h की [[लिफ्ट (गणित)]] कहलाती है<sub>0</sub>), तो हम सभी H को एक मानचित्र पर उठा सकते हैं {{nowrap|1=<span style="text-decoration: overline;">''H''</span> : ''X'' &times; [0,&thinsp;1] &rarr; <span style="text-decoration: overline;">''Y''</span>}} ऐसा है कि {{nowrap|1=''p'' ○ <span style="text-decoration: overline;">''H''</span> = ''H''.}} समस्थेयता उठाने की संपत्ति का उपयोग फ़िब्रेशन को चिह्नित करने के लिए किया जाता है।


समस्थेयता से जुड़ी एक और उपयोगी संपत्ति [[होमोटॉपी एक्सटेंशन संपत्ति|समस्थेयता एक्सटेंशन संपत्ति]] है,
समस्थेयता से जुड़ी एक और उपयोगी संपत्ति [[होमोटॉपी एक्सटेंशन संपत्ति|समस्थेयता एक्सटेंशन संपत्ति]] है,
Line 130: Line 128:
*{{Springer |title=Isotopy (in topology) |id=p/i052940}}
*{{Springer |title=Isotopy (in topology) |id=p/i052940}}
*{{cite book |last=Spanier |first=Edwin |title=बीजगणितीय टोपोलॉजी|date=December 1994 |publisher=Springer |isbn=978-0-387-94426-5}}
*{{cite book |last=Spanier |first=Edwin |title=बीजगणितीय टोपोलॉजी|date=December 1994 |publisher=Springer |isbn=978-0-387-94426-5}}
{{Topology}}


{{Authority control}}
{{Authority control}}

Revision as of 16:08, 20 February 2023

ऊपर दिखाए गए दो धराशायी पथ (सांस्थिति) उनके समापन बिंदुओं के सापेक्ष समस्थानी हैं। सजीवता एक संभावित समरूपता का प्रतिनिधित्व करता है।

सांस्थितिकी में, गणित की शाखा, एक सांस्थितिकी स्थल से दूसरे में दो निरंतर कार्यो को समस्थानी कहा जाता हैं यद्यपि एक को दूसरे में निरंतर विकृत किया जा सकता है, तो ऐसी विकृति को दो कार्यों के बीच समस्थेयता कहा जाता है । समस्थेयता का एक उल्लेखनीय उपयोग समस्थेयता समूहों और कोसमस्थेयता समूहों की परिभाषा है,जो बीजगणितीय सांस्थितिकी में महत्वपूर्ण व् अपरिवर्तनीय है[1]

कार्यप्रणाली में, कुछ स्थानों के साथ समरूपता का उपयोग करने में तकनीकी कठिनाइयाँ हैं। बीजगणितीय सांस्थितिकीय सघन रूप से उत्पन्न रिक्त स्थान, सीडब्ल्यू परिसरों या वर्णक्रम के साथ काम करते हैं।

औपचारिक परिभाषा

आर में स्थूलक्र्स के दो अंतःस्थापन के बीच एक समरूपता3: एक डोनट की सतह के रूप में और एक कॉफी मग की सतह के रूप में। यह भी एक #आइसोटोपी का उदाहरण है।

औपचारिक रूप से, से दो निरंतर फलन f और g के बीच एक समरूपता

सांस्थितिक स्थल X से सांस्थितिक स्थल Y को एक निरंतर कार्य के रूप में परिभाषित किया गया है इकाई अंतराल [0, 1] के साथ स्थल X के उत्पाद सांस्थिति से Y तक और सभी के लिए .

यद्यपि हम समय के रूप में H के दूसरे मापदण्ड के विषय में सोचते हैं तो H g में g के निरंतर विरूपण का वर्णन करता है: समय 0 पर हमारे पास फलन f होता है और समय 1 पर हमारे पास फलन g होता है। हम दूसरे मापदण्ड को सर्पक नियंत्रण के रूप में भी सोच सकते हैं जो हमें f से g तक आसानी से संपर्क करने की अनुमति देता है क्योंकि सर्पक 0 से 1 तक चलता है, परन्तु इसके विपरीत है।

वैकल्पिक संकेतन का यह कहना है कि दो निरंतर कार्यों के बीच एक समरूपता निरंतर कार्यों का एक परिवार है के लिए ऐसा है कि और , और Map_(गणित) से निरन्तर है को . दो संस्करण समायोजन से मेल खाते हैं . प्रत्येक मानचित्र की आवश्यकता के लिए पर्याप्त नहीं है निरंतर किया जाना।[2] सजीवता जो ऊपर दाईं ओर चक्रित किया गया है, स्थूलक के दो अंतःस्थापन, f और g के बीच एक समरूपता का उदाहरण प्रदान करता है R3. X स्थूलक है, Y है R3, f स्थूलक से R तक कुछ निरंतर कार्य है3 जो स्थूलक को डोनट आकार की अन्तःस्थापित सतह पर ले जाता है जिसके साथ सजीवता शुरू होता है; g कुछ निरंतर कार्य है जो स्थूलक को एक कॉफी-मग आकार की अन्तःस्थापित सतह पर ले जाता है। सजीवता H की छवि प्रदर्शित करता हैt(x) मापदण्ड टी के एक समारोह के रूप में, जहां टी सजीवता चक्रण के प्रत्येक चक्र पर 0 से 1 के समय के साथ बदलता रहता है। यह रुकता है, फिर छवि प्रदर्शित करता है क्योंकि टी 1 से 0 तक भिन्न होता है, रुकता है और इस चक्र को दोहराता है।

गुण

निरंतर कार्य f और g को समस्थानी कहा जाता है यदि ऊपर बताए गए के अनुसार f को g पर ले जाने वाला समस्थेयता H है।समना X से Y तक सभी निरंतर कार्यों के समुच्चय पर एक तुल्यता संबंध है। यह समस्थेयता संबंध निम्नलिखित अर्थों में कार्य रचना के अनुकूल है: यदि f1, g1 : XY समस्थानी हैं, और f2, g2 : YZ समस्थानी हैं, तो उनकी रचनाएँ f2 ∘ f1 और g2 ∘ g1 : XZ समस्थानी हैं।

उदाहरण

  • यदि द्वारा दिए गए हैं और , फिर नक्शा द्वारा दिए गए उनके बीच एक समरूपता है।
  • अधिक प्रायः, यदि यूक्लिडियन स्थल का एक उत्तल समुच्चय सबसमुच्चय है और पथ एक ही समापन बिंदु के साथ हैं, जो एक रैखिक समरूपता है[3] तो सरल रेखा समस्थेयता द्वारा दिया गया
    • माना इकाई n-चक्र पर परिचय फलन हो; अर्थात समुच्चय . होने देना निरंतर कार्य हो जो सभी बिंदु को मूल स्थान पर भेजता है। तब निम्नलिखित से उनके बीच एक समरूपता होती है :


समस्थेयता तुल्यता

दो सांस्थितिक स्थल X और Y दिए गए हैं, X और Y के बीच एक 'समस्थेयता समतुल्यता' निरंतर मानचित्र की एक जोड़ी है f : XY और g : YX, ऐसा है कि g ∘ f पहचान मानचित्र idX के लिए समस्थानी हैX और f ∘ g आईडी के लिए समस्थानी हैY. यदि ऐसी कोई जोड़ी मौजूद है, तो X और Y को 'समरूपता समतुल्य' या समान 'समरूपता प्रकार' कहा जाता है। सहज रूप से, दो रिक्त स्थान X और Y समस्थेयता समतुल्य हैं यद्यपि उन्हें झुकने, सिकुड़ने और संचालन के विस्तार से एक दूसरे में परिवर्तित किया जा सकता है। रिक्त स्थान जो समस्थेयता-एक बिंदु के समतुल्य होते हैं, संविदात्मक कहलाते हैं।

समस्थेयता तुल्यता बनाम होमियोमोर्फिज्म

होमोमोर्फिज्म समस्थेयता तुल्यता का एक विशेष मामला है, जिसमें g ∘ f पहचान मानचित्र idX के बराबर है और f ∘ g idY के बराबर है.[4]: 0:53:00  इसलिए, यदि X और Y होमियोमॉर्फिक हैं तो वे समस्थेयता-समतुल्य हैं, परन्तु विपरीत सत्य नहीं है। कुछ उदाहरण:

  • ठोस चक्र समस्थेयता-एक बिंदु के बराबर है, क्योंकि आप चक्र को उज्जवल रेखाओं के साथ एक बिंदु पर लगातार विकृत कर सकते हैं। यद्यपि, वे होमियोमॉर्फिक नहीं हैं, क्योंकि उनके बीच कोई आपत्ति नहीं है चूंकि एक अनंत समुच्चय है, जबकि दूसरा परिमित है।
  • मोबियस पट्टी और एक मुड़ी हुई पट्टी समस्थेयता समतुल्य हैं, क्योंकि आप दोनों पट्टियों को लगातार एक वृत्त में विकृत कर सकते हैं। परन्तु वे होमियोमॉर्फिक नहीं हैं।

उदाहरण

  • समस्थेयता तुल्यता का पहला उदाहरण है एक बिंदु के साथ, निरूपित . जिस भाग की जाँच करने की आवश्यकता है वह एक समस्थेयता का अस्तित्व है बीच में और , का प्रक्षेपण उत्पत्ति पर। इसका वर्णन इस प्रकार किया जा सकता है .
  • के बीच एक समस्थेयता समानता है (द n-sphere|1-sphere) और .
    • प्रायः अधिक, .
  • कोई फाइबर बंडल तंतुओं के साथ समस्थेयता एक बिंदु के बराबर समस्थेयता समतुल्य कुल और आधार स्थान है। यह पिछले दो उदाहरणों को सामान्यीकृत करता है फाइबर के साथ फाइबर बंडल है .
  • प्रत्येक दिष्‍ट बंडल एक फाइबर बंडल है जिसमें एक बिंदु के बराबर फाइबर समस्थेयता होता है।
  • किसी के लिए , लेखन से फाइबर बंडल के कुल स्थान के रूप में , फिर उपरोक्त समस्थेयता समकक्षों को लागू करना।
  • यदि उपसमुच्चय एक सीडब्ल्यू परिसर की सिकुड़ा हुआ है, फिर भागफल स्थान (सांस्थिति) समस्थेयता के बराबर है .[5]
  • एक विरूपण प्रत्यावर्तन एक समस्थेयता तुल्यता है।

अशक्त-समरूपता

एक फलन f को 'अशक्त-समरूपता' कहा जाता है यदि यह निरंतर कार्य के लिए समस्थानी है। (f से एक स्थिर कार्य के लिए समस्थेयता को कभी-कभी 'नल-समस्थेयता' कहा जाता है।) उदाहरण के लिए, इकाई सर्कल एस से एक नक्शा fकिसी भी स्थान के लिए 1 X अशक्त-समस्थानी है जब इसे इकाई चक्र D से मानचित्र पर लगातार बढ़ाया जा सकता है2 से X जो सीमा पर f से सहमत है।

यह इन परिस्थानी होभाषाओं से अनुसरण करता है कि एक स्थान एक्स सिकुड़ा हुआ है यदि और केवल यदि एक्स से स्वयं के लिए पहचान मानचित्र - जो हमेशा एक समस्थेयता तुल्यता है - अशक्त-समस्थानी है।

अपरिवर्तन

समस्थेयता तुल्यता महत्वपूर्ण है क्योंकि बीजगणितीय सांस्थिति में कई अवधारणाएं समस्थेयता अपरिवर्तनीय हैं, अर्थात, वे समस्थेयता तुल्यता के संबंध का सम्मान करते हैं। उदाहरण के लिए, यदि X और Y समरूप समतुल्य स्थान हैं, तो:

  • X जुड़ा हुआ स्थान है|पथ-कनेक्टेड यदि और केवल यदि Y है।
  • X बस जुड़ा हुआ है यदि और केवल यदि Y है।
  • (एकवचन) सजातीय (गणित) और एक्स और वाई के कोहोलॉg समूह समूह समरूपता हैं।
  • यदि X और Y पाथ-कनेक्टेड हैं, तो X और Y के मौलिक समूह आइसोमॉर्फिक हैं, और इसलिए उच्च समरूप समूह हैं। (पथ-जुड़ाव धारणा के बिना, किसी के पास π है1(एक्स, -एक्स0) तुल्याकारी से π1(वाई, f (एक्स0)) कहाँ f : XY एक समरूपता तुल्यता है और x0X.)

सांस्थितिक रिक्त स्थान के एक बीजगणितीय अपरिवर्तनीय का एक उदाहरण जो समस्थेयता-अपरिवर्तनीय नहीं है, कॉम्पैक्ट रूप से समर्थित सजातीय है (जो मोटे तौर पर बोल रहा है, संघनन (गणित)गणित) की सजातीय, और कॉम्पैक्टिफिकेशन समस्थेयता-अपरिवर्तनीय नहीं है)।

वेरिएंट

सापेक्ष समरूपता

मौलिक समूह को परिभाषित करने के लिए, किसी को एक उप-स्थान के सापेक्ष समरूपता की धारणा की आवश्यकता होती है। ये समरूपताएं हैं जो उप-स्थान के तत्वों को स्थिर रखती हैं। औपचारिक रूप से: यदि f और g X से Y तक निरंतर मानचित्र हैं और K X का उपसमुच्चय है, तो हम कहते हैं कि ' यदि समस्थेयता मौजूद है तो 'के' के सापेक्ष 'f' और 'g' समस्थानी हैं H : X × [0, 1] → Y f और g के बीच ऐसा है कि H(k, t) = f(k) = g(k) सभी के लिए kK और t ∈ [0, 1]. साथ ही, यदि g, X से K तक एक प्रत्यावर्तन (सांस्थिति) है और f पहचान मानचित्र है, तो इसे X से K तक एक मजबूत विरूपण वापसी के रूप में जाना जाता है। जब K एक बिंदु होता है, तो 'पॉइंटेड समस्थेयता' शब्द का प्रयोग किया जाता है।

समस्थानिक

The unknot is not equivalent to the trefoil knot since one cannot be deformed into the other through a continuous path of homeomorphisms of the ambient space. Thus they are not ambient-isotopic.

यदि सांस्थितिक स्थल X से सांस्थितिक स्थल Y तक दिए गए दो निरंतर कार्य f और g अंतःस्थापन हैं, तो कोई पूछ सकता है कि क्या उन्हें 'अंतःस्थापन के माध्यम से' जोड़ा जा सकता है। यह 'आइसोटोपी' की अवधारणा को जन्म देता है, जो पहले उपयोग किए गए अंकन में एक समस्थेयता, H है, जैसा कि प्रत्येक निश्चित T के लिए, H एक अंतःस्थापन देता है।[6] परन्तु अलग, अवधारणा परिवेश समस्थानिक की है।

यह आवश्यक है कि दो अंतःस्थापन समस्थानिक हों, यह एक प्रबल आवश्यक है कि वे समस्थानी हों। उदाहरण के लिए, अंतराल [−1, 1] से f(x) = −x द्वारा परिभाषित वास्तविक संख्याओं में आरेख पहचान g(x) = x के समस्थानिक नहीं है। f से पहचान तक किसी भी समरूपता को समापन बिंदुओं का आदान-प्रदान करना होगा, जिसका अर्थ होगा कि उन्हें एक-दूसरे से 'गुजरना' होगा। इसके अतिरिक्त, f ने अंतराल के अभिविन्यास को बदल दिया है और g ने नहीं किया है, जो एक समस्थानिक के तहत असंभव है। हालाँकि, नक्शे समरूप हैं; पहचान के लिए f से एक समस्थेयता H: [−1, 1] × [0, 1] → [−1, 1] H(x, y) = 2yx − x द्वारा दिया गया है।

इकाई बॉल के दो होमोमोर्फिम्स (जो अंतःस्थापन के विशेष मामले हैं) जो सीमा पर सहमत हैं, को अलेक्जेंडर की चाल का उपयोग करके समस्थानिक दिखाया जा सकता है। इसी कारण से 'R' में इकाई चक्र का मानचित्र2 f(x, y) = (−x, −y) द्वारा परिभाषित मूल बिंदु के चारों ओर 180-डिग्री घुमाव के लिए समस्थानिक है, और इसलिए पहचान मानचित्र और f समस्थानिक हैं क्योंकि वे घूर्णन द्वारा जुड़े हो सकते हैं।

ज्यामितीय सांस्थिति में - उदाहरण के लिए गाँठ सिद्धांत में - समस्थानिक के विचार का उपयोग तुल्यता संबंधों के निर्माण के लिए किया जाता है। उदाहरण के लिए, कब दो गांठों को समान माना जाना चाहिए? हम दो समुद्री मील लेते हैं, के1 और के2, त्रि-आयामी स्थल में। एक गाँठ इस स्थान में एक-आयामी स्थान, स्ट्रिंग (या सर्कल) के चक्रण का एक अंतःस्थापन है, और यह अंतःस्थापन सर्कल और इसकी छवि के बीच अंतःस्थापन स्थल में एक होमोमोर्फिज्म देता है। गाँठ तुल्यता की धारणा के पीछे सहज ज्ञान युक्त विचार यह है कि अंतःस्थापन के पथ के माध्यम से एक अंतःस्थापन को दूसरे में विकृत किया जा सकता है: टी = 0 पर शुरू होने वाला एक सतत कार्य के देता है1 अंतःस्थापन, t =  1 पर समाप्त होने पर K देता है2 अंतःस्थापन, अंतःस्थापन के अनुरूप सभी मध्यवर्ती मानों के साथ। यह आइसोटोपी की परिभाषा के अनुरूप है। इस संदर्भ में अध्ययन किया गया एक परिवेश समस्थानिक, बड़े स्थान का एक समस्थानिक है, जिसे अंतःस्थापित सबमनीफोल्ड पर इसकी क्रिया के प्रकाश में माना जाता है। नॉट्स के1 और के2 समतुल्य माना जाता है जब एक परिवेश समस्थानिक होता है जो K को स्थानांतरित करता है1 कश्मीर के लिए2. यह सामयिक श्रेणी में उपयुक्त परिभाषा है।

समान भाषा का उपयोग समकक्ष अवधारणा के संदर्भ में किया जाता है जहां किसी के पास समानता की एक मजबूत धारणा होती है। उदाहरण के लिए, दो चिकनी अंतःस्थापन के बीच एक पथ एक चिकनी समस्थानिक है।

समस्थेयता

लोरेन्ट्ज़ियन मैनिफोल्ड पर, कुछ वक्रों को टाइमलाइक के रूप में प्रतिष्ठित किया जाता है (कुछ का प्रतिनिधित्व करता है जो केवल आगे बढ़ता है, पीछे नहीं, समय में, हर स्थानीय फ्रेम में)। दो समयबद्ध वक्र्स के बीच एक टाइमलाइक समस्थेयता एक समस्थेयता है जैसे कि कर्व एक कर्व से दूसरे कर्व में निरंतर परिवर्तन के दौरान टाइमलाइक रहता है। लोरेंट्ज़ियन कई गुना पर कोई बंद टाइमलाइक कर्व (सीटीसी) एक बिंदु के लिए टाइमलाइक समस्थानी नहीं है (यानी, शून्य टाइमलाइक समस्थानी); इस तरह के कई गुना इसलिए कहा जाता है कि समयबद्ध घटता से गुणा किया जाता है। 3-गोले जैसे मैनिफोल्ड को आसानी से जोड़ा जा सकता है (किसी भी प्रकार के वक्र द्वारा), और फिर बंद समयबद्ध वक्र से गुणा किया जा सकता है।[7]

गुण

भारोत्तोलन और विस्तार गुण

यदि हमारे पास समस्थेयता है H : X × [0,1] → Y और एक आवरण p : YY और हमें एक नक्शा दिया जाता है h0 : XY ऐसा है कि H0 = ph0 (h0 h की लिफ्ट (गणित) कहलाती है0), तो हम सभी H को एक मानचित्र पर उठा सकते हैं H : X × [0, 1] → Y ऐसा है कि pH = H. समस्थेयता उठाने की संपत्ति का उपयोग फ़िब्रेशन को चिह्नित करने के लिए किया जाता है।

समस्थेयता से जुड़ी एक और उपयोगी संपत्ति समस्थेयता एक्सटेंशन संपत्ति है, जो कुछ समुच्चय के सबसमुच्चय से समुच्चय तक दो कार्यों के बीच एक समस्थेयता के विस्तार की विशेषता है। [[cofibration]] से निपटने के दौरान यह उपयोगी है।

समूह

दो कार्यों के संबंध के बाद से एक उपसमष्टि के सापेक्ष समस्थानी होना एक तुल्यता संबंध है, हम एक निश्चित X और Y के बीच के मानचित्रों के तुल्यता वर्गों को देख सकते हैं। यदि हम तय करते हैं , इकाई अंतराल [0, 1] कार्तीय उत्पाद स्वयं के साथ n बार, और हम इसकी सीमा लेते हैं एक उप-स्थान के रूप में, तब तुल्यता वर्ग एक समूह बनाते हैं, जिसे निरूपित किया जाता है , कहाँ उप-स्थान की छवि में है .

हम एक समतुल्य वर्ग की क्रिया को दूसरे पर परिभाषित कर सकते हैं, और इस प्रकार हमें एक समूह प्राप्त होता है। इन समूहों को समस्थेयता समूह कहा जाता है। यदि , इसे मौलिक समूह भी कहा जाता है।

समस्थेयता श्रेणी

समरूपता के विचार को श्रेणी सिद्धांत की एक औपचारिक श्रेणी में बदला जा सकता है। समस्थेयता श्रेणी वह श्रेणी है जिसकी वस्तुएँ सांस्थितिक स्थल हैं, और जिनकी आकृति विज्ञान निरंतर मानचित्रों के समस्थेयता तुल्यता वर्ग हैं। इस श्रेणी में दो सांस्थितिक स्थल 'X' और 'Y' समरूप हैं यदि केवल वे समस्थेयता-समतुल्य हैं। फिर सांस्थितिक रिक्त स्थान की श्रेणी पर एक प्रचालक समस्थेयता अपरिवर्तनीय है यदि इसे समस्थेयता श्रेणी पर एक कारक के रूप में व्यक्त किया जा सकता है।

उदाहरण के लिए, सजातीय समूह एक क्रियाशील समस्थेयता अपरिवर्तनीय हैं: इसका तात्पर्य है कि यदि f और g X से Y समस्थानी हैं, तो समूह समरूपता प्रेरित सजातीय समूहों के स्तर पर 'f' और 'g' द्वारा समान हैं: Hn(f) = Hn(g): (X) → Hn (Y) सभी n के लिए। इसी तरह, यदि X और Y अतिरिक्त जुड़ाव में हैं, और f और g के बीच की समस्थेयता को इंगित किया गया है, तो समस्थेयता समूहों के स्तर पर f और g द्वारा प्रेरित समूह समरूपता भी समान हैं: πn(f) = πn(g): πn(X) → πn

अनुप्रयोग

समरूपता की अवधारणा के आधार पर, बीजगणितीय समीकरणों और अवकल समीकरणों के लिए संख्यात्मक विधियों का विकास किया गया है। बीजगणितीय समीकरणों की विधियों में समरूपता एवं निरंतरता विधि सम्मिलित है[8] विभेदक समीकरणों के विधि में समस्थेयता विश्लेषण पद्धति सम्मिलित है।

समस्थेयता सिद्धांत को सजातीय सिद्धांत के लिए एक नींव के रूप में उपयोग किया जा सकता है: समस्थेयता समतुल्यता तक X के आरेखण द्वारा स्थल X पर एक सह-समरूपता कारक का प्रतिनिधित्व करने योग्य प्रकार्यक हो सकता है। उदाहरण के लिए, किसी भी एबेलियन समूह g और किसी भी आधारित सीडब्ल्यू-परिसर X के लिए, समुच्चय X से ईलेनबर्ग-मैकलेन स्थल के आधारित आरेखों पर समस्थेयता वर्गों का n एकवचनीय सह-समरूपता समूह के साथ प्राकृतिक आपत्ति में है  का कहना है कि वर्णक्रम ईलेनबर्ग-मैकलेन स्थल का अंत वर्णक्रम G में गुणांक के साथ एकवचन सह-समरूपता के लिए स्थान का प्रतिनिधित्व कर रहा है।

यह भी देखें

संदर्भ

  1. "Homotopy | mathematics". Encyclopedia Britannica (in English). Retrieved 2019-08-17.
  2. "algebraic topology - Path homotopy and separately continuous functions". Mathematics Stack Exchange.
  3. Allen., Hatcher (2002). Algebraic topology. Cambridge: Cambridge University Press. p. 185. ISBN 9780521795401. OCLC 45420394.
  4. Archived at Ghostarchive and the Wayback Machine: Albin, Pierre (2019). "History of algebraic topology". YouTube.
  5. Allen., Hatcher (2002). Algebraic topology. Cambridge: Cambridge University Press. p. 11. ISBN 9780521795401. OCLC 45420394.
  6. Weisstein, Eric W. "Isotopy". MathWorld.
  7. Monroe, Hunter (2008-11-01). "Are Causality Violations Undesirable?". Foundations of Physics (in English). 38 (11): 1065–1069. arXiv:gr-qc/0609054. Bibcode:2008FoPh...38.1065M. doi:10.1007/s10701-008-9254-9. ISSN 0015-9018. S2CID 119707350.
  8. Allgower, E. L. (2003). Introduction to numerical continuation methods. Kurt Georg. Philadelphia: SIAM. ISBN 0-89871-544-X. OCLC 52377653.


स्रोत

श्रेणी:समरूपता सिद्धांत|* श्रेणी:सतत कार्यों का सिद्धांत श्रेणी:कई गुना के मानचित्र