परमाणु भौतिकी: Difference between revisions

From Vigyanwiki
Line 56: Line 56:


=== परमाणु स्पिन का अध्ययन ===
=== परमाणु स्पिन का अध्ययन ===
रदरफोर्ड मॉडल ने 1929 में कैलिफोर्निया इंस्टीट्यूट ऑफ टेक्नोलॉजी में फ्रेंको रसेट्टी द्वारा परमाणु स्पिन के अध्ययन तक परमाणु स्पिन के अध्ययन तक काफी अच्छा काम किया {{frac|±|1|2}}।नाइट्रोजन -14 के रदरफोर्ड मॉडल में, कुल 21 परमाणु कणों में से 20 को एक-दूसरे के स्पिन को रद्द करने के लिए जोड़ा जाना चाहिए था, और अंतिम विषम कण को एक शुद्ध स्पिन के साथ नाभिक को छोड़ देना चाहिए था {{frac|1|2}}।हालांकि, रसेटी ने खोजा कि नाइट्रोजन -14 में 1 की स्पिन थी।
रदरफोर्ड मॉडल ने 1929 में कैलिफोर्निया इंस्टीट्यूट ऑफ टेक्नोलॉजी में फ्रेंको रसेट्टी द्वारा परमाणु स्पिन के अध्ययन तक परमाणु स्पिन के अध्ययन तक काफी अच्छा काम किया {{frac|±|1|2}}।नाइट्रोजन -14 के रदरफोर्ड मॉडल में कुल 21 परमाणु कणों में से 20 को एक-दूसरे के स्पिन को रद्द करने के लिए जोड़ा जाना चाहिए था, और अंतिम विषम कण को एक शुद्ध स्पिन के साथ नाभिक को छोड़ देना चाहिए था {{frac|1|2}}।हालांकि रसेटी ने खोजा कि नाइट्रोजन -14 में 1 की स्पिन थी।


=== जेम्स चाडविक न्यूट्रॉन === को पता चलता है
{{Main|Discovery of the neutron}}
{{Main|Discovery of the neutron}}
1932 में चाडविक ने महसूस किया कि वाल्थर बोथे, हर्बर्ट बेकर, इरेन जोलियोट-क्यूरी द्वारा देखे गए विकिरण। इरने और फ्रैडिक जोलियट-क्यूरी वास्तव में प्रोटॉन के रूप में एक ही द्रव्यमान के एक तटस्थ कण के कारण थे, कि उन्होंने न्यूट्रॉन को बुलाया (इस तरह के कण की आवश्यकता के बारे में रदरफोर्ड से एक सुझाव के बाद)।<ref>{{cite journal|last=Chadwick|first=James|author-link1=James Chadwick|title=The existence of a neutron|journal=[[Proceedings of the Royal Society A]]|year=1932|volume=136|number=830|pages=692–708|doi=10.1098/rspa.1932.0112 |bibcode=1932RSPSA.136..692C}}</ref> उसी वर्ष दिमित्री इवानेंको ने सुझाव दिया कि नाभिक में कोई इलेक्ट्रॉन नहीं थे - केवल प्रोटॉन और न्यूट्रॉन - और यह कि न्यूट्रॉन स्पिन थे {{frac|1|2}} कण, जो प्रोटॉन के कारण द्रव्यमान को नहीं समझाते थे।न्यूट्रॉन स्पिन ने तुरंत नाइट्रोजन -14 के स्पिन की समस्या को हल किया, क्योंकि इस मॉडल में एक अप्रकाशित प्रोटॉन और एक अप्रकाशित न्यूट्रॉन ने प्रत्येक का एक स्पिन का योगदान दिया {{frac|1|2}} उसी दिशा में, 1 का अंतिम कुल स्पिन दे रहा है।
1932 में चाडविक ने वाल्थर बोथे, हर्बर्ट बेकर, इरेन जोलियोट-क्यूरी द्वारा देखे गए विकिरण को महसूस किया। रदरफोर्ड से एक जरुरी सुझाव के बाद इरने और फ्रैडिक जोलियट-क्यूरी प्रोटॉन के रूप में न्यूट्रॉन को एक द्रव्यमान के रूप में प्रस्तुत किया थाI  उसी वर्ष दिमित्री इवानेंको ने सुझाव दिया कि नाभिक में कोई इलेक्ट्रॉन नहीं थेI केवल प्रोटॉन और न्यूट्रॉन ही स्थित थेI न्यूट्रॉन स्पिन ने तुरंत नाइट्रोजन -14 के स्पिन की समस्या को हल किया क्योंकि इस मॉडल में एक अप्रकाशित प्रोटॉन और एक अप्रकाशित न्यूट्रॉन ने प्रत्येक का एक स्पिन की व्याख्या का समर्थन किया I


न्यूट्रॉन की खोज के साथ, वैज्ञानिक अंतिम रूप से गणना कर सकते हैं कि प्रत्येक नाभिक को बाध्यकारी ऊर्जा का क्या अंश था, जो कि प्रोटॉन और न्यूट्रॉन के साथ परमाणु द्रव्यमान की तुलना करता है, जो इसकी रचना करता है।इस तरह से परमाणु द्रव्यमान के बीच अंतर की गणना की गई।जब परमाणु प्रतिक्रियाओं को मापा गया था, तो ये 1934 के रूप में 1% के भीतर द्रव्यमान और ऊर्जा के समतुल्यता की आइंस्टीन की गणना के साथ सहमत होने के लिए पाए गए।
न्यूट्रॉन की खोज के साथ वैज्ञानिक अंतिम रूप से गणना कर सकते हैं कि प्रत्येक नाभिक में बाध्यकारी ऊर्जा का कितना अंश थाI जो कि प्रोटॉन और न्यूट्रॉन के साथ परमाणु द्रव्यमान की तुलना करता है और इसकी रचना करता है।इस तरह से परमाणु द्रव्यमान के बीच अंतर की गणना की गई।जब परमाणु प्रतिक्रियाओं को मापा गया था तो ये 1934 के पैमाने के आधार पर 1% के भीतर द्रव्यमान और आइंस्टीन की ऊर्जा के समतुल्यता की गणना के साथ सहमत होते पाए गए।


=== बड़े वेक्टर बोसोन फील्ड के प्रोका के समीकरण ===
=== बड़े वेक्टर बोसोन फील्ड के प्रोका के समीकरण ===

Revision as of 17:29, 15 August 2022

परमाणु भौतिकी भौतिक विज्ञान का एक हिस्सा है जिसमें परमाणु के विभिन्न रूपों के अध्ययन के अलावा परमाणु नाभिक और उनके घटकों की विस्तारपपूर्वक चर्चा की जाती हैI

परमाणु भौतिकी अणु भौतिकी से अलग है इन्हें आपस में मिश्रित करके असमंजस उत्पन्न नहीं करना चाहिए. अणु भौतिकी के अध्ययन में इलेक्ट्रानो से सम्बंधित विषय पर ध्यान केंद्रित किया जाता हैI

परमाणु भौतिकी में विभिन्न क्षेत्रों में नयी तरह की खोज की जा चुकी हैंI इसमें परमाणु ऊर्जा, परमाणु हथियार, परमाणु चिकित्सा और चुंबकीय अनुनाद इमेजिंग, औद्योगिक और कृषि समस्थानिक, सामग्री इंजीनियरिंग में आयन आरोपण और भूविज्ञान और पुरातत्व में रेडियोकार्बन डेटिंग शामिल हैं। इन सभी क्षेत्रों से सम्बंधित अनुप्रयोगों का अध्ययन परमाणु इंजीनियरिंग के क्षेत्र में किया जाता है।

कण भौतिकी भी परमाणु भौतिकी से विकसित या उतपन्न हुआ एक विशेष क्षेत्र हैI कण भौतिकी परमाणु खगोल भौतिकी के लिए परमाणु भौतिकी का अनुप्रयोग, ग्रहों और सितारों के आंतरिक गतिविधयों और रासायनिक तत्वों की उत्पत्ति को समझाने में महत्वपूर्ण है।

इतिहास

हेनरी बेकरेल
1920 के दशक के बाद से, क्लाउड चैंबर्स ने कण डिटेक्टरों की एक महत्वपूर्ण भूमिका निभाई और अंततः पॉज़िट्रॉन, म्यूऑन और काओन की खोज का नेतृत्व किया।

परमाणु भौतिकी का इतिहास1896 में हेनरी बेकरेल द्वारा रेडियोधर्मिता की खोज के साथ शुरू होता हैI[1] परमाणु की खोज यूरेनियम लवण में फॉस्फोरस की जांच करते समय हुई थीI [2] रेडियोधर्मिता की खोज के एक साल बाद जे. जे. थॉमसन द्वारा जब इलेक्ट्रान की खोज की गयी उस दौरान ही परमाणु की आतंरिक संरचना का पता चला थाI 20 वीं शताब्दी की शुरुआत में जे. जे.थॉमसन का प्लम पुडिंग मॉडल परमाणु मॉडल के रूप में स्वीकार किया गया था जिसमें अणु को एक चार्ज की गयी गेंद के अंतर्गत खोजा गया थाI जो नकारात्मक चार्ज छोटे छोटे इलेक्ट्रान के रूप में मौजूद थेI

इस खोज के कुछ समय के अंतराल मैरी क्यूरी, पियरे क्यूरी, अर्नेस्ट रदरफोर्ड और अन्य द्वारा रेडियोधर्मिता की बड़े पैमाने पर जांच की गईI शताब्दी के रूपांतरण तक भौतिकविदों ने परमाणु से निकलने वाले तीन प्रकार के विकिरण की भी खोज की थी जिसे उन्होंने अल्फा, बीटा और गामा विकिरण नाम दिया था। 1911 में ओटो हैन द्वारा और 1914 में जेम्स चाडविक द्वारा परमाणु प्रयोगों में पाया गया कि बीटा क्षय स्पेक्ट्रम अनिरंतर के बजाय निरंतर था। अर्थात कहने का अर्थ यह है कि इलेक्ट्रॉनों को परमाणु से ऊर्जा की एक निरंतर सीमा के साथ बाहर निकाल दिया गया थाI जबकि गामा और अल्फा जैसी नाभिकीय ऊर्जाओं में ऊर्जा की मात्रा असीमित पायी गयी थी। यह उस समय परमाणु भौतिकी के लिए एक समस्या थी क्योंकि ऐसा लगता था कि इन गिरावट में ऊर्जा का संरक्षण नहीं किया गया था। ऊर्जा का संरक्षण उस समय परमाणु भौतिकी विज्ञान के लिए एक मुख्य समस्या थी I

नाभिकीय ऊर्जा से सम्बंधित भौतिक विज्ञान की बात करें तो 1903 में मैरी और पियरे क्यूरी को रेडियोधर्मिता में उनके शोध के लिए संयुक्त रूप से नोबल पुरस्कार प्रदान किया गया था। रसायन विज्ञान में रदरफोर्ड को 1908 में तत्वों के विघटन और रेडियोधर्मी पदार्थों की जांच के लिए नोबेल पुरस्कार से सम्मानित किया गया था। नाभिकीय ऊर्जा के क्षेत्र में 1905 में अल्बर्ट आइंस्टीन ने द्रव्यमान -ऊर्जा तुल्यता की व्यापक योजना तैयार की थीI

रदरफोर्ड नाभिक को पता चलता है

अर्नेस्ट रदरफोर्ड ने रेडियम पदार्थ के प्रवाह में से α कण की गति को मंद होते देखा जिसे उन्होंने अपनी थ्योरी में बताया थाI हंस गीगर ने रॉयल सोसाइटी से वार्ता के दौरान इस काम के विस्तार की व्याख्या कीI रदरफोर्ड ने हवा, एल्यूमीनियम पन्नी और सोने की पत्ती के माध्यम से अल्फा कणों को पारित किया था। इस थ्योरी पर अधिक काम 1909 में गीगर और अर्नेस्ट मार्सडेन द्वारा प्रकाशित किया गया थाI[3] और 1910 में गीगर द्वारा इस थ्योरी को बड़े स्तर पर काफी विस्तार के साथ प्रकशित किया गया था I 1911-1912 में रदरफोर्ड ने रॉयल सोसाइटी के समक्ष प्रयोगों को समझाने और परमाणु नाभिक के नए सिद्धांत को प्रस्तावित करने के लिए योजना बनाईI

रदरफोर्ड ने नाभिकीय थ्योरी पर 1909 में एक प्रमुख प्रयोग किया था जिसका उच्च स्तरीय विश्लेषण मैनचेस्टर विश्वविद्यालय में मई 1911 में किया थाI अर्नेस्ट रदरफोर्ड के सहायक प्रोफेसर [4]जोहानिस [5]हंस गीगर और मार्सडेन ने उनके तत्वाधान में अल्फा पार्टिकल पर प्रयोग किया थाI[4] रदरफोर्ड ने अपनी टीम को निर्देश दिया कि वह कुछ ऐसी चीज़ों की तलाश करे जिसके प्रयोग को देखकर लोग चकित हो जाएं इसके अंतर्गत कुछ नाभिकीय कणों को बड़े कोणों के माध्यम से पीछे की ओर बिखेर दिया गया थाI उन्होंने इसकी तुलना टिश्यू पेपर पर बुलेट चलाने और उसे ऊपर की और उछालने के रूप में की थीI 1911 में परमाणु नाभिकीय विश्लेषण के रूप में रदरफोर्ड मॉडल का नेतृत्व किया गयाI नाभिकीय थ्योरी का उदाहरण देते हुए इसे प्रस्तुत किया गयाI इस मॉडल में (जो आधुनिक नहीं है) नाइट्रोजन -14 में 14 प्रोटॉन और 7 इलेक्ट्रॉनों (21 कुल कणों) के साथ एक नाभिक शामिल था और नाभिक 7 अधिक परिक्रमा इलेक्ट्रॉनों से घिरा हुआ था।

एडिंगटन और तारकीय परमाणु संलयन

1920 के आसपास आर्थर एडिंगटन ने सितारों में परमाणु संलयन प्रक्रियाओं की खोज और तंत्र का अनुमान लगायाI उस समय तारकीय ऊर्जा का स्रोत एक पूर्ण रहस्य थाI इस स्रोत के अंतर्गत एडिंगटन ने सही ढंग से हीलियम में हाइड्रोजन संलयन की रहस्यपूर्ण थ्योरी का अंदाज लगायाI यह उस समय के बाद से एक विशेष रूप से उल्लेखनीय विकास थाI इस थ्योरी में ज्ञात हुआ की फ्यूजन और थर्मोन्यूक्लियर एनर्जी और यहां तक कि सितारे हाइड्रोजन से बने होते हैं. इस थ्योरी के पहले तक इस खोज पर कोई विचार ही नहीं किया गया थाI

परमाणु स्पिन का अध्ययन

रदरफोर्ड मॉडल ने 1929 में कैलिफोर्निया इंस्टीट्यूट ऑफ टेक्नोलॉजी में फ्रेंको रसेट्टी द्वारा परमाणु स्पिन के अध्ययन तक परमाणु स्पिन के अध्ययन तक काफी अच्छा काम किया ±+12।नाइट्रोजन -14 के रदरफोर्ड मॉडल में कुल 21 परमाणु कणों में से 20 को एक-दूसरे के स्पिन को रद्द करने के लिए जोड़ा जाना चाहिए था, और अंतिम विषम कण को एक शुद्ध स्पिन के साथ नाभिक को छोड़ देना चाहिए था 12।हालांकि रसेटी ने खोजा कि नाइट्रोजन -14 में 1 की स्पिन थी।

1932 में चाडविक ने वाल्थर बोथे, हर्बर्ट बेकर, इरेन जोलियोट-क्यूरी द्वारा देखे गए विकिरण को महसूस किया। रदरफोर्ड से एक जरुरी सुझाव के बाद इरने और फ्रैडिक जोलियट-क्यूरी प्रोटॉन के रूप में न्यूट्रॉन को एक द्रव्यमान के रूप में प्रस्तुत किया थाI उसी वर्ष दिमित्री इवानेंको ने सुझाव दिया कि नाभिक में कोई इलेक्ट्रॉन नहीं थेI केवल प्रोटॉन और न्यूट्रॉन ही स्थित थेI न्यूट्रॉन स्पिन ने तुरंत नाइट्रोजन -14 के स्पिन की समस्या को हल किया क्योंकि इस मॉडल में एक अप्रकाशित प्रोटॉन और एक अप्रकाशित न्यूट्रॉन ने प्रत्येक का एक स्पिन की व्याख्या का समर्थन किया I

न्यूट्रॉन की खोज के साथ वैज्ञानिक अंतिम रूप से गणना कर सकते हैं कि प्रत्येक नाभिक में बाध्यकारी ऊर्जा का कितना अंश थाI जो कि प्रोटॉन और न्यूट्रॉन के साथ परमाणु द्रव्यमान की तुलना करता है और इसकी रचना करता है।इस तरह से परमाणु द्रव्यमान के बीच अंतर की गणना की गई।जब परमाणु प्रतिक्रियाओं को मापा गया था तो ये 1934 के पैमाने के आधार पर 1% के भीतर द्रव्यमान और आइंस्टीन की ऊर्जा के समतुल्यता की गणना के साथ सहमत होते पाए गए।

बड़े वेक्टर बोसोन फील्ड के प्रोका के समीकरण

अलेक्जेंड्रू प्रोका बड़े पैमाने पर वेक्टर बोसोन फील्ड समीकरणों और परमाणु बलों के मेसोनिक क्षेत्र के एक सिद्धांत को विकसित करने और रिपोर्ट करने वाला पहला था।प्रोका के समीकरणों को वोल्फगैंग पाउली के लिए जाना जाता था[6] जिन्होंने अपने नोबेल पते में समीकरणों का उल्लेख किया था, और उन्हें युकावा, वेन्टज़ेल, तकाता, साकाटा, केमेर, हेटलर, और फ्रॉहलिच के लिए भी जाना जाता था, जिन्होंने परमाणु भौतिकी में परमाणु नाभिक के एक सिद्धांत को विकसित करने के लिए प्रोका के समीकरणों की सामग्री की सराहना की।[7][8][9][10][11]


=== युकावा के मिसोनपो एस त्सुटसेट डी IEN 1935 HIKI YUKAWA[12] मजबूत बल के पहले महत्वपूर्ण सिद्धांत को यह बताने के लिए प्रस्तावित किया कि नाभिक कैसे एक साथ रहता है। युकावा इंटरैक्शन में एक आभासी कण, जिसे बाद में एक मेसन कहा जाता है, ने प्रोटॉन और न्यूट्रॉन सहित सभी नाभिकों के बीच एक बल की मध्यस्थता की। इस बल ने बताया कि क्यों नाभिक प्रोटॉन प्रतिकर्षण के प्रभाव में विघटित नहीं हुआ, और इसने यह भी स्पष्टीकरण दिया कि क्यों आकर्षक मजबूत बल में प्रोटॉन के बीच विद्युत चुम्बकीय प्रतिकर्षण की तुलना में अधिक सीमित सीमा थी। बाद में, पीआई मेसन की खोज ने इसे युकावा के कण के गुणों को दिखाया।

युकावा के कागजात के साथ, परमाणु का आधुनिक मॉडल पूरा हो गया था। परमाणु के केंद्र में न्यूट्रॉन और प्रोटॉन की एक तंग गेंद होती है, जो मजबूत परमाणु बल द्वारा एक साथ आयोजित की जाती है, जब तक कि यह बहुत बड़ा न हो। अस्थिर नाभिक अल्फा क्षय से गुजर सकता है, जिसमें वे एक ऊर्जावान हीलियम नाभिक, या बीटा क्षय का उत्सर्जन करते हैं, जिसमें वे एक इलेक्ट्रॉन (या पॉज़िट्रॉन) को बाहर निकालते हैं। इनमें से एक के बाद परिणामी नाभिक को एक उत्साहित अवस्था में छोड़ दिया जा सकता है, और इस मामले में यह उच्च-ऊर्जा फोटॉन (गामा क्षय) का उत्सर्जन करके अपने जमीनी स्थिति में फैलता है।

मजबूत और कमजोर परमाणु बलों का अध्ययन (1934 में फर्मी की बातचीत के माध्यम से एनरिको फर्मी द्वारा समझाया गया) ने भौतिकविदों को नाभिक और इलेक्ट्रॉनों को कभी भी उच्च ऊर्जा पर टकराने के लिए प्रेरित किया। यह शोध कण भौतिकी का विज्ञान बन गया, जिसका मुकुट गहना कण भौतिकी का मानक मॉडल है, जो मजबूत, कमजोर और विद्युत चुम्बकीय बलों का वर्णन करता है।

आधुनिक परमाणु भौतिकी

एक भारी नाभिक में सैकड़ों नाभिक हो सकते हैं।इसका मतलब यह है कि कुछ सन्निकटन के साथ इसे क्वांटम-मैकेनिकल के बजाय एक शास्त्रीय प्रणाली के रूप में माना जा सकता है।परिणामस्वरूप तरल-ड्रॉप मॉडल में,[13] नाभिक में एक ऊर्जा होती है जो आंशिक रूप से सतह के तनाव से और आंशिक रूप से प्रोटॉन के विद्युत प्रतिकर्षण से उत्पन्न होती है।तरल-ड्रॉप मॉडल नाभिक की कई विशेषताओं को पुन: पेश करने में सक्षम है, जिसमें द्रव्यमान संख्या के संबंध में बाध्यकारी ऊर्जा की सामान्य प्रवृत्ति, साथ ही साथ परमाणु विखंडन की घटना भी शामिल है।

इस शास्त्रीय चित्र पर सुपरइम्पोज़्ड, हालांकि, क्वांटम-मैकेनिकल इफेक्ट्स हैं, जिन्हें परमाणु शेल मॉडल का उपयोग करके वर्णित किया जा सकता है, जो मारिया गोएपर्ट मेयर द्वारा बड़े हिस्से में विकसित किया गया है[14] और जे। हंस डी। जेन्सेन।[15] न्यूट्रॉन और प्रोटॉन के कुछ जादू की संख्या के साथ नाभिक विशेष रूप से स्थिर होते हैं, क्योंकि उनके गोले भरे जाते हैं।

नाभिक के लिए अन्य अधिक जटिल मॉडल भी प्रस्तावित किए गए हैं, जैसे कि इंटरएक्टिंग बोसोन मॉडल, जिसमें न्यूट्रॉन और प्रोटॉन के जोड़े बोसोन के रूप में बातचीत करते हैं।

Ab initio विधियाँ न्यूक्लियंस और उनके इंटरैक्शन से शुरू होने वाली जमीन से कई-शरीर की समस्या को हल करने की कोशिश करती हैं।[16] परमाणु भौतिकी में वर्तमान शोध में से अधिकांश उच्च स्पिन और उत्तेजना ऊर्जा जैसी चरम परिस्थितियों में नाभिक के अध्ययन से संबंधित हैं।नाभिक में चरम आकृतियाँ भी हो सकती हैं (रग्बी गेंदों या यहां तक कि नाशपाती के समान) या चरम न्यूट्रॉन-टू-प्रोटॉन अनुपात।प्रयोगकर्ता कृत्रिम रूप से प्रेरित संलयन या न्यूक्लियर ट्रांसफर प्रतिक्रियाओं का उपयोग करके इस तरह के नाभिक बना सकते हैं, एक त्वरक से आयन बीम को नियोजित करते हैं।बहुत अधिक ऊर्जा वाले बीम के साथ बीम का उपयोग बहुत अधिक तापमान पर नाभिक बनाने के लिए किया जा सकता है, और ऐसे संकेत हैं कि इन प्रयोगों ने सामान्य परमाणु मामले से एक नए राज्य, क्वार्क -ग्लून प्लाज्मा के लिए एक चरण संक्रमण का उत्पादन किया है, जिसमें एक के साथ क्वार्क मिंगलएक और, ट्रिपल में अलग होने के बजाय वे न्यूट्रॉन और प्रोटॉन में हैं।

परमाणु क्षय

अस्सी तत्वों में कम से कम एक स्थिर आइसोटोप होता है जो कभी भी क्षय के लिए नहीं देखा जाता है, कुल लगभग 252 स्थिर न्यूक्लाइड्स की राशि।हालांकि, हजारों आइसोटोप को अस्थिर के रूप में चित्रित किया गया है।ये रेडियोसोटोप्स समय के साथ एक दूसरे के अंशों से लेकर खरबों तक के अंशों के साथ क्षय हो जाते हैं।परमाणु और न्यूट्रॉन संख्याओं के एक समारोह के रूप में एक चार्ट पर प्लॉट किया गया, न्यूक्लाइड्स की बाध्यकारी ऊर्जा बनती है जिसे स्थिरता की घाटी के रूप में जाना जाता है।स्थिर न्यूक्लाइड्स इस ऊर्जा घाटी के नीचे स्थित हैं, जबकि तेजी से अस्थिर न्यूक्लाइड घाटी की दीवारों पर झूठ बोलते हैं, अर्थात, कमजोर बाध्यकारी ऊर्जा है।

सबसे स्थिर नाभिक न्यूट्रॉन और प्रोटॉन की संरचना के कुछ श्रेणियों या संतुलन के भीतर गिरता है: बहुत कम या बहुत अधिक न्यूट्रॉन (प्रोटॉन की संख्या के संबंध में) इसे क्षय करने का कारण होगा।उदाहरण के लिए, बीटा क्षय में, एक नाइट्रोजन -16 परमाणु (7 प्रोटॉन, 9 न्यूट्रॉन) एक ऑक्सीजन -16 परमाणु (8 प्रोटॉन, 8 न्यूट्रॉन) में परिवर्तित हो जाता है[17] बनाया जा रहा है के कुछ सेकंड के भीतर। इस क्षय में नाइट्रोजन नाभिक में एक न्यूट्रॉन को एक प्रोटॉन, एक इलेक्ट्रॉन और एक एंटीन्यूट्रिनो में कमजोर बातचीत द्वारा परिवर्तित किया जाता है। तत्व को एक अन्य तत्व में प्रसारित किया जाता है, जिसमें एक अलग संख्या में प्रोटॉन होते हैं।

अल्फा क्षय में, जो आम तौर पर सबसे भारी नाभिक में होता है, रेडियोधर्मी तत्व एक हीलियम नाभिक (2 प्रोटॉन और 2 न्यूट्रॉन) को उत्सर्जित करके, एक और तत्व, प्लस हीलियम -4 देता है। कई मामलों में यह प्रक्रिया इस तरह के कई चरणों के माध्यम से जारी रहती है, जिसमें अन्य प्रकार के क्षय (आमतौर पर बीटा क्षय) शामिल हैं जब तक कि एक स्थिर तत्व नहीं बनता है।

गामा क्षय में, एक नाभिक एक उत्साहित राज्य से एक कम ऊर्जा राज्य में एक गामा किरण का उत्सर्जन करके घटता है। तत्व को प्रक्रिया में किसी अन्य तत्व में नहीं बदला जाता है (कोई परमाणु प्रसारण शामिल नहीं है)।

अन्य और अधिक विदेशी क्षय संभव है (पहला मुख्य लेख देखें)। उदाहरण के लिए, आंतरिक रूपांतरण क्षय में, एक उत्साहित नाभिक से ऊर्जा परमाणु से आंतरिक कक्षीय इलेक्ट्रॉनों में से एक को बाहर निकाल सकती है, एक प्रक्रिया में जो उच्च गति इलेक्ट्रॉनों का उत्पादन करती है, लेकिन बीटा क्षय नहीं है और (बीटा क्षय के विपरीत) एक तत्व को प्रसारित नहीं करता है दूसरे करने के लिए।

परमाणु संलयन

परमाणु संलयन में, दो कम-द्रव्यमान नाभिक एक दूसरे के साथ बहुत निकट संपर्क में आ जाते हैं ताकि मजबूत बल उन्हें फ्यूज कर दे। उन्हें फ्यूज करने के लिए नाभिक के बीच विद्युत प्रतिकर्षण को दूर करने के लिए मजबूत या परमाणु बलों के लिए बड़ी मात्रा में ऊर्जा की आवश्यकता होती है; इसलिए परमाणु संलयन केवल बहुत अधिक तापमान या उच्च दबावों पर हो सकता है। जब नाभिक फ्यूज होता है, तो बहुत बड़ी मात्रा में ऊर्जा जारी की जाती है और संयुक्त नाभिक कम ऊर्जा स्तर मानता है। निकेल -62 तक द्रव्यमान संख्या के साथ प्रति नाभिक की बाध्यकारी ऊर्जा बढ़ जाती है। सूर्य जैसे सितारों को एक हीलियम नाभिक, दो पॉज़िट्रॉन और दो न्यूट्रिनो में चार प्रोटॉन के संलयन से संचालित किया जाता है। हीलियम में हाइड्रोजन के अनियंत्रित संलयन को थर्मोन्यूक्लियर रनवे के रूप में जाना जाता है। विभिन्न संस्थानों में वर्तमान अनुसंधान में एक सीमा, उदाहरण के लिए संयुक्त यूरोपीय टोरस (जेट) और आईटीईआर, एक नियंत्रित संलयन प्रतिक्रिया से ऊर्जा का उपयोग करने के लिए आर्थिक रूप से व्यवहार्य विधि का विकास है। परमाणु संलयन हमारे अपने सूर्य सहित सभी सितारों के मूल द्वारा निर्मित ऊर्जा की उत्पत्ति (प्रकाश और अन्य विद्युत चुम्बकीय विकिरण के रूप में) है।

परमाणु विखंडन

परमाणु विखंडन संलयन के लिए रिवर्स प्रक्रिया है। निकेल -62 की तुलना में नाभिक के लिए भारी ऊर्जा प्रति नाभिक की संख्या द्रव्यमान संख्या के साथ कम हो जाती है। इसलिए ऊर्जा के लिए जारी किया जाना संभव है यदि एक भारी नाभिक दो लाइटर में अलग हो जाता है।

अल्फा क्षय की प्रक्रिया संक्षेप में एक विशेष प्रकार का सहज परमाणु विखंडन है। यह एक अत्यधिक विषम विखंडन है क्योंकि चार कण जो अल्फा कण बनाते हैं, विशेष रूप से एक दूसरे के लिए कसकर बंधे होते हैं, विशेष रूप से संभावना में इस नाभिक का उत्पादन करते हैं।

सबसे भारी नाभिक से जिनके विखंडन से मुक्त न्यूट्रॉन पैदा होते हैं, और जो आसानी से विखंडन शुरू करने के लिए न्यूट्रॉन को अवशोषित करते हैं, एक स्व-गौरवशाली प्रकार का न्यूट्रॉन-आरंभिक विखंडन प्राप्त किया जा सकता है, एक श्रृंखला प्रतिक्रिया में प्राप्त किया जा सकता है। चेन रिएक्शन को भौतिकी से पहले रसायन विज्ञान में जाना जाता था, और वास्तव में आग और रासायनिक विस्फोट जैसी कई परिचित प्रक्रियाएं रासायनिक श्रृंखला प्रतिक्रियाएं हैं। विखंडन-उत्पादित न्यूट्रॉन का उपयोग करते हुए विखंडन या परमाणु श्रृंखला-प्रतिक्रिया, परमाणु ऊर्जा संयंत्रों और विखंडन-प्रकार के परमाणु बमों के लिए ऊर्जा का स्रोत है, जैसे कि हिरोशिमा और नागासाकी, नागासाकी में विस्फोट किया गया युद्ध II। यूरेनियम और थोरियम जैसे भारी नाभिक भी सहज विखंडन से गुजर सकते हैं, लेकिन वे अल्फा क्षय द्वारा क्षय से गुजरने की अधिक संभावना रखते हैं।

एक न्यूट्रॉन-आरंभिक श्रृंखला प्रतिक्रिया होने के लिए, कुछ शर्तों के तहत एक निश्चित स्थान में मौजूद प्रासंगिक आइसोटोप का एक महत्वपूर्ण द्रव्यमान होना चाहिए। सबसे छोटे महत्वपूर्ण द्रव्यमान के लिए स्थितियों के लिए उत्सर्जित न्यूट्रॉन के संरक्षण की आवश्यकता होती है और उनके धीमा या मॉडरेशन भी होता है ताकि एक और विखंडन शुरू करने के लिए अधिक से अधिक क्रॉस-सेक्शन या संभावना हो। ओक्लो, गैबॉन, अफ्रीका के दो क्षेत्रों में, प्राकृतिक परमाणु विखंडन रिएक्टर 1.5 बिलियन साल पहले सक्रिय थे।[18] प्राकृतिक न्यूट्रिनो उत्सर्जन के माप ने प्रदर्शित किया है कि रेडियोधर्मी क्षय से पृथ्वी के मुख्य परिणामों से निकलने वाली गर्मी का लगभग आधा हिस्सा।हालांकि, यह ज्ञात नहीं है कि इसमें से कोई भी विखंडन श्रृंखला प्रतिक्रियाओं से परिणाम देता है।[citation needed]


भारी तत्वों का उत्पादन

सिद्धांत के अनुसार, जैसा कि बिग बैंग के बाद ब्रह्मांड ठंडा हो गया, अंततः यह सामान्य उप -परमाणु कणों के लिए संभव हो गया क्योंकि हम उन्हें जानते हैं (न्यूट्रॉन, प्रोटॉन और इलेक्ट्रॉनों) मौजूद हैं। बिग बैंग में बनाए गए सबसे आम कण जो आज भी हमारे लिए आसानी से देख सकते हैं, वे प्रोटॉन और इलेक्ट्रॉन (समान संख्या में) थे। प्रोटॉन अंततः हाइड्रोजन परमाणु बनाएंगे। बिग बैंग में बनाए गए लगभग सभी न्यूट्रॉन को बिग बैंग के बाद पहले तीन मिनट में हीलियम -4 में अवशोषित किया गया था, और यह हीलियम आज ब्रह्मांड में अधिकांश हीलियम के लिए खाता है (बिग बैंग न्यूक्लियोसिंथेसिस देखें)।

हीलियम (लिथियम, बेरिलियम, और शायद कुछ बोरान) से परे कुछ अपेक्षाकृत कम मात्रा में तत्व बड़े धमाके में बनाए गए थे, क्योंकि प्रोटॉन और न्यूट्रॉन एक दूसरे से टकराए थे, लेकिन सभी भारी तत्व (कार्बन, तत्व संख्या 6, और तत्व 6, और तत्व। अधिक से अधिक परमाणु संख्या) जिसे हम आज देखते हैं, फ्यूजन चरणों की एक श्रृंखला के दौरान सितारों के अंदर बनाए गए थे, जैसे कि प्रोटॉन-प्रोटॉन श्रृंखला, सीएनओ चक्र और ट्रिपल-अल्फा प्रक्रिया। एक स्टार के विकास के दौरान उत्तरोत्तर भारी तत्व बनाए जाते हैं।

ऊर्जा केवल फ्यूजन प्रक्रियाओं में जारी की जाती है जिसमें लोहे की तुलना में छोटे परमाणुओं को शामिल किया जाता है क्योंकि आयरन (56 न्यूक्लियंस) के आसपास प्रति नाभिक चोटियों की बाध्यकारी ऊर्जा होती है। चूंकि संलयन द्वारा भारी नाभिक के निर्माण के लिए ऊर्जा की आवश्यकता होती है, प्रकृति न्यूट्रॉन कैप्चर की प्रक्रिया के लिए सहारा देती है। न्यूट्रॉन (उनके आरोप की कमी के कारण) एक नाभिक द्वारा आसानी से अवशोषित हो जाते हैं। भारी तत्व या तो एक धीमी न्यूट्रॉन कैप्चर प्रक्रिया (तथाकथित एस-प्रोसेस | एस-प्रोसेस) या रैपिड, या आर-प्रोसेस | आर-प्रोसेस द्वारा बनाए जाते हैं। एस प्रक्रिया थर्मली पल्सिंग सितारों (एजीबी, या एसिम्प्टोटिक विशाल शाखा सितारों) में होती है और सीसा और बिस्मथ के सबसे भारी तत्वों तक पहुंचने में सैकड़ों से हजारों साल लगते हैं। आर-प्रोसेस को सुपरनोवा विस्फोटों में होने के लिए माना जाता है, जो उच्च तापमान, उच्च न्यूट्रॉन प्रवाह और बेदखल पदार्थ की आवश्यक स्थिति प्रदान करते हैं। ये तारकीय स्थितियां क्रमिक न्यूट्रॉन को बहुत तेजी से कैप्चर करती हैं, जिसमें बहुत न्यूट्रॉन-समृद्ध प्रजातियां शामिल होती हैं, जो तब भारी तत्वों को बीटा-क्षय करती हैं, विशेष रूप से तथाकथित प्रतीक्षा बिंदुओं पर जो बंद न्यूट्रॉन गोले (जादू की संख्या) के साथ अधिक स्थिर न्यूक्लाइड के अनुरूप हैं।

यह भी देखें

  • आइसोमेरिक शिफ्ट
  • न्यूट्रॉन-डिगेनेट मैटर
  • परमाणु रसायन विज्ञान
  • परमाणु पदार्थ
  • परमाणु मॉडल
  • परमाणु स्पेक्ट्रोस्कोपी
  • न्यूक्लोनिका, वेब संचालित परमाणु विज्ञान पोर्टल
  • QCD मामला


संदर्भ

  1. B. R. Martin (2006). Nuclear and Particle Physics. John Wiley & Sons, Ltd. ISBN 978-0-470-01999-3.
  2. Henri Becquerel (1896). "Sur les radiations émises par phosphorescence". Comptes Rendus. 122: 420–421.
  3. Geiger, Hans; Marsden, Ernest (1909). "On the diffuse reflection of the α-particles". Proceedings of the Royal Society A. 82 (557): 495. Bibcode:1909RSPSA..82..495G. doi:10.1098/rspa.1909.0054.
  4. 4.0 4.1 Godenko, Lyudmila. The Making of the Atomic Bomb (E-Book). cuny.manifoldapp.org CUNY's Manifold (City University of New York). Retrieved 13 June 2021. The discovery for which Rutherford is most famous is that atoms have nuclei; ...had its beginnings in 1909...Geiger and Marsden published their anomalous result in July, 1909...The first public announcement of this new model of atomic structure seems to have been made on March 7, 1911, when Rutherford addressed the Manchester Literary and Philosophical Society;...
  5. Jariskog, Cecilia (December 2008). "ANNIVERSARY The nucleus and more" (PDF). CERN Courrier. p. 21. Retrieved 13 June 2021. .. in 1911, Rutherford writes: "I have been working recently on scattering of alpha and beta particles and have devised a new atom to explain the results..{{cite web}}: CS1 maint: date and year (link)
  6. W. Pauli, Nobel lecture, December 13, 1946.
  7. Poenaru, Dorin N.; Calboreanu, Alexandru (2006). "Alexandru Proca (1897–1955) and his equation of the massive vector boson field". Europhysics News. 37 (5): 25–27. Bibcode:2006ENews..37...24P. doi:10.1051/epn:2006504.
  8. G. A. Proca, Alexandre Proca.Oeuvre Scientifique Publiée, S.I.A.G., Rome, 1988.
  9. Vuille, C.; Ipser, J.; Gallagher, J. (2002). "Einstein–Proca model, micro black holes, and naked singularities". General Relativity and Gravitation. 34 (5): 689. arXiv:1406.0497. Bibcode:2002GReGr..34..689V. doi:10.1023/a:1015942229041. S2CID 118221997.
  10. Scipioni, R. (1999). "Isomorphism between non-Riemannian gravity and Einstein–Proca–Weyl theories extended to a class of scalar gravity theories". Class. Quantum Gravity. 16 (7): 2471–2478. arXiv:gr-qc/9905022. Bibcode:1999CQGra..16.2471S. doi:10.1088/0264-9381/16/7/320. S2CID 6740644.
  11. Tucker, R. W; Wang, C (1997). "An Einstein–Proca-fluid model for dark matter gravitational interactions". Nuclear Physics B: Proceedings Supplements. 57 (1–3): 259–262. Bibcode:1997NuPhS..57..259T. doi:10.1016/s0920-5632(97)00399-x.
  12. Yukawa, Hideki (1935). "On the Interaction of Elementary Particles. I". Proceedings of the Physico-Mathematical Society of Japan. 3rd Series. 17: 48–57. doi:10.11429/ppmsj1919.17.0_48.
  13. J.M.Blatt and V.F.Weisskopf, Theoretical Nuclear Physics, Springer, 1979, VII.5
  14. Mayer, Maria Goeppert (1949). "On Closed Shells in Nuclei. II". Physical Review. 75 (12): 1969–1970. Bibcode:1949PhRv...75.1969M. doi:10.1103/PhysRev.75.1969.
  15. Haxel, Otto; Jensen, J. Hans D; Suess, Hans E (1949). "On the "Magic Numbers" in Nuclear Structure". Physical Review. 75 (11): 1766. Bibcode:1949PhRv...75R1766H. doi:10.1103/PhysRev.75.1766.2.
  16. Stephenson, C.; et., al. (2017). "Topological properties of a self-assembled electrical network via ab initio calculation". Scientific Reports. 7 (1): 932. Bibcode:2017NatSR...7..932B. doi:10.1038/s41598-017-01007-9. PMC 5430567. PMID 28428625.
  17. Not a typical example as it results in a "doubly magic" nucleus
  18. Meshik, A. P. (November 2005). "The Workings of an Ancient Nuclear Reactor". Scientific American. 293 (5): 82–91. Bibcode:2005SciAm.293e..82M. doi:10.1038/scientificamerican1105-82. PMID 16318030. Retrieved 2014-01-04.


ग्रन्थसूची

  • General Chemistry by Linus Pauling (Dover 1970) ISBN 0-486-65622-5
  • Introductory Nuclear Physics by Kenneth S. Krane (3rd edition, 1987) ISBN 978-0471805533 [Undergraduate textbook]
  • Theoretical Nuclear And Subnuclear Physics by John D. Walecka (2nd edition, 2004) ISBN 9812388982 [Graduate textbook]
  • Nuclear Physics in a Nutshell by Carlos A. Bertulani (Princeton Press 2007) ISBN 978-0-691-12505-3


बाहरी संबंध